

Tribal Partners Canada Inc.

TRANSPORTATION IMPACT STUDY

12035 Dixie Road, Town of Caledon Proposed Industrial/Employment Development

March 2021 21185 TOWN OF CALEDON PLANNING RECEIVED

March, 17, 2021

LEA Consulting Ltd.
625 Cochrane Drive, 9th Floor
Markham, ON, L3R 9R9 Canada
T | 905 470 0015 F | 905 470 0030
WWW.LEA.CA

March 12, 2021 Reference Number: 21185

Tribal Partners Canada Inc. 201-2700 Steeles Avenue West Vaughan, ON L4K 3C8

Dear Tribal Partners Canada Inc.,

RE: Transportation Impact Study

Proposed Industrial/Employment Development

12035 Dixie Road (Lot 2 and 3 Caledon Lands), Town of Caledon

LEA Consulting Ltd. (LEA) is pleased to present the findings of our Transportation Impact Study (TIS) for the proposed industrial/employment development located at 12035 Dixie Road in the Town of Caledon. This study has been prepared on behalf of Tribal Partners Canada Inc. in support of their Official Plan Amendment, Zoning By-law amendment, and Site Plan Approval applications. This report concludes that the traffic associated with the proposed development will have an acceptable impact on the surrounding road network.

Should you have any questions regarding this Transportation Impact Study, please do not hesitate to contact the undersigned at (905) 470-0015 x301 (schan@lea.ca).

Yours truly,

LEA CONSULTING LTD.

Sabrina Chan, M.Eng., P.Eng.

Transportation Engineer

Cally Yeung

Transportation Planner

Encl. Transportation Impact Study – 12035 Dixie Road, Town of Caledon, Proposed Industrial/Employment Development

Disclaimer

This Report represents the work of LEA Consulting Ltd ("LEA"). This Report may not be relied upon for detailed implementation or any other purpose not specifically identified within this Report. This Document is confidential and prepared solely for the use of Tribal Partners Canada Inc. Neither LEA, its subconsultants nor their respective employees assume any liability for any reason, including, but not limited to, negligence, to any party other than Tribal Partners Canada Inc. for any information or representation herein.

TABLE OF CONTENTS

1	INTRODUCTION	1
1.1	Proposed Development	1
1.2	Access Arrangement	3
2	EXISTING TRANSPORTATION CONDITIONS	5
2.1	Road Network	5
2.2	Transit Network	7
2.3	Cycling Network	8
2.4	Pedestrian Network	9
2.5	Traffic Data Collection	9
2.6	Intersection Capacity Analysis	10
3	FUTURE BACKGROUND TRAFFIC CONDITIONS	15
3.1	Background Developments	15
3.2	Corridor Growth	15
3.3	Road Network Improvements	15
3.4	Intersection Capacity Analysis	16
3.5	Intersection Capacity Analysis (Optimized)	20
4	SITE-GENERATED TRAFFIC	22
4.1	Trip Generation	22
4.2	Trip Distribution and Assignment	23
5	FUTURE TOTAL TRAFFIC CONDITIONS	27
5.1	Intersection Capacity Analysis	27
5.2	Intersection Capacity Analysis (Optimized)	32
6	SIGNAL WARRANT ANALYSIS	34
7	PARKING REVIEW	37
8	LOADING REVIEW	38
9	TRANSPORTATION DEMAND MANAGEMENT (TDM)	39
9.1	Transit-Based Strategies	39
9.2	Travel and Parking Management Strategies	39
10	CONCLUSIONS	41

LIST OF TABLES

Table 1-1: Proposed Site Statistics	2
Table 1-2: Access Arrangement Summary	4
Table 2-1: Traffic Data Collection Summary	10
Table 2-2: Existing Capacity Analysis - Signalized Intersections (AM Peak Hour)	12
Table 2-3: Existing Capacity Analysis - Signalized Intersections (PM Peak Hour)	13
Table 2-4: Existing Capacity Analysis – Unsignalized Intersections	14
Table 3-1: Background Development	15
Table 3-2: Future Background Capacity Analysis - Signalized Intersections (AM Peak Hour) 17
Table 3-3: Future Background Capacity Analysis - Signalized Intersections (PM Peak Hour) 18
Table 3-4: Future Background Capacity Analysis - Unsignalized Intersections	19
Table 3-5: Optimized Signal Timing Plan at Dixie & Mayfield (Weekday PM)	20
Table 3-6: Future Background Capacity Analysis (Optimized)	21
Table 4-1: Vehicle and Truck Warehousing Trip Rates	22
Table 4-2: Trip Generation Summary	22
Table 4-3: Vehicle Trip Distribution	23
Table 5-1: Future Total Capacity Analysis - Signalized Intersections (AM Peak Hour)	29
Table 5-2: Future Total Capacity Analysis - Signalized Intersections (PM Peak Hour)	30
Table 5-3: Future Total Capacity Analysis - Unsignalized Intersections	31
Table 5-4: Optimized Signal Timing Plan at Dixie & Mayfield (Weekday PM)	32
Table 5-5: Future Total Capacity Analysis (Optimized)	33
Table 6-1: Signal Warrant Analysis Results	35
Table 6-2: Future Total Capacity Analysis - Unsignalized West Access #3	35
Table 7-1: Zoning By-law Parking Requirements	37
Table 8-1: Zoning By-law Loading Requirements	38

LIST OF FIGURES

Figure 1-1: Subject Site Location	1
Figure 1-2: Proposed Site Plan	3
Figure 2-1: Existing Lane Configuration and Traffic Control	6
Figure 2-2: Existing Transit Services	8
Figure 2-3: Existing Cycling Network	9
Figure 2-4: Existing Peak Hour Traffic Volumes	11
Figure 3-1: Future Background Peak Hour Traffic Volumes	16
Figure 4-1: Employee Vehicle Site Generated Peak Hour Traffic Volumes	24
Figure 4-2: Heavy Vehicle Site Generated Peak Hour Traffic Volumes	25
Figure 4-3: Total Site Generated Peak Hour Traffic Volumes	26
Figure 5-1: Future Total Peak Hour Traffic Volumes	28

APPENDIX

APPENDIX A	EXISTING TRAFFIC DATA
APPENDIX B	INTERSECTION CAPACITY ANALYSIS RESULTS – EXISTING CONDITIONS
APPENDIX C	INTERSECTION CAPACITY ANALYSIS RESULTS – FUTURE BACKGROUND CONDITIONS
APPENDIX D	INTERSECTION CAPACITY ANALYSIS RESULTS – FUTURE BACKGROUND CONDITIONS (OPTIMIZED)
APPENDIX E	DETAILED TTS DATA
APPENDIX F	INTERSECTION CAPACITY ANALYSIS RESULTS – FUTURE TOTAL CONDITIONS
APPENDIX G	INTERSECTION CAPACITY ANALYSIS RESULTS – FUTURE TOTAL CONDITIONS (OPTIMIZED)
APPENDIX H	SIGNAL WARRANT ANALYSIS RESULTS
APPENDIX I	FUNCTIONAL REVIEW DRAWINGS

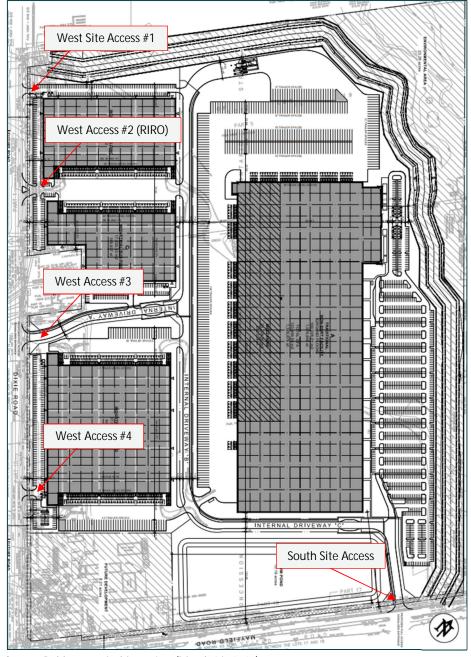
1 INTRODUCTION

LEA Consulting Ltd. (LEA) has been retained by Tribal Partners Canada Inc. to conduct a Transportation Impact Study (TIS) for a proposed warehouse/employment development located at 12035 Dixie Road in the Town of Caledon (herein referred to as the "subject site"). The subject site is currently agricultural land at the northeast quadrant of Dixie Road & Mayfield Road, as illustrated in Figure 1-1.

Figure 1-1: Subject Site Location

1.1 PROPOSED DEVELOPMENT

The development proposal will introduce four (4) warehouse/distribution buildings with a combined ground floor area (GFA) of approximately 200,292m². A total of 2,111 surface parking spaces are proposed for the subject site. The proposed site statistics are presented in Table 1-1, and the proposed site plan is shown in Figure 1-2.



Transportation Impact Study 12035 Dixie Road, Town of Caledon

Table 1-1: Proposed Site Statistics

Land Use	Building	GFA (m ²)	GFA (ft ²)
	А	123,457	1,328,874
Warehouse/	В	37,691	405,705
Distribution Centre	С	17,636	189,827
	D	21,509	231,519
	Total	200,292	2,155,926

Figure 1-2: Proposed Site Plan

Source: Baldassarra Architects Inc. (March 8th, 2021)

1.2 ACCESS ARRANGEMENT

The proposed development will be accessible via three (3) all-moves accesses and one (1) right-in/right-out (RIRO) access along Dixie Road, as well as one (1) all-moves access along Mayfield Road. The Mayfield Road

access, as well as the West Access #3 along Dixie Road access is proposed to be signalized. Additionally, the proposed internal driveways will allow the four buildings to be connected within the subject site.

The minimum spacing between intersections along Dixie Road are subject to the guidelines listed within Region of Peel's Road Characterization Study (May 2013). In the study, Dixie Road is characterized as a "Suburban Connector", where the minimum distance required between full intersections, and full to right-in/right-out intersections is 300m, and 150m, respectively. The distance between the intersections of Dixie Road & Merchant Road/West Access #3 and Dixie Road & West Access #2 (RIRO), meets the Region's criteria, at approximately 200m. However, the distance between the remaining accesses is short of 22-91m. Even so, given that the roadway is relatively flat with no horizontal or vertical obstructions, the spacing distance between accesses is considered acceptable.

Table 1-2 and below summarizes the design and usage of the proposed accesses along Dixie Road and Mayfield Road.

Table 1-2: Access Arrangement Summary

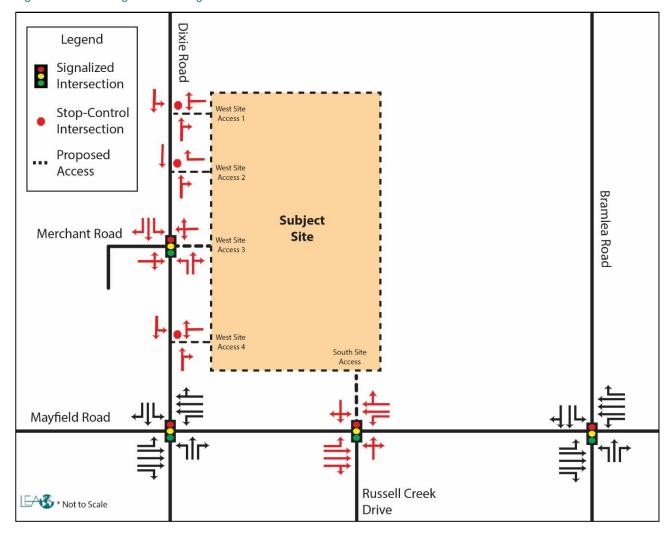
	West Access #1	West Access #2	West Access #3	West Access #4	South Access
Configuration	Full-moves (NBTR, SBLT, WBLR)	RIRO (NBTR, WBR)	Full-moves (NBTR, SBL, WBLTR, EBLTR)	Full-moves (NBTR, SBLT, WBLR)	Full-moves (NBLTR, SBLTR, WBL, EBTR,)
Traffic Control	Stop Controlled	Stop Controlled	Signalized	Stop Controlled	Signalized
Vehicle Type Permitted	Vehicles	Vehicles & Trucks	Vehicles & Trucks	Vehicles	Vehicles & Trucks
Building Access	Building C, D	Building C, D	Building A, B, C, D	Building B	Building A, B, C, D

2 EXISTING TRANSPORTATION CONDITIONS

This section will identify and assess the existing transportation conditions present in the study area, including the road, transit, cyclist, and pedestrian networks. The study area was determined based on the size of the development, its anticipated transportation impact, as well as through discussions with Town and Region staff. The study area will include the following intersections:

- Dixie Road & Mayfield Road (signalized);
- Dixie Road & Merchant Road/West Access #3 (proposed signalization); and
- Bramalea Road & Mayfield Road (signalized).

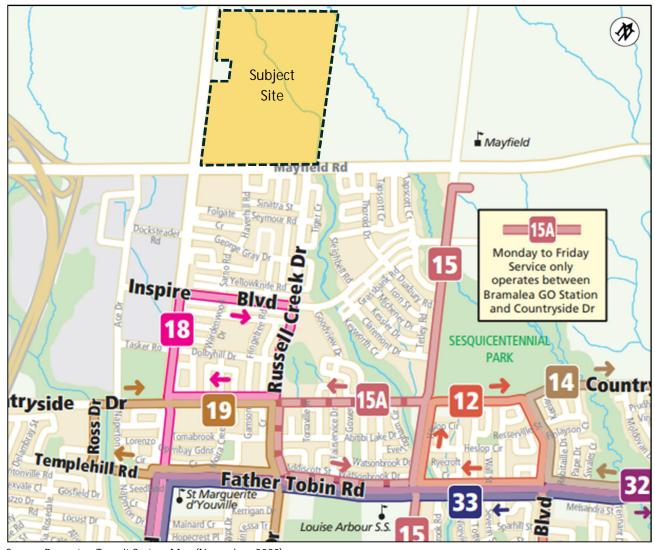
In addition to the West Access #3 at Dixie & Merchant, the following site accesses are also proposed:


- Dixie Road & West Site Access #1 (unsignalized);
- Dixie Road & West Site Access #2 RIRO (unsignalized);
- Dixie Road & West Access #4 (unsignalized); and
- South Access & Mayfield road (proposed signalization).

2.1 ROAD NETWORK

The following section provides a description and classification of the roadways within the study area, with Figure 2-1 illustrating the existing lane configuration.

Figure 2-1: Existing Lane Configuration and Traffic Control

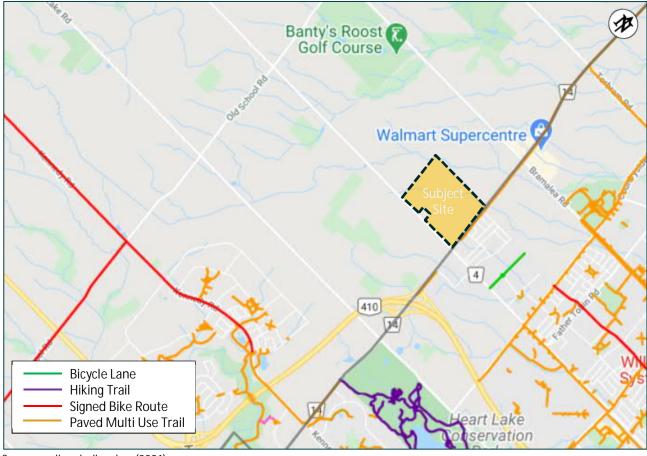

- ▶ Dixie Road is a north-south arterial road within the study area, under the jurisdiction of the Region of Peel. The roadway has a posted speed limit of 80 km/h and operates with a two-lane cross-section (one lane per direction) within the study area.
- Mayfield Road is an east-west arterial road within the study area, under the jurisdiction of the Region of Peel. The roadway has a posted speed limit of 80 km/h and operates with a six-lane cross-section (three lanes per direction) west of Dixie Road until approximately 275m west of Heart Lake Road, and a fivelane cross-section (three lanes eastbound, 2 lanes westbound) between Dixie Road and Bramalea Road.
- ▶ Bramalea Road is a north-south collector road under the jurisdiction of the Town of Caledon. The roadway has a posted speed limit of 60 km/h and operates with a four-lane cross-section (two lanes per direction) within the study area.
- ▶ Merchant Road is a local road under the jurisdiction of the Town of Caledon. The roadway operates with a two-lane cross-section (one lane per direction) and is assumed to operate with an unposted speed limit of 50 km/h.

2.2 TRANSIT NETWORK

The Town of Caledon currently does not operate public transit within the municipality, except for the local transit line in Bolton serviced by Voyago. There are also inter-regional transit services provided by Brampton Transit, and GO Transit routes. While the proposed development is not conveniently accessible by public transit, the closest bus stop is located approximately 1.5km south of the subject site (equivalent to an 18-minute walk), at the intersection of Dixie Road & Inspire Boulevard. The existing transit network surrounding the study area operated by Brampton Transit is described below, and illustrated in Figure 2-2.

Figure 2-2: Existing Transit Services

Source: Brampton Transit System Map (November, 2020)


Route 18 Dixie is a bus route that generally runs north-south along Dixie Road between Inspire Boulevard and Meyerside Drive, and connects riders to the Bramalea Terminal. It operates with 10 to 15-minute headways during peak hours and provides connections to Züm Routes 505, 501, and 511.

2.3 CYCLING NETWORK

The nearest cycling infrastructure in the area includes paved multi-use trail along Mayfield Road, which connects to a wider network within the City of Brampton. There is also a paved multi-use trail and signed bike route along Kennedy Road, which is approximately 3.5km from the subject site. This route extends north to the east-west signed bike route along Olde Base Line Road. The signed bike route is also present on

Old School Road, traveling west of Kennedy Road. The cycling network surrounding the subject site is illustrated in Figure 2-3.

Figure 2-3: Existing Cycling Network

Source: walkandrollpeel.ca (2021)

2.4 PEDESTRIAN NETWORK

Given that the area north of Mayfield Road consists of mainly agriculture lands, the study area has minimal pedestrian infrastructure. Despite the absence of sidewalks in the area immediately surrounding the subject site, crosswalks are available at the signalized intersection of Dixie Road & Mayfield Road, and Bramalea Road & Mayfield Road. It should be noted that sidewalk is provided along the south side of Mayfield Road to facilitate the residential uses.

2.5 TRAFFIC DATA COLLECTION

Turning movement counts (TMCs) were used as the source of traffic data in the intersection capacity analyses. The traffic counts for Dixie Road & Mayfield Road, and Bramalea Road & Mayfield Road were

obtained from Spectrum Traffic Data Inc. (Spectrum) and Region of Peel, collected in 2019 and 2016, respectively.

Traffic counts for the intersections at Dixie Road & Merchant Road were not available from Spectrum, Town of Caledon, or the Region of Peel. Resultantly, TMC surveys were conducted by LEA for the intersection during the weekday AM and PM peak periods between 6:30 AM to 9:30 AM and 3:30 PM to 6:30 PM, respectively. Table 2-1 summarizes the traffic data utilized in this study, with detailed TMCs provided in Appendix A.

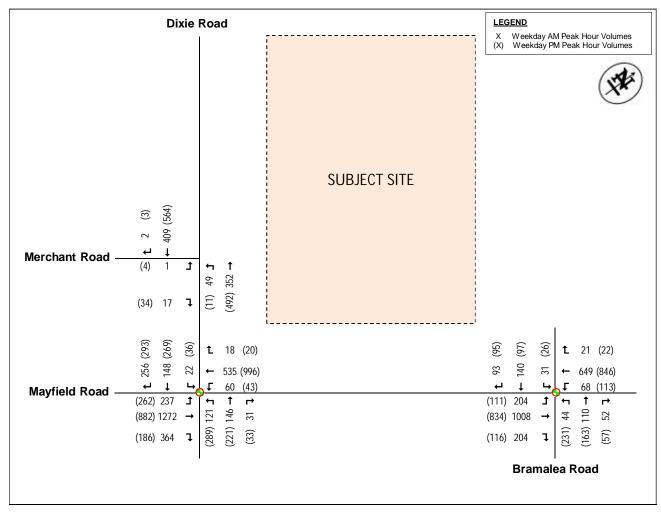
Table 2-1: Traffic Data Collection Summary

Intersection	Survey Date	Source
Dixie Road & Mayfield Road	Thursday, October 3 rd , 2019	Spectrum
Bramalea Road & Mayfield Road	Tuesday, November 29 th , 2016	Region of Peel
Dixie Road & Merchant Road	Tuesday, December 15 th , 2020	LEA

Given that the traffic data of Dixie & Merchant was collected in the midst of the COVID-19 pandemic, as discussed with Town and Region staff, the TMCs within the study area have been adjusted to remediate the discrepancies in traffic volumes.

The surveyed TMCs at Dixie & Merchant generally reveals higher traffic volumes along Dixie Road compared to the TMCs at Dixie & Mayfield which were collected pre-pandemic. Therefore, in order to derive present day traffic volumes at Dixie & Merchant and Dixie & Mayfield, the traffic volumes on Dixie Road were balanced using the TMCs for the two intersections. This increases the volumes along Dixie Road at the respective intersections. To note, Merchant Road is a local road that only serves the Acklands Grainger warehouse located at 21 Merchant Road, and terminates as a cul-de-sac. Since warehousing and distribution is considered an "essential business" in the Province of Ontario, it was assumed that business operations did not change for this use, and that traffic along Merchant Road remains the same as pre-pandemic conditions. Therefore, traffic volumes on Merchant Road have not been adjusted.

Since the Dixie & Mayfield TMCs were collected less than two (2) years ago, the Mayfield Road volumes at Dixie & Mayfield have not been adjusted. It is assumed that the volumes are representative of present day traffic volumes.


As for the TMCs of Bramalea Road & Mayfield Road, given that the latest available data provided by the Region was collected in 2016, a conservative growth rate of 2% has been applied to through movements to derive 2021 existing traffic volumes.

2.6 INTERSECTION CAPACITY ANALYSIS

The capacity analysis for the study area was undertaken using Synchro version 11.0, which is based on the Highway Capacity Manual (2000) methodology. The intersection capacity analysis has been conducted under Region of Peel Synchro Guidelines (December 2010). In accordance to the guidelines, the peak hour factors (PHF) of all Regional intersections were set at 1.00 for all movements. The adjusted existing traffic volumes in the study area during the weekday peak hours are illustrated in Figure 2-4.

Figure 2-4: Existing Peak Hour Traffic Volumes

The intersection capacity analysis was completed for the weekday AM and PM peak hours. The results for the assessed signalized intersections under existing conditions are summarized in Table 2-2 and Table 2-3, whereas the results for the unsignalized intersections are summarized in Table 2-4. Detailed capacity results can be found in Appendix B.

Table 2-2: Existing Capacity Analysis - Signalized Intersections (AM Peak Hour)

	Weekday AM Peak Hour										
Intersection		Overall			Movements of Interest						
IIItersection	V/C	Delay	LOS	Movement	V/C	Delay	LOS	Queu	ie (m)		
	V/C	(s)	LU3	Movement	V/C	(s)	LU3	50th	95th		
				EBL	0.40	7	Α	8.2	17.2		
				EBT	0.41	11	В	30.4	45.5		
				EBR	0.24	10	Α	0.0	7.8		
				WBL	0.20	9	Α	1.8	5.0		
Dixie Road &				WBT	0.21	12	В	12.2	20.9		
Mayfield Road	0.47	19	В	NBL	0.70	62	E	16.1	26.2		
Waynela Roda				NBT	0.54	50	D	18.9	28.7		
				NBR	0.02	42	D	0.0	1.1		
				SBL	0.15	44	D	2.7	6.7		
				SBT	0.51	49	D	19.1	28.7		
				SBR	0.18	44	D	0.0	12.4		
				EBL	0.33	6	Α	7.7	14.1		
				EBT	0.29	6	Α	18.2	25.4		
				EBR	0.13	5	Α	0.0	4.3		
				WBL	0.24	13	В	4.6	11.6		
Bramalea Road				WBT	0.23	11	В	15.8	23.5		
& Mayfield	0.37	16	В	WBR	0.02	9	Α	0.0	0.0		
Road				NBL	0.40	59	E	6.6	13.5		
				NBT	0.60	64	E	16.9	27.3		
				NBR	0.04	55	D	0.0	2.8		
				SBL	0.21	50	D	4.1	8.9		
				SBT	0.31	52	D	10.2	16.8		

Table 2-3: Existing Capacity Analysis - Signalized Intersections (PM Peak Hour)

	Weekday PM Peak Hour									
Intersection		Overall		Movements of Interest						
Intersection	V/C	Delay	LOS	Movement	V/C	Delay	LOS	Queue (m)		
	V /C	(s)	LU3	Movement	V /C	(s)	LU3	50th	95th	
				EBL	0.87	41	D	18.2	43.2	
				EBT	0.39	21	С	30.1	36.8	
				EBR	0.12	18	В	0.0	7.4	
				WBL	0.17	17	В	2.6	5.8	
Dixie Road &				WBT	0.47	24	С	35.6	42.8	
Mayfield Road	0.92	30	С	NBL	0.95	77	E	37.7	68.4	
Waynela Road				NBT	0.34	30	С	22.1	34.0	
				NBR	0.02	27	С	0.0	1.3	
				SBL	0.11	28	С	3.3	7.8	
				SBT	0.43	32	С	28.0	41.8	
				SBR	0.34	31	С	11.4	25.5	
				EBL	0.27	12	В	6.8	14.2	
				EBT	0.30	13	В	23.2	34.4	
				EBR	0.07	11	В	0.0	5.6	
				WBL	0.38	24	С	11.1	25.8	
Bramalea Road				WBT	0.35	21	С	29.9	44.3	
&	0.49	25	С	WBR	0.02	17	В	0.0	0.0	
Mayfield Road				NBL	0.82	66	Е	34.7	47.7	
				NBT	0.36	43	D	21.5	29.9	
				NBR	0.04	39	D	0.0	2.9	
				SBL	0.08	35	С	2.8	5.8	
				SBT	0.13	36	D	5.7	9.7	

Under existing conditions, the signalized intersections are operating with an overall level of service (LOS) of 'C' or better during both peak hours. All individual movements are operating within the roadway capacity and acceptable delays during the AM and PM peak hours. However, it should be noted that the northbound left-turn movement at Dixie & Mayfield is approaching capacity with at V/C ratio of 0.95 during the PM peak period.

Table 2-4: Existing Capacity Analysis – Unsignalized Intersections

	Weekday AM Peak Hour								
Intersection	Movement of Interest	Flow Rate (vph)	Capacity (vph)	Delay (s)	95 th Queue (m)	V/C	LOS		
Dixie Road &	EBLR	18	544	12	0.5	0.03	В		
Merchant Road	NBL	49	1106	8	0.6	0.04	Α		
	Weekday PM Peak Hour								
Intersection	Movement of Interest	Flow Rate (vph)	Capacity (vph)	Delay (s)	95 th Queue (m)	V/C	LOS		
Dixie Road &	EBLR	38	468	13	1.2	0.08	В		
Merchant Road	NBL	11	968	9	0.2	0.01	Α		

Under existing traffic conditions, the unsignalized intersection within the study area are operating with short delays and ample residual capacity during both peak hours. All movements are operating with LOS of 'B' or better.

3 FUTURE BACKGROUND TRAFFIC CONDITIONS

For the analysis of the future background traffic conditions, this study considers a five-year horizon to the year 2026. Future background traffic includes the traffic added to the network from other future developments within the surrounding area, corridor growth, as well as all planned infrastructure improvements within the study area.

3.1 BACKGROUND DEVELOPMENTS

There is one (1) background development identified within the immediate study area, located north of the subject site at 12892 Dixie Road. The development application for the proposed warehouse buildings at 12892 Dixie Road has recently been submitted to the Town. Since LEA is also the transportation consultant for that proposal, the trip generation, distribution and assignment is estimated using a similar methodology outlined in this study based on the latest site statistics. A summary of the background development is provided in Table 3-1.

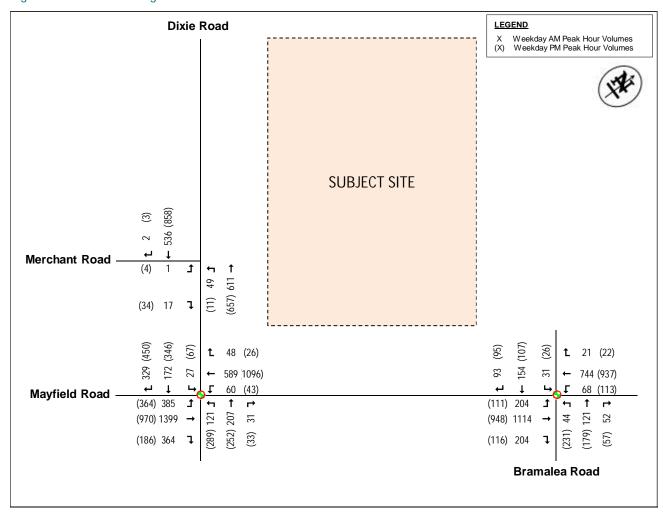
Table 3-1: Background Development

Location	Site Statistics	Source
12892 Dixie Road	4 warehouse buildings, Total Approximate GFA of 247,243 m ²	LEA (February, 2021)

3.2 CORRIDOR GROWTH

As a conservative approach, an annual growth rate of 2% was applied to all roadways within the study area during the AM and PM peak hours.

3.3 ROAD NETWORK IMPROVEMENTS


The Peel Region Long Range Transportation Plan (2019) was reviewed to identify any planned roadway improvements within the study area. It was identified that Mayfield Road is proposed to be widened from five (5) to six (6) lanes between Dixie Road and Bramalea Road, as part of the Region's 2031 planning horizon. It is understood that construction is planned to begin in 2024-2025. As the widening is planned to be completed outside of the study's five-year horizon of 2026, this road improvement has not been considered in the future scenarios.

3.4 INTERSECTION CAPACITY ANALYSIS

The future background traffic volumes were determined by incorporating future background traffic to the existing traffic volumes. The future background volumes are illustrated in Figure 3-1.

Figure 3-1: Future Background Peak Hour Traffic Volumes

The results for the assessed signalized intersections under future background conditions are summarized in Table 3-2 and Table 3-3, whereas the results for the unsignalized intersections are summarized in Table 3-4. Detailed capacity results found in Appendix C.

Table 3-2: Future Background Capacity Analysis - Signalized Intersections (AM Peak Hour)

	Weekday AM Peak Hour									
Intersection		Overall		Movements of Interest						
IIItersection	V/C	Delay	LOS	Movement	V/C	Delay	LOS	Queue (m)		
	V/C	(s)	LU3	Movement	V/C	(s)	LU3	50th	95th	
				EBL	0.63	10.5	В	16.6	31.9	
				EBT	0.47	13.1	В	37.3	53.9	
				EBR	0.24	11.1	В	0.0	8.2	
				WBL	0.24	14.4	В	2.0	5.4	
Divis Dood 9				WBT	0.29	19.5	В	19.0	25.7	
Dixie Road & Mayfield Road	0.66	22.0	С	NBL	0.66	56.2	E	15.8	25.9	
Waynela Road				NBT	0.67	52.4	D	27.2	38.8	
				NBR	0.02	40.0	D	0.0	1.1	
				SBL	0.21	43.2	D	3.2	7.8	
				SBT	0.52	46.9	D	21.9	32.1	
				SBR	0.33	43.9	D	3.9	19.1	
				EBL	0.36	6.2	А	8.0	14.6	
				EBT	0.33	6.4	Α	21.3	29.5	
				EBR	0.13	5.4	Α	0.0	4.4	
				WBL	0.27	13.7	В	4.8	12.4	
Bramalea Road				WBT	0.27	11.5	В	19.0	27.9	
&	0.40	16.3	В	WBR	0.02	9.5	Α	0.0	0.0	
Mayfield Road				NBL	0.38	58.2	E	6.6	13.4	
				NBT	0.62	63.8	E	18.6	29.4	
				NBR	0.04	54.1	D	0.0	2.8	
				SBL	0.21	49.8	D	4.0	8.8	
				SBT	0.33	51.0	D	11.2	17.9	

Table 3-3: Future Background Capacity Analysis - Signalized Intersections (PM Peak Hour)

				Weekday AM Peak Hour						
Intersection		Overall		Movements of Interest						
IIItersection	V/C	Delay	LOS	Movement	V/C	Delay	LOS	Queue (m)		
	V/C	(s)	LOS	Movement	V/C	(s)	LOS	50th	95th	
				EBL	1.49	266.3	F	~46.4	#82.5	
				EBT	0.45	23.1	С	33.9	41.1	
				EBR	0.12	19.2	В	0.0	7.4	
				WBL	0.20	17.4	В	2.6	5.8	
Dixie Road &				WBT	0.52	25.1	С	40.4	48.3	
Mayfield Road	1.34	53.8	D	NBL	1.07	114.5	F	~44.8	#76.4	
- Maynora Road				NBT	0.37	29.1	С	25.7	38.7	
				NBR	0.02	24.9	С	0.0	1.3	
				SBL	0.20	27.2	С	6.4	13.1	
				SBT	0.53	31.8	С	37.8	55.0	
				SBR	0.62	34.8	С	34.4	56.8	
				EBL	0.29	12.9	В	6.8	14.5	
				EBT	0.34	13.8	В	27.3	40.6	
				EBR	0.07	11.3	В	0.0	5.7	
				WBL	0.43	26.4	С	11.5	27.4	
Bramalea Road				WBT	0.39	21.4	С	34.1	49.6	
&	0.52	24.6	С	WBR	0.02	17.0	В	0.0	0.0	
Mayfield Road				NBL	0.82	65.7	E	34.7	47.3	
				NBT	0.39	43.4	D	23.8	32.4	
				NBR	0.04	39.1	D	0.0	2.9	
				SBL	0.09	34.7	С	2.8	5.7	
				SBT	0.14	35.5	D	6.3	10.3	

Under future background conditions, the signalized intersections continue to operate acceptably and without constraints during the weekday AM peak hour. At Dixie & Mayfield, the eastbound left-turn movement is operating over capacity with a V/C ratio of 1.49 and long delays during the weekday PM peak hour due to the additional 102 vehicles making this left-turn generated from the background development. Additionally, the northbound left-turn movement at Dixie & Mayfield is now operating over capacity, which was revealed to be reaching capacity under existing conditions.

Table 3-4: Future Background Capacity Analysis - Unsignalized Intersections

			Weekday	y AM Peak Ho	our			
Intersection	Movement of Interest	Flow Rate (vph)	Capacity (vph)	Delay (s)	95 th Queue (m)	V/C	LOS	
Dixie Road &	EBLR	18	426	13.8	0.6	0.04	В	
Merchant Road	NBL	49	991	8.8	0.7	0.05	Α	
	Weekday PM Peak Hour							
Intersection	Movement of Interest	Flow Rate (vph)	Capacity (vph)	Delay (s)	95 th Queue (m)	V/C	LOS	
Dixie Road &	EBLR	38	300	18.7	1.9	0.13	С	
Merchant Road	NBL	11	749	9.9	0.2	0.01	Α	

Under future background traffic conditions, the unsignalized intersection is expected to continue to operate without capacity constraints during both peak hours. The addition of corridor growth and background development traffic have resulted in minimal increases in delays from existing conditions.

3.5 INTERSECTION CAPACITY ANALYSIS (OPTIMIZED)

In order to improve traffic constraints revealed under future background conditions, LEA recommends signal optimization at Dixie & Mayfield during the weekday PM peak period.

It is recommended that a protected left-turn phase be implemented for the northbound approach, while maintaining the cycle length of 120 seconds. The signal timings should also be adjusted to allocate more green time for the eastbound left-turn and northbound through-right phase at Dixie & Mayfield. The recommended signal timing plan is shown in Table 3-5.

Table 3-5: Optimized Signal Timing Plan at Dixie & Mayfield (Weekday PM)

Timings	North	bound	Southbound	Eastbound		Westbound			
(seconds)	L	TR	LTR	L	TR	L	TR		
			Existing Signal Timing P	lan					
Yellow Time	-	4.6	4.6	3	4.6	3	4.6		
All-Red Time	-	2.3	2.3	-	2.3	-	2.3		
Total Split	-	50	50	10	60	10	60		
Cycle Length		120 seconds							
		(Optimized Signal Timing	Plan					
Yellow Time	3	4.6	4.6	3	4.6	3	4.6		
All-Red Time	-	2.3	2.3	-	2.3	-	2.3		
Total Split	12.3	60.2	47.9	14.9	51.8	8	44.9		
Cycle Length		120 seconds							
Split Difference	+12.3	+10.2	-2.1	+4.9	-8.2	-2	-15.1		

The intersection capacity analysis is conducted once again with the optimized signal timing plan. The results of the capacity analysis with the improvements under future background conditions are summarized in Table 3-6. Detailed Synchro outputs are available in Appendix D.

Table 3-6: Future Background Capacity Analysis (Optimized)

	Weekday PM Peak Hour										
Intersection		Overall			Movements of Interest						
intersection	V/C	Delay	LOS	Movement	V/C	Delay	LOS	Queu	ıe (m)		
	V/C	(s)	LU3	Movement	V/ C	(s)	LU3	50th	95th		
				EBL	0.99	79.0	E	38.9	#92.5		
			2 D	EBT	0.47	24.7	С	36.4	46.7		
	1.04 42.2			EBR	0.12	20.5	С	0.0	8.5		
				WBL	0.22	25.8	С	2.7	7.1		
Divis Deed 0		42.2		WBT	0.72	39.4	D	50.5	60.3		
Dixie Road & Mayfield Road				NBL	0.99	87.1	F	28.1	#45.6		
Iviayiicia Roda				NBT	0.35	27.9	С	24.9	33.2		
				NBR	0.02	23.9	С	0.0	0.0		
				SBL	0.24	35.1	D	7.3	13.2		
				SBT	0.70	45.2	D	43.3	56.6		
				SBR	0.72	47.0	D	32.8	51.6		

The recommended signal optimization improves the traffic operations at Dixie & Mayfield, where all individual movements are operating within the roadway capacity and acceptable delays. For the eastbound left-turn movement, the V/C ratio reduces to 0.99 and delay decreases by 187 seconds during the weekday PM peak hour. Further, the northbound left-turn movement operates with a V/C ratio of 0.99. Although, this movement still operates with a LOS of 'F', the delay is within one cycle length, which is acceptable.

4 SITE-GENERATED TRAFFIC

4.1 TRIP GENERATION

The proposed buildings are expected to operate similarly to a typical warehouse/distribution centre. To determine the trip generation for the proposed development, the average rate in the Institute of Transportation Engineers (ITE) Trip Generation Manual 10th Edition for Warehousing (Land Use Code 150) was applied to the proposed uses. The heavy vehicle trip generation rates are derived from the ITE Trip Generation 10th Edition Online Supplement for LUC 150. The heavy vehicle percentages have been calculated by dividing the heavy vehicle trip generation rate by the total vehicle trip generation rate. The vehicle and truck trip rates utilized in the trip generation calculations are shown in Table 4-1, and the trip generation breakdown by building is summarized in Table 4-2.

Table 4-1: Vehicle and Truck Warehousing Trip Rates

Trip Generation	A	M Peak Hou	ır	PM Peak Hour			
Trip Generation	In	Out	Total	In	Out	Total	
All Vehicle Directional Distribution	77%	23%	100%	27%	73%	100%	
All Vehicles Trip Rate (Per 1,000ft ²)	0.13	0.04	0.17	0.05	0.14	0.19	
Heavy Vehicle Directional Distribution	52%	48%	100%	52%	48%	100%	
Heavy Vehicle Trip Rate (Per 1,000ft ²)	0.01	0.01	0.02	0.02	0.01	0.03	
Heavy Vehicle Percentage	8%	26%	12%	39%	7%	16%	

Table 4-2: Trip Generation Summary

Building	Trip Generation	AM P	eak Hour (Trips)	PM Peak Hour (Trips)			
Bunding	mp Generation	ln	Out	Total	ln	Out	Total	
D. il die e. A	Total Building A Traffic	174	52	226	68	184	252	
Building A (1,328,874 ft²)	Employee Traffic	161	39	199	41	172	212	
(1,020,07411)	Truck Traffic	13	13	27	27	13	40	
Dil alia a. D	Total Building B Traffic	53	16	69	21	56	77	
Building B (405,705 ft²)	Employee Traffic	49	12	61	13	52	64	
(403,70311)	Truck Traffic	4	4	8	8	4	12	
Desilation of C	Total Building C Traffic	25	7	32	10	26	36	
Building C (189,827 ft²)	Employee Traffic	23	5	28	6	24	30	
(107,02711)	Truck Traffic	2	2	4	4	2	6	
Duilding D	Total Building D Traffic	30	9	39	12	32	44	
Building D (231,519 ft²)	Employee Traffic	28	7	34	7	30	37	
(231,31711)	Truck Traffic	2	2	5	5	2	7	
	Total Site Traffic	282	84	366	111	298	409	
Total Site	Employee Traffic	261	63	322	67	277	344	
	Truck Traffic	21	21	44	44	21	65	

The proposed development is projected to generate a total of 366 new trips (282 inbound, 84 outbound) and 409 new trips (111 inbound, 298 outbound) during the AM and PM peak hour periods, respectively.

4.2 TRIP DISTRIBUTION AND ASSIGNMENT

The trip distribution of employee vehicle traffic was estimated using Transportation Tomorrow Survey (TTS) 2016 data. The TTS data was filtered for auto home-based work trips during the weekday AM peak period. It is assumed that the PM peak period trip distribution is the reverse of the AM peak period since employees entering the subject site in the morning will be utilizing the same routing in the afternoon to exit, and vice versa. Table 4-3 summarizes the trip distribution for this study. Detailed TTS calculations are available in Appendix E.

Table 4-3: Vehicle Trip Distribution

Direction	Doodway	А	M	PM		
Direction	Roadway	Inbound	Outbound	Inbound	Outbound	
North	Dixie Road	33%	23%	23%	33%	
South	Dixie Road	15%	11%	11%	15%	
East	Mayfield Road	10%	6%	6%	10%	
West	Mayfield Road	42%	60%	60%	42%	
	TOTAL	100%	100%	100%	100%	

The majority of site traffic is expected to use Highway 410 to/from the proposed development which is located west of the subject site. The employee trip assignment was subsequently determined based on the trip origin and destination, site accesses, and the most logical routing. Figure 4-1 illustrates the trip assignment of employee traffic on the study road network.

As for heavy vehicle site traffic, it is assumed that most trucks will utilize the highway network for longer distance travel. Given the subject site's close proximity to Highway 410, heavy vehicle site traffic was assigned to utilize this highway to travel to/from the site, as shown in Figure 4-2.

The total site generated traffic volumes for the weekday AM and PM peak hours are illustrated in Figure 4-3.

Figure 4-1: Employee Vehicle Site Generated Peak Hour Traffic Volumes

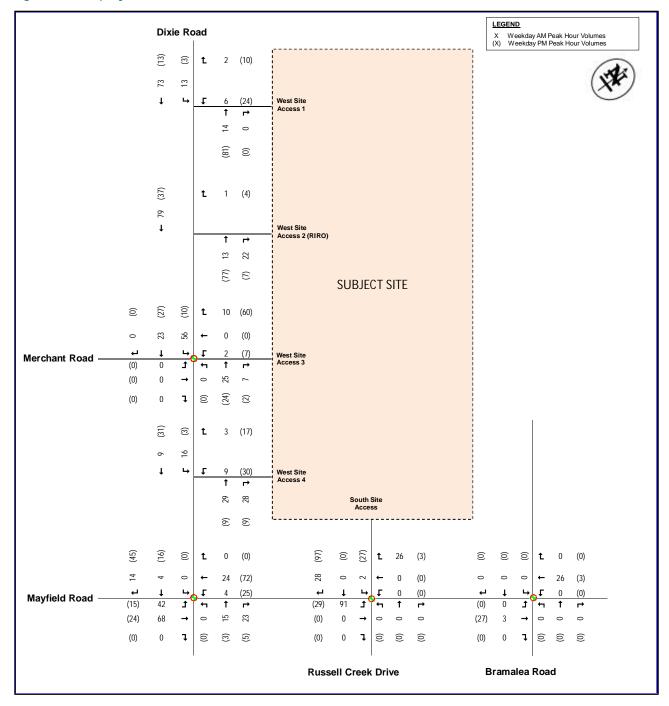


Figure 4-2: Heavy Vehicle Site Generated Peak Hour Traffic Volumes

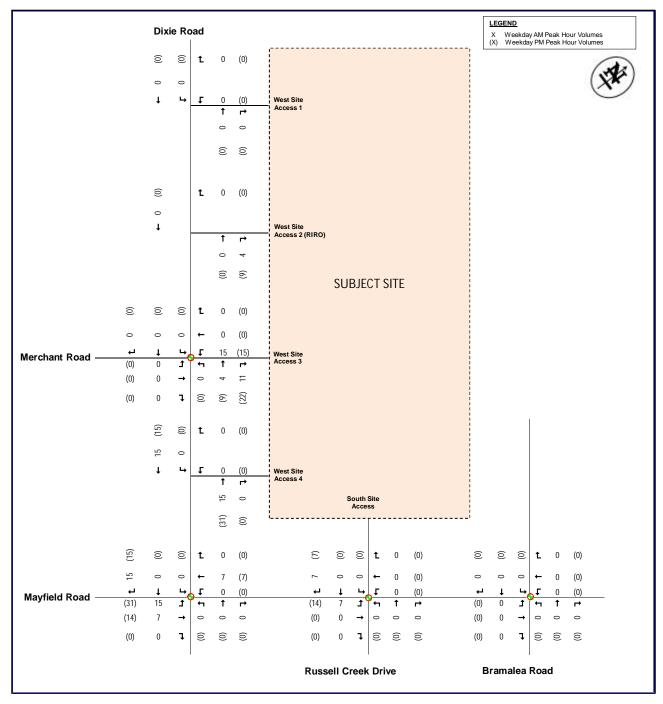
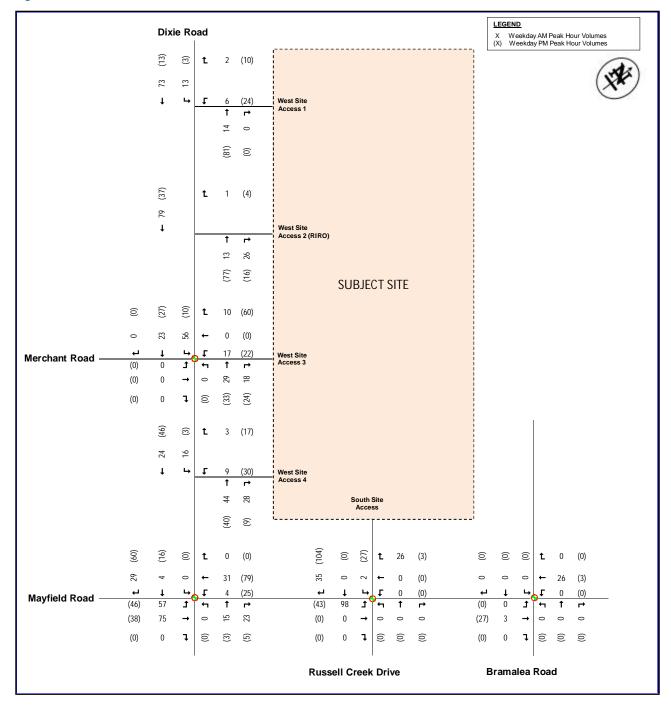



Figure 4-3: Total Site Generated Peak Hour Traffic Volumes

5 FUTURE TOTAL TRAFFIC CONDITIONS

Future total transportation conditions include future background volumes, in addition to the site trips generated by the proposed development.

5.1 INTERSECTION CAPACITY ANALYSIS

Intersection capacity analysis was conducted for the studied intersections with the site traffic added for the planning horizon of 2026. As part of the development proposal, Dixie & Merchant is proposed to operate as West Access #3, and will be signalized, with an exclusive southbound left-turn lane. The additional turn lane will match with the existing geometry of the intersection where a northbound left-turn lane is present. The future total analysis incorporates the intersection modification at Dixie & Merchant, as well as the recommended signal optimization from future background conditions. The future total traffic volumes utilized for the intersection capacity analysis are illustrated in Figure 5-1.

The results for the assessed signalized intersections under future total conditions are summarized in Table 5-1 and Table 5-2, whereas the results for the unsignalized intersections are summarized in Table 5-3. Detailed capacity results are found in Appendix F.

Figure 5-1: Future Total Peak Hour Traffic Volumes

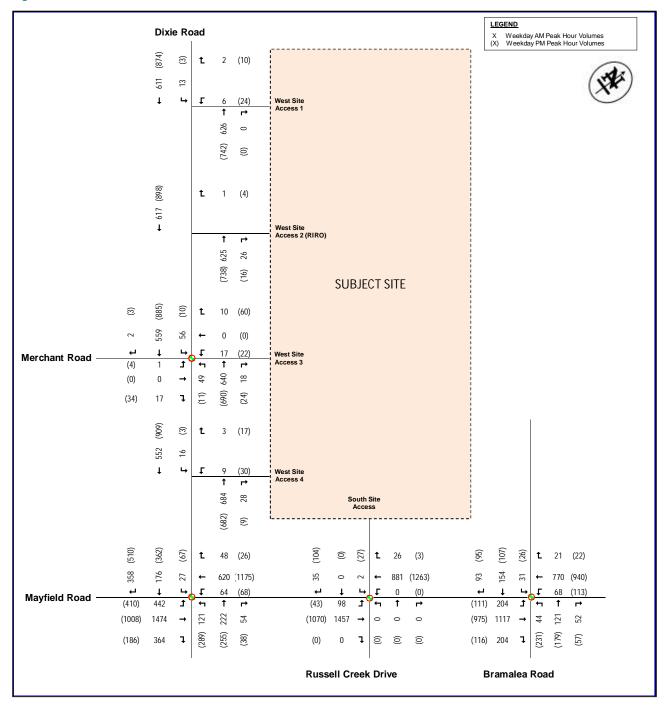


Table 5-1: Future Total Capacity Analysis - Signalized Intersections (AM Peak Hour)

				Weekda	ny AM Peak	Hour				
Intersection		Overall			Movements of Interest					
IIItersection	V/C	Delay	LOS	Movement	V/C	Delay	LOS	Queue (m)		
	V/C	(s)	LU3	iviovernerit	V/C	(s)	LU3	50th	95th	
				EBL	0.73	14.1	В	20.9	#51.0	
				EBT	0.50	14.3	В	41.2	60.4	
				EBR	0.24	11.8	В	0.0	8.6	
				WBL	0.28	17.1	В	2.3	5.8	
Divis Dood 0				WBT	0.33	22.1	С	21.3	26.4	
Dixie Road & Mayfield Road	0.73	23.3	С	NBL	0.62	52.1	D	15.7	25.3	
Iviayiicia koad				NBT	0.67	51.5	D	29.1	40.5	
				NBR	0.04	39.1	D	0.0	4.8	
				SBL	0.21	42.0	D	3.2	7.6	
				SBT	0.50	45.2	D	22.2	32.0	
				SBR	0.47	45.1	D	9.4	26.7	
		16.2		EBL	0.37	6.3	А	8.0	14.6	
			В	EBT	0.33	6.4	А	21.3	29.6	
	0.41			EBR	0.13	5.4	Α	0.0	4.4	
				WBL	0.27	13.8	В	4.8	12.4	
Bramalea Road				WBT	0.28	11.6	В	19.8	29.1	
& Mayfield				WBR	0.02	9.5	Α	0.0	0.0	
Road				NBL	0.38	58.2	Е	6.6	13.4	
				NBT	0.62	63.8	Е	18.6	29.4	
				NBR	0.04	54.1	D	0.0	2.8	
				SBL	0.21	49.8	D	4.0	8.8	
				SBT	0.33	51.0	D	11.2	17.9	
				EBT	0.01	39.5	D	0.0	0.0	
Dixie Road &				WBT	0.49	44.0	D	7.7	1.7	
Merchant	0.55	0.0	_	NBL	0.09	3.6	Α	1.2	3.6	
Road/West	0.55	9.2	A	NBT	0.55	7.0	А	27.3	51.9	
Access 3				SBL	0.46	7.8	А	7.8	3.2	
				SBT	0.42	5.4	А	18.5	34.5	
Russell Creek				EBL	0.20	0.9	А	0.1	0.2	
Drive/South	0.22	1.0	А	EBT	0.33	0.2	А	0.4	0.6	
Access &	0.32	1.9		WBT	0.30	2.3	А	12.5	18.1	
Mayfield Road				SBT	0.05	55.3	E	0.3	6.4	

Table 5-2: Future Total Capacity Analysis - Signalized Intersections (PM Peak Hour)

				Weekda	ny AM Peak	Hour				
Intersection		Overall			Movements of Interest					
IIItersection	V//C	Delay	LOS	Movement	V/C	Delay	LOS	Queue (m)		
	V/C	(s)	LUS	iviovement	V/C	(s)		50th	95th	
				EBL	1.28	182.5	F	~66.5	#111.9	
				EBT	0.50	26.3	С	40.4	48.7	
				EBR	0.12	21.4	С	0.0	8.5	
				WBL	0.37	42.3	D	5.5	14.4	
Divis Dood 0				WBT	0.78	52.4	D	59.0	74.4	
Dixie Road & Mayfield Road	1.19	55.8	Е	NBL	0.96	76.2	Е	26.4	#45.4	
Iviayiicia Road				NBT	0.34	26.3	С	23.9	33.5	
				NBR	0.02	22.6	С	0.0	0.0	
				SBL	0.22	33.3	С	6.9	13.2	
				SBT	0.69	42.8	D	43.6	59.4	
				SBR	0.82	52.4	D	41.8	65.6	
		24.6	С	EBL	0.29	12.9	В	6.8	14.5	
				EBT	0.35	13.9	В	28.4	41.9	
				EBR	0.07	11.3	В	0.0	5.7	
				WBL	0.44	27.0	С	11.6	27.8	
Bramalea Road	0.53			WBT	0.39	21.4	С	34.2	49.8	
& Mayfield				WBR	0.02	17.0	В	0.0	0.0	
Road				NBL	0.82	65.7	Е	34.7	47.3	
				NBT	0.39	43.4	D	23.8	32.4	
				NBR	0.04	39.1	D	0.0	2.9	
				SBL	0.09	34.7	С	2.8	5.7	
				SBT	0.14	35.5	D	6.3	10.3	
				EBT	0.03	33.2	С	0.3	0.0	
Dixie Road &				WBT	0.77	50.6	D	24.1	0.4	
Merchant	0.74	19.9	В	NBL	0.05	6.2	Α	0.4	2.1	
Road/West	0.74	19.9	Ь	NBT	0.65	12.7	В	48.0	96.9	
Access 3				SBL	0.12	6.9	Α	1.5	1.3	
				SBT	0.73	15.0	В	60.6	122.9	
Russell Creek				EBL	0.15	1.3	Α	0.1	m0.3	
Drive/South	0.46	6.0	Δ.	EBT	0.27	0.9	Α	1.0	1.4	
Access &	0.40	0.0	А	WBT	0.45	5.5	Α	27.7	43.0	
Mayfield Road				SBT	0.50	54.3	D	11.4	22.2	

Under future total conditions, the signalized intersections continue to operate acceptably and without constraints during the weekday AM peak hour. However, with the addition of 47 trucks and vehicles making

the eastbound left-turn at Dixie & Mayfield during the PM peak hour, the movement is operating over capacity with a V/C ratio of 1.28 and long delays.

The capacity analysis demonstrates that both signalized site accesses are operating within capacity and with acceptable LOS during both peak hours.

Table 5-3: Future Total Capacity Analysis - Unsignalized Intersections

			Weekda	y AM Peak Ho	our		
Intersection	Movement of Interest	Flow Rate (vph)	Capacity (vph)	Delay (s)	95 th Queue (m)	V/C	LOS
Dixie Road &	WBLR	8	202	23.5	0.6	0.04	С
West Access 1	SBLT	13	936	0.4	0.2	0.01	Α
Dixie Road & West Access 2	WBR	1	501	12.2	0.0	0.00	В
Dixie Road &	WBLR	12	265	19.2	0.6	0.05	С
West Access 4	SBLT	16	840	0.5	0.3	0.02	Α
			Weekda	y PM Peak Ho	our		
Intersection	Movement of Interest	Flow Rate (vph)	Capacity (vph)	Delay (s)	95 th Queue (m)	V/C	LOS
Dixie Road &	WBLR	34	121	46.2	4.8	0.28	Е
West Access 1	SBLT	3	831	0.1	0.0	0.00	Α
Dixie Road & West Access 2	WBR	4	427	13.5	0.1	0.01	В
Dixie Road &	WBLR	47	307	18.8	2.4	0.15	С
West Access 4	SBLT	3	860	0.1	0.0	0.00	Α

Under future total traffic conditions, all unsignalized accesses are expected to operate well during both peak hours. The proposed site accesses are expected to operate with LOS 'E' or better with minimal delays and queuing.

5.2 INTERSECTION CAPACITY ANALYSIS (OPTIMIZED)

In order to improve the traffic constraints revealed under future total conditions, LEA recommends signal optimization at Dixie & Mayfield intersection during the weekday PM peak period.

It is recommended that the signal timing plan be adjusted to allocate more green time for northbound and eastbound phases, and also to increase the cycle length by 15 seconds to 135 seconds. This cycle length would align with the existing cycle length at the adjacent intersection located at Bramalea & Mayfield. The recommended signal timing plan is shown in Table 5-4.

Table 5-4: Optimized Signal Timing Plan at Dixie & Mayfield (Weekday PM)

Timings	North	bound	Southbound	Eastb	ound	Westl	oound
(seconds)	L	TR	LTR	L	TR	L	TR
		Future Bac	kground Optimized Sign	nal Timing Pl	an		
Yellow Time	3	4.6	4.6	3	4.6	3	4.6
All-Red Time	-	2.3	2.3	-	2.3	-	2.3
Total Split	12.3	60.2	47.9	14.9	51.8	8	44.9
Cycle Length			120 se	econds			
		Future	Total Optimized Signal T	Timing Plan			
Yellow Time	3	4.6	4.6	3	4.6	3	4.6
All-Red Time	-	2.3	2.3	-	2.3	-	2.3
Total Split	15.7	63.6	47.9	26.5	63.4	8	44.9
Cycle Length			135 s∈	econds			
Split Difference	+3.4	+3.4	0	+11.6	+11.6	0	0

The intersection capacity analysis is conducted once again with the optimized signal timing plan. The results of the capacity analysis with the improvements under future total conditions are summarized in Table 5-5. Detailed synchro outputs are provided in Appendix G.

Table 5-5.	Future	Total Ca	nacity	ν Δnaly	isis ((Optimized)
Table 5-5.	IULUIC	TULAL G	ipacit	y Allai	y 515 (Optillized)

				Weekda	ıy PM Peak	Hour			
Intersection		Overall			Mo	vements o	f Interest		
IIItersection	V/C	Delay	LOS	Movement	V/C	Delay	LOS	Queu	ıe (m)
	٧/٥	(s)	LU3	Movement	V /C	(s)	LU3	50th	95th
				EBL	0.98	80.6	F	~55.8	#104.7
				EBT	0.47	26.3	С	42.4	50.3
				EBR	0.12	21.7	С	0.0	8.3
				WBL	0.41	35.9	D	5.0	10.3
Divis Dand 0				WBT	0.87	54.1	D	66.2	77.2
Dixie Road & Mayfield Road	1.02	48.2	D	NBL	0.99	86.8	F	31.5	#55.8
Waynela Road				NBT	0.35	30.6	С	28.2	39.0
				NBR	0.02	26.3	С	0.0	0.1
				SBL	0.24	40.1	D	8.3	15.3
				SBT	0.75	53.5	D	52.1	70.0
				SBR	0.64	48.5	D	25.3	49.7

With the implementation of the optimized signal timing plan, the traffic operations at Dixie & Mayfield have improved significantly from previous conditions. The V/C ratio for the eastbound left-turn movement reduces to 0.98 and delay decreases by 102 seconds. Although the northbound left-turn movement operates with a V/C ratio of 0.99 and LOS of 'F', this movement operates within the roadway capacity and delay is within one cycle length, which is acceptable.

Despite the analysis presented above, it should be reminded that the optimized signal timing plan was recommended to alleviate traffic constraints at Dixie & Mayfield following the proposed development's full-build out. However, given that the four (4) buildings will not be constructed at the same time, the recommended signal timing plan improvements will not be required immediately. Instead, the level of service at Dixie & Mayfield should be monitored as the development advances. This process will confirm if and when the signal timing optimization is required, that is only when site generated traffic volumes surpass the roadway capacity and results in deteriorating traffic operations.

Additionally, as discussed in Section 3.3, the Mayfield Road widening construction is planned to begin in 2024-2025 but to be completed beyond the study horizon year. It is expected that changes to the signal timing plan will occur to adapt to the new traffic flows associated with the additional lane, in which case, the recommended optimization may not be necessary. Furthermore, the Region of Peel and Town of Caledon is currently undergoing their Municipal Comprehensive and Settlement Boundary Expansion Studies. It is understood that the subject site is located within the Focus Study Area and has been highlighted as a prime area for boundary expansion, employment uses, and servicing infrastructure. As a result, it can be anticipated that traffic volumes in the area will grow significantly within the next 5-10 years as an increased level of development occurs. Since the increase in traffic will not be generated by the proposed development alone, the onus of maintaining acceptable operations at Dixie & Mayfield in the future should be shared between the developers and the Region.

6 SIGNAL WARRANT ANALYSIS

The West Access #3 accesses along Dixie Road, and South Access along Mayfield Road were examined to determine if traffic signals are required upon realization of the proposed development. The signal warrant is based on Justification 7 in the Ontario Traffic Manual (OTM) Book 12 which considers projected volumes. This is appropriate to determine the future need for signalization due the addition of development traffic in the area. Since it is difficult to predict eight-hour volumes with accuracy, peak hour volumes (PHV) estimated in Section 5 are expanded to obtain average hourly volumes (AHV). Average hourly volume is calculated from peak hour volumes using this relationship:

$$AHV = \frac{amPHV + pmPHV}{4}$$

Justification 7 takes the required volumes from Justifications 1 and 2 and increases it by 20% for an existing intersection. This is because the use of peak hour volumes lessens the warrant due to averaging and uncertainty is increased. The warrant also considers the type of intersection, lane configuration and location context. West Access #3 is a three-leg intersection, whereas South Access is proposed to align with Russel Creek Drive. Both accesses are located in a rural area or free flow conditions. The major roads considered in this analysis are Dixie Road and Mayfield Road. Dixie Road has one (1) through lane in both north and south directions, whereas Mayfield Road has two (2) and three (3) through lanes in the east and west directions, respectively. The site driveways are considered to be the minor approaches, where West Access #3 is proposed with a shared left- and right-turn lane, and South Access is proposed with a shared left-through-right lane. For the purpose of this analysis, the minor roads are considered to have one lane in each direction. This presents a conservative analysis as the thresholds are lower for a single lane of traffic per direction. According to the guidelines, right-turn volumes from the minor approaches should be excluded from criteria 2B as they are not considered traffic crossing a road.

The traffic volumes under future total conditions for each access were utilized in the signal warrant analysis. The installation of a traffic signal is warranted if all volume requirements are met as per Table 21 "Justification 7 Projected Volumes" and Table 22 "Future Development: Volume Expansion Required to Meet Justifications" in OTM Book 12. The results for all three (3) accesses are summarized in Table 6-1, and detailed analysis is available in Appendix H.

Table 6-1: Signal Warrant Analysis Results

Proposed Access	Justification	7 (Pr	rojected Volumes)	Compliance		nal fied?
Access					YES	NO
	1. Minimum Vehicular	Α	Total Volume (Average Hour)	100%		Х
West	Volume	В	Crossing Volume (Average Hour)	29%		Х
Access #3	2 Dolay to Cross Traffic	Α	Main Road (Average Hour)	100%		Х
	2. Delay to Cross Traffic	В	Crossing Road (Average Hour)	18%		Х
	1. Minimum Vehicular	Α	Total Volume (Average Hour)	100%		Х
South	Volume	В	Crossing Volume (Average Hour)	29%		Х
Access	2 Dolay to Cross Traffic	Α	Main Road (Average Hour)	100%		Х
	2. Delay to Cross Traffic	В	Crossing Road (Average Hour)	12%		Х

Based on the analysis, the projected average hourly volumes for both accesses do not fulfill Justification 7. Although criteria 1A and 2A are met with 100% for both accesses, a signal is not warranted due to low minor road and crossing volumes. However, it should be noted that the signal warrant analyses were conducted with peak hour traffic volumes which is primarily composed of employee vehicle traffic. It is assumed that warehouse truck operations would not typically operate during peak periods such that heavy vehicle traffic would be much higher during off-peak periods. Given that the proposed development will provide a total of 445 trailer parking spaces, this volume of trucks can potentially be entering and leaving the subject site at the same time as a worst-case scenario. Therefore, signalization is proposed at both accesses to facilitate warehouse truck operations.

Furthermore, LEA has conducted an additional analysis which examines the operations of an unsignalized West Access #3 under future total conditions. The results are summarized below in Table 6-2, and detailed capacity results are found in Appendix F.

Table 6-2: Future Total Capacity Analysis - Unsignalized West Access #3

			Weekday	y AM Peak Ho	our		
Intersection	Movement of Interest	Flow Rate (vph)	Capacity (vph)	Delay (s)	95 th Queue (m)	V/C	LOS
	EBLR	18	245	20.9	1.1	0.07	С
Dixie Road &	WBLR	108	71	397.8	41.0	1.53	F
West Access 3	NBL	49	972	8.9	0.7	0.05	Α
	SBL	224	896	10.4	4.4	0.25	В
			Weekday	y PM Peak Ho	our		
Intersection	Movement of Interest	Flow Rate (vph)	Capacity (vph)	Delay (s)	95 th Queue (m)	V/C	LOS
	EBLR	38	132	43.0	5.0	0.29	Е
Dixie Road &	WBLR	328	156	565.4	117.9	2.10	F
West Access 3	NBL	11	732	10.0	0.2	0.02	Α
	SBL	40	842	9.5	0.7	0.05	Α

The results show that without signalization, the westbound movement is operating at LOS 'F' during both peak hours. This movement is operating with significant delays and over capacity with V/C ratios of 1.53 and 2.10 during the AM and PM peak hour, respectively.

In contrast to the results shown previously in Section 5.1, it can be concluded that the signalization of Dixie Road & West Access #3 will improve the intersection's future operations as compared to remaining an unsignalized intersection. With signalization, the westbound movement would improve from LOS 'F' to 'D' during both peak hours. Therefore, the signalization of West Access #3 would benefit truck operations, as well as employee vehicles entering or exiting through this access.

7 PARKING REVIEW

The subject site is governed by the parking standards in the Town of Caledon Zoning By-law 2006-50. The parking requirements for the development assumes that the office net floor area associated with each building is 15% or less of the total net floor area (NFA). In accordance to the bylaw, a building with an NFA between 7,000m² to 20,000m² would yield 78 parking spaces, plus one (1) parking space per 145m² of NFA over 7,000m². Additionally, a building with a NFA of over 20,000m² would yield 168 parking spaces, plus one (1) parking space per 170m² of NFA or portion thereof over 20,000m². To note, at this stage of the development proposal, the NFA has not yet been determined for each building. Therefore, as a conservative method, the gross floor area (GFA) has been utilized for the following parking calculations. The parking requirements is summarized in Table 7-1.

Table 7-1: Zoning By-law Parking Requirements

			Town of Caledon Zoning By-	-law 2006-50	Parking
Building	Land Use	GFA (m ²)	Parking Standard	Parking Required	Supply
Building A	Warehouse (>20,000 m ²)	123,457	168 spaces + 1 space per 170 m ² of GFA over 20,000 m ²	777	1,483
Building B	Warehouse (>20,000 m ²)	37,691	168 spaces + 1 space per 170 m ² of GFA over 20,000 m ²	273	264
Building C	Warehouse (7,000- 20,000 m ²)	17,636	78 spaces + 1 space per 145 m ² of GFA over 7,000 m ²	152	166
Building D	Warehouse (>20,000 m ²)	21,509	168 spaces + 1 space per 170 m ² of GFA over 20,000 m ²	177	198
			TOTAL	1,379	2,111
		Parking	Rate (spaces per 100m ² of GFA)	0.69	1.05

Based on the minimum parking requirements under the Town of Caledon Zoning By-law, the proposed development is required to provide a total of 1,379 parking spaces. The development is proposing to provide a total of 2,111 parking spaces, exceeding the by-law minimum parking requirements by 732 parking spaces. This proposed provision is equivalent to an overall parking rate of 1.05 spaces per 100m² GFA.

Although the proposed parking supply provided for Building B is deficient from the individual building's parking requirement by 9 parking spaces, employees will be able to utilize the surplus parking of 14 spaces provided at the adjacent Building C. The buildings are connected by the internal driveway, and also within a walkable distance from each other. Employees of Building B utilizing Building C parking spaces will be able to enter the building through entrances located on the north side of Building B.

8 LOADING REVIEW

The proposed development is subject to the loading standards outlined in the Town of Caledon Zoning By-law 2006-50. The warehouse loading space requirements include three (3) loading spaces for a minimum GFA of 7,441 m², and one (1) loading space required for each additional 9,300 m² GFA or portion thereof in excess of 7,441 m². Table 8-1 summarizes the loading space requirements and proposed loading spaces per building.

Table 8-1: Zoning By-law Loading Requirements

			Town of Caledon Zoning By-lav	w 2006-50	Loading
Building	Land Use	GFA (m ²)	Loading Standard	Loading Required	Supply
Building A	Warehouse (>7,441 m ²)	123,457	3 spaces + 1 space per 9,300 m ² of GFA over 7,441 m ²	16	98
Building B	Warehouse (>7,441 m ²)	37,691	3 spaces + 1 space per 9,300 m ² of GFA over 7,441 m ²	7	63
Building C	Warehouse (>7,441 m ²)	17,636	3 spaces + 1 space per 9,300 m ² of GFA over 7,441 m ²	5	34
Building D	Warehouse (>7,441 m ²)	21,509	3 spaces + 1 space per 9,300 m ² of GFA over 7,441 m ²	5	36
			TOTAL	33	231

The proposed loading supply of 231 spaces will satisfy the total by-law requirement of 33 loading spaces. The swept path diagrams demonstrating loading functionality is available in Appendix I.

9 TRANSPORTATION DEMAND MANAGEMENT (TDM)

Transportation Demand Management (TDM) is a set of strategies which strive towards a more efficient transportation network by influencing travel behavior. Effective TDM measures can reduce vehicle usage and encourage people to engage in more sustainable methods of travel. There are several opportunities to incorporate TDM measures that support alternative modes of transportation. The recommendations should enhance non-single occupant vehicle trips for employees traveling to and from the subject site.

9.1 TRANSIT-BASED STRATEGIES

1. Addition of bus stops on-site to provide connection to transit network.

The proposed development will implement bus stops on site to encourage employees to use transit. The bus locations are proposed along the driveways of West Access #3 along Dixie Road, as well as South Access along Mayfield Road. The exact bus stop locations and design will be determined in consultation with the Town of Caledon and Region of Peel, along with transit routing and schedules.

2. Provision of real-time transit schedule screens.

It is recommended that screens be provided in the employees' lounges and main exits to display real-time data for transit services, including schedules and service alerts.

9.2 TRAVEL AND PARKING MANAGEMENT STRATEGIES

3. Signed carpool spaces.

It is recommended that the proposed development include designated carpool spaces as a means to reduce single occupancy automobile usage. These carpool spaces should be clearly signed and be located conveniently close to the main entrances to provide a greater incentive for employees carpooling.

4. Smart Commute Membership.

Once tenants are secured, it is recommended that future tenants/owners register with the Smart Commute program. Smart Commute provides the means for businesses to help provide an alternative option for their employees to get to and from work through ride matching. One benefit with Smart Commute is the Emergency Ride Home program that provides carpoolers with a sense of reassurance under urgent circumstances. The Owner could also help tenants in establishing an employer-based carpool program specifically for the employees that would be working on-site.

5. Communications Strategy.

The Owner should provide communications and distribute information to employees via information packages or through email regarding the different travel demand management measures and programs that are offered. Information on Smart Commute, Emergency Ride Home, or other incentives can be obtained from the Region, and be included as part of this material. The Region and/or Town should also be responsible for making Smart Commute information brochures, pedestrian/cycling maps, transit maps, and

other general information available for distribution to the building occupant to help commuters become aware of the various travel alternatives.

10 CONCLUSIONS

- The development proposal will introduce four (4) warehouse/distribution buildings with a combined ground floor area (GFA) of approximately 200,292m². Five (5) accesses will be provided to the site: three (3) all-moves accesses and one (1) right-in/right-out (RIRO) access along Dixie Road, as well as one (1) all-moves access along Mayfield Road. The West Access #3 along Dixie Road, as well as South Access are proposed to be signalized.
- ▶ The subject site is located in a predominantly rural area, with limited access to the Town's active transportation networks. Therefore, there is a lack of pedestrian and cycling infrastructure within the study area.
- ▶ Under existing traffic conditions, all studied intersections operate well with an overall LOS of 'C' or better during both peak periods. Of note, the northbound left-turn movement at Dixie & Mayfield is approaching capacity during the PM peak hour.
- ▶ Under future background conditions, the studied intersections continue to operate acceptably without any capacity constraints during the weekday AM peak hour. However, the eastbound left-turn and northbound left-turn movements at Dixie & Mayfield is operating over capacity during the weekday PM peak hour due to the additional traffic generated by the background development.
- Signal timing adjustments, with the addition of a protected northbound left-turn phase, while maintaining the existing cycle length are recommended at Dixie & Mayfield during the PM peak period to alleviate the traffic constraints revealed under future background conditions. With the optimized signal timing plan, the intersection operates with acceptable levels of service.
- ► The proposed development is projected to generate 366 and 409 two-way trips during the AM and PM peak hour periods, respectively.
- ▶ Under future total conditions, the eastbound left-turn movement at Dixie & Mayfield is operating with capacity constraints during the PM peak hour. The proposed site accesses are expected to operate within capacity and with minimal delays.
- ▶ Additional signal timing adjustments are recommended at Dixie & Mayfield during the PM peak period,. With this improvement, all individual movements are operating within the roadway capacity and acceptable delays.
- ▶ To note, the signal timing optimization was recommended based on the traffic generated by the full build-out of the proposed development. This improvement would not be required immediately as the four (4) buildings are not proposed to be constructed at the same time. Instead, Dixie & Mayfield should be monitored as the development advances, in order to confirm the necessity and timing of signal timing improvements. The Mayfield Road widening and Settlement Boundary Expansion Study conducted by the Region and Town may also affect the need for the signal timing optimization at this intersection.
- ► The proposed parking provision of 2,111 parking spaces satisfies the Town of Caledon Zoning By-law parking requirements.
- ► The proposed loading provision of 231 spaces satisfies the Town of Caledon Zoning By-law loading requirement.

- A number of TDM measures have been recommended, including carpool spaces, real-time transportation screens, and information packages on travel alternatives.
- ▶ The future on-site bus stops will allow employees to engage in sustainable modes of transportation and reduce auto-based travel. The proposed bus stops provide an opportunity for public transit connection to extend north from the existing bus stop south of Dixie Road.

APPENDIX A

Existing Traffic Data

Count Name: 21211_Dixie Rd & Merchant Rd-AM Site Code: 21211 Start Date: 12/15/2020 Page No: 3

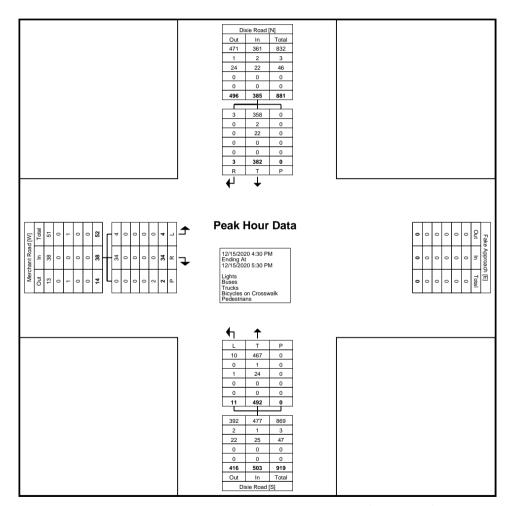
Turning Movement Peak Hour Data (8:30 AM)

				running	MONETHEL	ti cak ilo	ui Dala (0.30 Aivi					i
		Dixie	Road			Dixie	Road			Mercha	nt Road		
Start Time		South	bound			North	oound			Eastb	ound		
Start Time	Thru	Right	Peds	App. Total	Left	Thru	Peds	App. Total	Left	Right	Peds	App. Total	Int. Total
8:30 AM	99	0	0	99	6	85	0	91	0	1	0	. 1	191
8:45 AM	97	0	0	97	12	77	0	89	0	6	0	6	192
9:00 AM	107	2	0	109	10	96	0	106	0	4	0	4	219
9:15 AM	106	0	0	106	21	94	0	115	1	6	0	7	228
Total	409	2	0	411	49	352	0	401	1	17	0	18	830
Approach %	99.5	0.5	-	-	12.2	87.8	-	-	5.6	94.4	-	-	-
Total %	49.3	0.2	-	49.5	5.9	42.4	-	48.3	0.1	2.0	-	2.2	-
PHF	0.956	0.250	-	0.943	0.583	0.917	-	0.872	0.250	0.708	-	0.643	0.910
Lights	369	1	-	370	44	301	-	345	0	13	-	13	728
% Lights	90.2	50.0	-	90.0	89.8	85.5	-	86.0	0.0	76.5	-	72.2	87.7
Buses	7	0	-	7	0	9	-	9	0	0	-	0	16
% Buses	1.7	0.0	-	1.7	0.0	2.6	-	2.2	0.0	0.0	-	0.0	1.9
Trucks	33	1	-	34	5	42	-	47	1	4	-	5	86
% Trucks	8.1	50.0	-	8.3	10.2	11.9	-	11.7	100.0	23.5	-	27.8	10.4
Bicycles on Crosswalk	-	-	0	-	-	-	0	-	-	-	0	-	-
% Bicycles on Crosswalk	-	_	-	-	-	-	-	-	-	-	-	-	-
Pedestrians	-	<u>-</u>	0	-	-	-	0	-	-	-	0	-	-
% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-

Count Name: 21211_Dixie Rd & Merchant Rd-AM Site Code: 21211 Start Date: 12/15/2020 Page No: 4

																				Out 301 9 43 0 0 0 353 1 0 0 0 2 R	Dixie	In 370 7 34 0 0 411		Total 671 16 77 0 0 764 0 0 0 0 0 0 P																
[w]	Total	28	0	11	0	,	0	69	ا ا	c	0	-	0	0	-]_	1	Ρ	eak	Н	lou	ır	Da	ta	1					[-	0	0	0	0	0	Out	Fal	
Merchant Road [W]	ء	13	0	2	0	,	0	18	\parallel	13	0	4	0	0	17	· œ	-	Ļ		12/15/2 Ending 12/15/2	020 At	8:30	AM	1]							•	0	0	0	0	0	5	Fake Approach	
Merch	Ont	45	0	9	0	,	0	51	l	c	0	0	0	0	0	۵				Lights Buses Trucks Bicycles Pedesti											٠	0	0	0	0	0	0	Total	ch [E]	
																				L 44 0 5 0 0 49 L 382 7 37 0 0 426 Out	_	T 301 9 42 0 0 352 1 345 9 47 0 0 401 In e Roa		P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																

Turning Movement Peak Hour Data Plot (8:30 AM)


Count Name: 21211_Dixie Rd & Merchant Rd-PM Site Code: 21211 Start Date: 12/15/2020 Page No: 3

Turning Movement Peak Hour Data (4:30 PM)

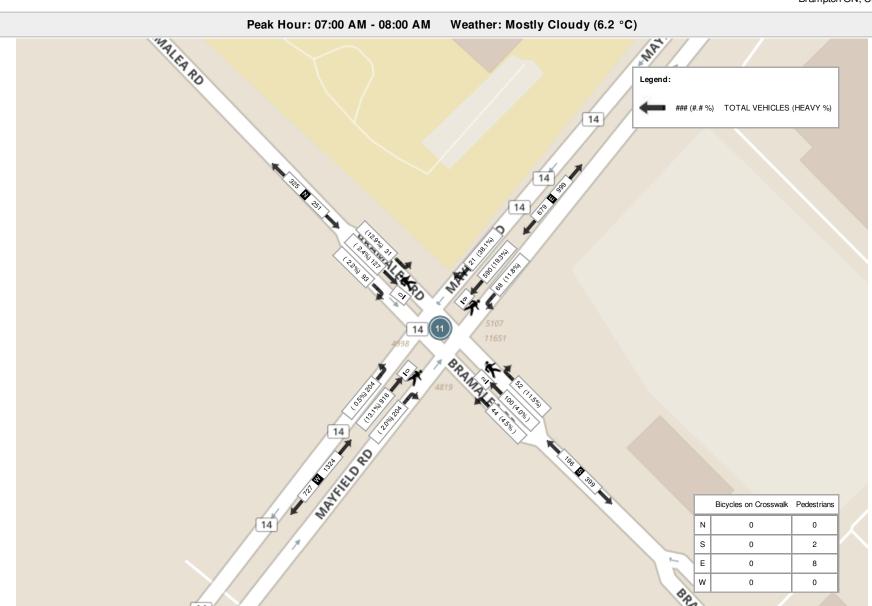
				i dirilling i	VIOVCITICI	it i can i ic	ui Dala (T.30 1 101)					
		Dixie	Road			Dixie	Road			Mercha	nt Road		
Start Time		South	bound			Northl	oound			Easth	oound		
Start Time	Thru	Right	Peds	App. Total	Left	Thru	Peds	App. Total	Left	Right	Peds	App. Total	Int. Total
4:30 PM	83	0	0	83	2	136	0	138	0	16	2	16	237
4:45 PM	114	1	0	115	4	137	0	141	3	3	0	6	262
5:00 PM	97	2	0	99	3	100	0	103	0	9	0	9	211
5:15 PM	88	0	0	88	2	119	0	121	1	6	0	7	216
Total	382	3	0	385	11	492	0	503	4	34	2	38	926
Approach %	99.2	0.8	-	-	2.2	97.8	-	-	10.5	89.5	-	-	-
Total %	41.3	0.3	_	41.6	1.2	53.1	-	54.3	0.4	3.7	-	4.1	-
PHF	0.838	0.375	-	0.837	0.688	0.898	-	0.892	0.333	0.531	-	0.594	0.884
Lights	358	3	-	361	10	467	-	477	4	34	-	38	876
% Lights	93.7	100.0	-	93.8	90.9	94.9	-	94.8	100.0	100.0	_	100.0	94.6
Buses	2	0	-	2	0	1	-	1	0	0	-	0	3
% Buses	0.5	0.0	-	0.5	0.0	0.2	-	0.2	0.0	0.0	-	0.0	0.3
Trucks	22	0	_	22	1	24	-	25	0	0	_	0	47
% Trucks	5.8	0.0	-	5.7	9.1	4.9	-	5.0	0.0	0.0	-	0.0	5.1
Bicycles on Crosswalk	-	-	0	-	-	-	0	-	-	-	0	-	-
% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	_	0.0	-	-
Pedestrians	-	-	0	-	-	-	0	-	-	-	2	-	-
% Pedestrians	-	-	-	-	-	-	-	-	-	-	100.0	-	-

Count Name: 21211_Dixie Rd & Merchant Rd-PM Site Code: 21211 Start Date: 12/15/2020 Page No: 4

Turning Movement Peak Hour Data Plot (4:30 PM)

Bicycles on Road%

Turning Movement Count Location Name: MAYFIELD RD & BRAMALEA RD Date: Tue, Nov 29, 2016 Deployment Lead: Chris Koukaras


Peel Region 10 Peel Centre Drive Suite B - 4th Floor Brampton ON, Canada, L6T 4B9

Weather: Mostly Cloudy (6.2 °C) Peak Hour: 07:00 AM - 08:00 AM Southbound Westbound Northbound Eastbound Int. Total MAYFIELD RD BRAMALEA ROAD BRAMALEA ROAD MAYFIELD RD (15 min)

Start Time			BRA	AMALEA	ROAD				M	AYFIELD	RD				BRA	AMALEA I	ROAD				М	AYFIELD	RD		(15 min)
	Left	Thru	Right	U-Turn	Peds	Approach Total	Left	Thru	Right	U-Turn	Peds	Approach Total	Left	Thru	Right	U-Turn	Peds	Approach Total	Left	Thru	Right	U-Turn	Peds	Approach Total	
07:00:00	3	12	7	0	0	22	12	140	2	0	0	154	6	8	13	0	0	27	9	220	54	0	0	283	486
07:15:00	7	23	7	0	0	37	16	152	1	0	1	169	6	8	11	0	0	25	19	208	49	0	0	276	507
07:30:00	8	41	29	0	0	78	14	130	5	0	5	149	15	34	12	0	1	61	59	254	47	0	0	360	648
07:45:00	13	51	50	0	0	114	26	168	13	0	2	207	17	50	16	0	1	83	117	234	54	0	0	405	809
Grand Total	31	127	93	0	0	251	68	590	21	0	8	679	44	100	52	0	2	196	204	916	204	0	0	1324	2450
Approach%	12.4%	50.6%	37.1%	0%		-	10%	86.9%	3.1%	0%		-	22.4%	51%	26.5%	0%		-	15.4%	69.2%	15.4%	0%		-	-
Totals %	1.3%	5.2%	3.8%	0%		10.2%	2.8%	24.1%	0.9%	0%		27.7%	1.8%	4.1%	2.1%	0%		8%	8.3%	37.4%	8.3%	0%		54%	-
PHF	0.6	0.62	0.47	0		0.55	0.65	0.88	0.4	0		0.82	0.65	0.5	0.81	0		0.59	0.44	0.9	0.94	0		0.82	<u>.</u>
Heavy	4	3	2	0		9	8	114	8	0		130	2	4	6	0		12	1	120	4	0		125	-
Heavy %	12.9%	2.4%	2.2%	0%		3.6%	11.8%	19.3%	38.1%	0%		19.1%	4.5%	4%	11.5%	0%		6.1%	0.5%	13.1%	2%	0%		9.4%	<u>.</u>
Lights	27	124	91	0		242	60	476	13	0		549	42	96	46	0		184	203	796	200	0		1199	-
Lights %	87.1%	97.6%	97.8%	0%		96.4%	88.2%	80.7%	61.9%	0%		80.9%	95.5%	96%	88.5%	0%		93.9%	99.5%	86.9%	98%	0%		90.6%	-
Single-Unit Trucks	0	1	0	0		1	0	36	0	0		36	0	0	1	0		1	1	50	3	0		54	-
Single-Unit Trucks %	0%	0.8%	0%	0%		0.4%	0%	6.1%	0%	0%		5.3%	0%	0%	1.9%	0%		0.5%	0.5%	5.5%	1.5%	0%		4.1%	-
Buses	4	2	2	0		8	8	35	8	0		51	2	4	5	0		11	0	32	1	0		33	-
Buses %	12.9%	1.6%	2.2%	0%		3.2%	11.8%	5.9%	38.1%	0%		7.5%	4.5%	4%	9.6%	0%		5.6%	0%	3.5%	0.5%	0%		2.5%	-
Articulated Trucks	0	0	0	0		0	0	43	0	0		43	0	0	0	0		0	0	38	0	0		38	-
Articulated Trucks %	0%	0%	0%	0%		0%	0%	7.3%	0%	0%		6.3%	0%	0%	0%	0%		0%	0%	4.1%	0%	0%		2.9%	-
Pedestrians	-	-	-	-	0	-	-	-	-	-	8	-	-	-	-	-	2	-	-	-	-	-	0	-	-
Pedestrians%	-	-	-	-	0%		-	-	-	-	80%		-	-	-	-	20%		-	-	-	-	0%		-
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
Bicycles on Crosswalk%	-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0%		-
Bicycles on Road	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	-

Turning Movement Count Location Name: MAYFIELD RD & BRAMALEA RD Date: Tue, Nov 29, 2016 Deployment Lead: Chris Koukaras

Peel Region 10 Peel Centre Drive Suite B - 4th Floor Brampton ON, Canada, L6T 4B9

Turning Movement Count Location Name: MAYFIELD RD & BRAMALEA RD Date: Tue, Nov 29, 2016 Deployment Lead: Chris Koukaras

Peel Region 10 Peel Centre Drive Suite B - 4th Floor Brampton ON, Canada, L6T 4B9

Peak Hour: 04:00 PM - 05:00 PM Weather: Mostly Cloudy (13.2 °C)

Teak Hour. 64.00 Fm - 65.00 Fm - Weather. Mostly Gloddy (16.2 - 6)																									
Start Time				outhbou MALEA I						Vestbour IAYFIELD						orthbour MALEA F						Eastboun AYFIELD			Int. Total (15 min)
	Left	Thru	Right	U-Turn	Peds	Approach Total	Left	Thru	Right	U-Turn	Peds	Approach Total	Left	Thru	Right	U-Turn	Peds	Approach Total	Left	Thru	Right	U-Turn	Peds	Approach Total	
16:00:00	6	25	24	0	0	55	21	169	5	1	3	196	54	40	15	0	0	109	23	190	27	0	0	240	600
16:15:00	11	17	25	0	0	53	34	190	4	0	0	228	72	32	18	0	0	122	24	175	30	0	0	229	632
16:30:00	4	31	25	0	0	60	34	199	8	0	0	241	54	44	11	0	0	109	39	199	28	0	0	266	676
16:45:00	5	15	21	0	0	41	24	211	5	0	4	240	51	32	13	0	0	96	25	194	31	0	0	250	627
Grand Total	26	88	95	0	0	209	113	769	22	1	7	905	231	148	57	0	0	436	111	758	116	0	0	985	2535
Approach%	12.4%	42.1%	45.5%	0%		-	12.5%	85%	2.4%	0.1%		-	53%	33.9%	13.1%	0%		-	11.3%	77%	11.8%	0%		-	-
Totals %	1%	3.5%	3.7%	0%		8.2%	4.5%	30.3%	0.9%	0%		35.7%	9.1%	5.8%	2.2%	0%		17.2%	4.4%	29.9%	4.6%	0%		38.9%	-
PHF	0.59	0.71	0.95	0		0.87	0.83	0.91	0.69	0.25		0.94	0.8	0.84	0.79	0		0.89	0.71	0.95	0.94	0		0.93	
Heavy	0	1	3	0		4	3	69	3	0		75	2	0	0	0		2	1	114	3	0		118	-
Heavy %	0%	1.1%	3.2%	0%		1.9%	2.7%	9%	13.6%	0%		8.3%	0.9%	0%	0%	0%		0.5%	0.9%	15%	2.6%	0%		12%	<u>.</u>
Lights	26	87	92	0		205	110	700	19	1		830	229	148	57	0		434	110	644	113	0		867	-
Lights %	100%	98.9%	96.8%	0%		98.1%	97.3%	91%	86.4%	100%		91.7%	99.1%	100%	100%	0%		99.5%	99.1%	85%	97.4%	0%		88%	-
Single-Unit Trucks	0	0	2	0		2	0	28	1	0		29	1	0	0	0		1	1	29	1	0		31	-
Single-Unit Trucks %	0%	0%	2.1%	0%		1%	0%	3.6%	4.5%	0%		3.2%	0.4%	0%	0%	0%		0.2%	0.9%	3.8%	0.9%	0%		3.1%	-
Buses	0	1	1	0		2	3	5	2	0		10	1	0	0	0		1	0	28	2	0		30	-
Buses %	0%	1.1%	1.1%	0%		1%	2.7%	0.7%	9.1%	0%		1.1%	0.4%	0%	0%	0%		0.2%	0%	3.7%	1.7%	0%		3%	-
Articulated Trucks	0	0	0	0		0	0	36	0	0		36	0	0	0	0		0	0	57	0	0		57	-
Articulated Trucks %	0%	0%	0%	0%		0%	0%	4.7%	0%	0%		4%	0%	0%	0%	0%		0%	0%	7.5%	0%	0%		5.8%	-
Pedestrians	-	-	-	-	0	-	-	-	-	-	7	-	-	-	-	-	0	-	-	-	-	-	0	-	-
Pedestrians%	-	-	-	-	0%		-	-	-	-	100%		-	-	-	-	0%		-	-	-	-	0%		-
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
Bicycles on Crosswalk%	-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0%		-
Bicycles on Road	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	-
Bicycles on Road%	-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0%		-

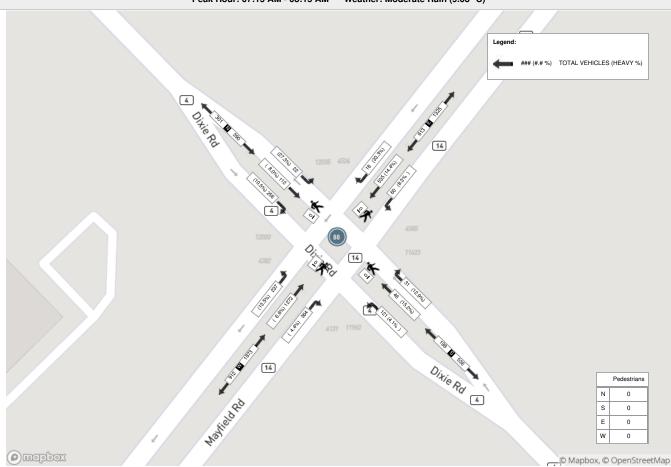
Peel Region 10 Peel Centre Drive Suite B - 4th Floor Brampton ON, Canada, L6T 4B9

Peak Hour: 04:00 PM - 05:00 PM Weather: Mostly Cloudy (13.2 °C) Legend: ### (#.# %) TOTAL VEHICLES (HEAVY %) 14 Bicycles on Crosswalk Pedestrians Ν 0 0 S 0 0 Е 7 0 W 0 0

Pedestrians%

0%

Turning Movement Count Location Name: MAYFIELD RD & DIXIE RD Date: Thu, Oct 03, 2019 Deployment Lead: Patrick Filopoulos


Peak Hour: 07:15 AM - 08:15 AM Weather: Moderate Rain (9.08 °C) W Approach MAYFIELD RD N Approach DIXIE ROAD E Approach MAYFIELD RD S Approach DIXIE RD Int. Total (15 min) Start Time UTurn Thru Right Right UTurn Left Thru Right UTurn Approach Total Left Thru Right Peds Approach Total Left UTurn Peds Approach Total Left Thru Approach Total 07:15:00 2 72 719 6 60 104 0 0 170 10 105 6 0 0 121 23 14 0 0 39 58 259 0 0 389 07:30:00 2 57 132 0 705 9 0 0 68 10 115 7 0 0 31 7 7 0 0 45 68 302 90 0 460 07:45:00 4 18 27 0 872 22 56 0 0 82 163 3 0 0 184 12 11 0 0 50 50 412 94 0 556 08:00:00 10 21 39 0 0 70 22 152 2 0 0 176 40 13 11 0 0 64 61 299 108 0 0 468 778 **Grand Total** 22 112 256 0 0 390 60 535 18 0 0 613 121 46 31 0 0 198 237 1272 364 0 0 1873 3074 Approach% 5.6% 28.7% 65.6% 0% 9.8% 87.3% 2.9% 0% 61.1% 23.2% 15.7% 0% 12.7% 67.9% 19.4% 0% Totals % 0.7% 2% 7 7% 60.9% 3.6% 8.3% 0% 12 7% 17 4% 0.6% 0% 19 9% 3 9% 1.5% 1% 0% 6.4% 41 4% 11.8% 0% PHF 0.55 0.47 0.62 0.57 0.68 0.82 0.64 0.83 0.76 0.82 0.7 0 0.77 0.87 0.77 0.84 0 0.84 42 6 9 27 5 77 88 5 16 32 84 16 132 Heavy 0 0 Heavy % 27.3% 8% 10.5% 0% 10.8% 8.3% 14.4% 33.3% 0% 14.4% 4.1% 15.2% 12.9% 0% 8.1% 13.5% 6.6% 4.4% 0% 7% 16 55 525 27 182 1741 Liahts 103 229 348 458 12 116 39 205 1188 348 0 Lights % 92% 89.5% 89.2% 91.7% 85.6% 66.7% 85.6% 95.9% 84.8% 87.1% 91.9% 86.5% 93.4% 95.6% 93% Single-Unit Trucks 2 6 20 28 39 42 4 10 21 22 50 Single-Unit Trucks % 7.8% 0% 7 2% 6.9% 5.1% 8.9% 1.7% 2 7% 9.1% 5.4% 1.7% 7.3% 11.1% 0% 3.3% 10.9% 3.2% 1.9% 2 1 2 5 3 18 3 24 1 2 2 5 3 31 6 40 Ruses Ω Ω 0 2.5% 2.1% 9.1% 0.9% 0.8% 0% 1.3% 5% 3.4% 16.7% 0% 3.9% 0.8% 4.3% 6.5% 0% 1.3% 2.4% 1.6% 0% Buses % 2 20 22 0 31 42 0.5% Articulated Trucks % 9.1% 1.8% 2% 0% 2.3% 1.7% 3.7% 5.6% 0% 3.6% 0% 0% 3.2% 0% 3.4% 2.4% 0.8% 0% 2.2% Pedestrians 0 0

0%

0%

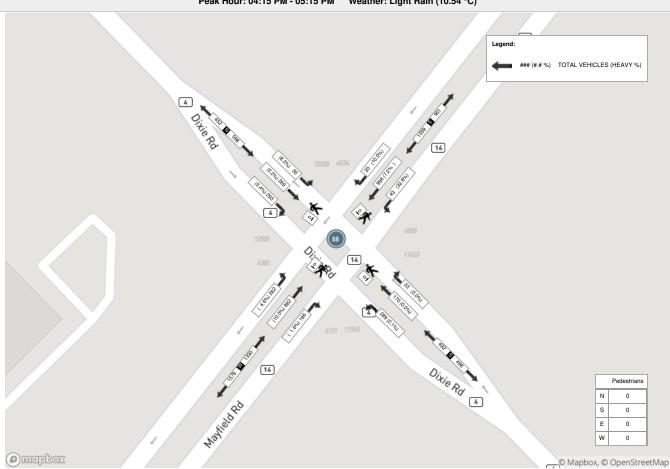
Turning Movement Count Location Name: MAYFIELD RD & DIXIE RD Date: Thu, Oct 03, 2019 Deployment Lead: Patrick Filopoulos

Peak Hour: 07:15 AM - 08:15 AM Weather: Moderate Rain (9.08 °C)

Pedestrians%

0%

Turning Movement Count Location Name: MAYFIELD RD & DIXIE RD Date: Thu, Oct 03, 2019 Deployment Lead: Patrick Filopoulos


Peak Hour: 04:15 PM - 05:15 PM Weather: Light Rain (10.54 °C) W Approach MAYFIELD RD N Approach DIXIE ROAD E Approach MAYFIELD RD S Approach DIXIE RD Int. Total (15 min) Start Time Right UTurn Thru Right UTurn Left Thru Right UTurn Peds Approach Total Left Thru Peds Approach Total Left UTurn Peds Approach Total Left Thru Right Peds Approach Total 16:15:00 10 5 58 897 6 60 88 0 0 154 270 0 0 285 69 38 11 0 118 234 48 0 0 340 16:30:00 157 18 233 255 80 0 70 212 332 889 6 73 78 0 0 4 0 57 8 145 49 1 0 0 0 16:45:00 12 7 5 7 0 70 875 76 63 0 0 151 267 0 0 279 66 30 0 103 228 44 0 0 342 17:00:00 12 60 64 0 0 136 8 226 6 0 0 240 74 45 7 0 0 126 64 208 45 0 0 317 819 **Grand Total** 36 269 293 0 0 598 43 996 20 0 0 1059 289 170 33 0 0 492 262 882 186 1 0 1331 3480 Approach% 6% 45% 49% 0% 4.1% 94.1% 1.9% 0% 58.7% 34.6% 6.7% 0% 19.7% 66.3% 14% 0.1% Totals % 1% 7 7% 0% 14.1% 7 5% 8 4% 17 2% 1 2% 28.6% 0.6% 0% 30.4% 8.3% 4 9% 0.9% 0% 25.3% 5.3% 0% 38.2% PHF 0.75 0.88 0.83 0.95 0.6 0.92 0.83 0.93 0.9 0.75 0.75 0.85 0.94 0.94 0.95 0.25 0.97 27 3 14 10 14 72 2 88 6 0 12 88 3 Ω 103 Heavy Heavy % 8.3% 5.2% 3.4% 0% 4.5% 32.6% 7.2% 10% 0% 8.3% 2.1% 0% 0% 1.4% 4.6% 10% 1.6% 0% 7.7% 571 485 1228 Lights 33 255 283 29 924 18 971 283 170 32 250 794 183 Lights % 94.8% 96.6% 0% 95.5% 67.4% 92.8% 90% 91.7% 97.9% 100% 97% 98.6% 95.4% 90% 98.4% 100% 92.3% Single-Unit Trucks 2 10 10 22 12 31 44 0 2 27 0 35 Single-Unit Trucks % 0% 3.7% 4 2% 0% 0% 0.4% 0% 2.6% 5.6% 3.7% 3.4% 27.9% 3.1% 5% 0% 0.3% 3% 3.1% 3.1% 0% 3 0 0 4 0 7 4 0 0 0 18 3 ٥ 21 Ruses 0 0% 1.4% 2% 2.8% 1.1% 0% 0.7% 0% 0.7% 0% 0% 0.7% 0% 0% 0% 0.8% 0% 1.6% 0% 1.6% Buses % 2 34 37 43 47 Articulated Trucks % 0% 0.4% 0% 0% 0.2% 4.7% 3.4% 5% 0% 3.5% 0.3% 0% 0% 0% 0.2% 1.5% 4.9% 0% 0% 3.5% Pedestrians 0 0

0%

0%

Turning Movement Count Location Name: MAYFIELD RD & DIXIE RD Date: Thu, Oct 03, 2019 Deployment Lead: Patrick Filopoulos

Peak Hour: 04:15 PM - 05:15 PM Weather: Light Rain (10.54 °C)

REGIONAL MUNICIPALITY OF PEEL Traffic Signal Timing Parameters												
Database	Date	January 8, 2018			Pre	pared Date	1	December 8, 2	020			
Database	Rev	27	1		Cor	npleted By		JP				
Timing Ca	rd / Field rev		1		С	hecked By		SJ				
Location		Dixie F	Road at M	ayfield Ro	ad							
Phase #	Street Name - Direction	Vehicle Minimum (s)		estrian num (s)	Amber (s)	All Red (s)		IME PERIOD en+Amber+ <i>F</i> OFF				
			WALK	FDWALK	(-)	(-)	SPLITS	MAX	SPLITS			
1	Mayfield Road - WB P.P. LT	5	0	0	30	0	10	13	10			
2	Mayfield Road - EB	8	8	30	46	23	60	16.9	60			
3	Not in use	-	-	-	-	-	-	-	-			
4	Dixie Road - NB	8	8	33	46	23	50	46.9	50			
5	Mayfield Road - EB P.P. LT	5	0	0	30	0	10	13	10			
6	Mayfield Road - WB	8	8	30	46	23	60	16.9	60			
7	Not in use	-	-	-	-	-	-	-	-			
8	Dixie Road - SB	8	8	33	46	23	50	46.9	50			
	System Control			TIME	(M-F)	PEAK	CYCLE L	ENGTH (s)	OFFSET (s)			
	No			07:00	- 09:00	AM	1.	20	44			
	Semi-Actuated Mode		FR	EE	OFF		0	0				
	Yes			15:00	- 18:00	PM	1.	20	32			

REGIONAL MUNICIPALITY OF PEEL Traffic Signal Timing Parameters												
Database	Date	June 5, 2015			Pre	pared Date	1	December 8, 2	020			
Database	Rev	26	1		Cor	npleted By		JP				
Timing Ca	rd / Field rev	-	1		C	hecked By		SJ				
Location		Mayfield	Road at E	3ramalea	Road							
Phase #	Street Name - Direction	Vehicle Minimum (s)		estrian num (s)	Amber (s)	All Red (s)		IME PERIOD en+Amber+ <i>A</i> OFF	· •			
		(0)	WALK	FDWALK		(5)	SPLITS	SPLITS	SPLITS			
1	Not in use	-	-	-	-	-	-	-	-			
2	Mayfield Road - EB	12	8	40	4	3.2	70	59	70			
3	Bramalea Road - SB PP LT	5	0	0	3	0	9	0	9			
4	Bramalea Road - NB	8	8	39	4	3.1	56	56	56			
5	Mayfield Road - EB PP LT	5	0	0	3	0	13	0	12			
6	Mayfield Road - WB	12	8	40	4	3.2	57	59	58			
7	Not in use	-	-	-	•	-	-	-	-			
8	Bramalea Road - SB	8	8	39	4	3.1	65	56	65			
	System Control			TIME	(M-F)	PEAK	CYCLE LI	ENGTH (s)	OFFSET (s)			
	No			06:00	- 09:00	AM	1	35	0			
	Semi-Actuated Mode		09:00	- 14:30	OFF	1	15	0				
	Yes			14:30	- 19:00	PM	1	35	16			

APPENDIX B

Intersection Capacity Analysis Results – Existing Conditions

	•	*	1	Ť	ļ	1	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	¥		*	†	↑	7	
Traffic Volume (veh/h)	1	17	49	352	409	2	
Future Volume (Veh/h)	1	17	49	352	409	2	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph)	1	17	49	352	409	2	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	859	409	411				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	859	409	411				
tC, single (s)	7.4	6.4	4.2				
tC, 2 stage (s)							
tF (s)	4.4	3.5	2.3				
p0 queue free %	100	97	96				
cM capacity (veh/h)	216	598	1106				
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	18	49	352	409	2		
Volume Left	1	49	0	0	0		
Volume Right	17	0	0	0	2		
cSH	544	1106	1700	1700	1700		
Volume to Capacity	0.03	0.04	0.21	0.24	0.00		
Queue Length 95th (m)	0.5	0.6	0.0	0.0	0.0		
Control Delay (s)	11.8	8.4	0.0	0.0	0.0		
Lane LOS	В	Α					
Approach Delay (s)	11.8	1.0		0.0			
Approach LOS	В						
Intersection Summary							
Average Delay			0.8				
Intersection Capacity Utilizat	ion		38.2%	IC	U Level o	of Service	
Analysis Period (min)			15				

	•	-	•	1	•	1	1	1	-	ţ	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	*	ተተተ	7	7	ተተኩ	7	1	7	7	†	7	
Traffic Volume (vph)	237	1272	364	60	535	121	146	31	22	148	256	
Future Volume (vph)	237	1272	364	60	535	121	146	31	22	148	256	
Lane Group Flow (vph)	237	1272	364	60	553	121	146	31	22	148	256	
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	NA	Perm	Perm	NA	Perm	
Protected Phases	5	2		1	6		4			8		
Permitted Phases	2		2	6		4		4	8		8	
Detector Phase	5	2	2	1	6	4	4	4	8	8	8	
Switch Phase												
Minimum Initial (s)	5.0	8.0	8.0	5.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	
Minimum Split (s)	8.0	44.9	44.9	8.0	44.9	47.9	47.9	47.9	47.9	47.9	47.9	
Total Split (s)	10.0	60.0	60.0	10.0	60.0	50.0	50.0	50.0	50.0	50.0	50.0	
Total Split (%)	8.3%	50.0%	50.0%	8.3%	50.0%	41.7%	41.7%	41.7%	41.7%	41.7%	41.7%	
Yellow Time (s)	3.0	4.6	4.6	3.0	4.6	4.6	4.6	4.6	4.6	4.6	4.6	
All-Red Time (s)	0.0	2.3	2.3	0.0	2.3	2.3	2.3	2.3	2.3	2.3	2.3	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	3.0	6.9	6.9	3.0	6.9	6.9	6.9	6.9	6.9	6.9	6.9	
Lead/Lag	Lead	Lag	Lag	Lead	Lag							
Lead-Lag Optimize?												
Recall Mode	None	C-Max	C-Max	None	C-Max	None	None	None	None	None	None	
v/c Ratio	0.39	0.40	0.33	0.18	0.21	0.70	0.54	0.11	0.15	0.51	0.57	
Control Delay	6.9	12.2	2.1	6.5	13.0	66.9	52.2	2.3	42.5	50.8	10.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	6.9	12.2	2.1	6.5	13.0	66.9	52.2	2.3	42.5	50.8	10.1	
Queue Length 50th (m)	8.2	30.4	0.0	1.8	12.2	16.1	18.9	0.0	2.7	19.1	0.0	
Queue Length 95th (m)	17.2	45.5	7.8	5.0	20.9	26.2	28.7	1.1	6.7	28.7	12.4	
Internal Link Dist (m)		1129.7			1348.2		456.4			472.6		
Turn Bay Length (m)	140.0		75.0	105.0		75.0		45.0	35.0		135.0	
Base Capacity (vph)	614	3146	1116	335	2675	384	600	547	317	638	680	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.39	0.40	0.33	0.18	0.21	0.32	0.24	0.06	0.07	0.23	0.38	

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 44 (37%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green Natural Cycle: 105

Control Type: Actuated-Coordinated

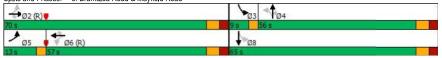
Splits and Phases: 2: Dixie Road & Mayfield Road

	٠	→	7	•	←	•	1	1	-	-	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	***	7	*	**		*	†	7	*	†	7
Traffic Volume (vph)	237	1272	364	60	535	18	121	146	31	22	148	256
Future Volume (vph)	237	1272	364	60	535	18	121	146	31	22	148	256
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5
Total Lost time (s)	3.0	6.9	6.9	3.0	6.9		6.9	6.9	6.9	6.9	6.9	6.9
Lane Util. Factor	1.00	0.91	1.00	1.00	0.91		1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1566	4902	1536	1653	4553		1716	1671	1413	1405	1779	1439
FIt Permitted	0.42	1.00	1.00	0.20	1.00		0.59	1.00	1.00	0.60	1.00	1.00
Satd. Flow (perm)	687	4902	1536	347	4553		1069	1671	1413	884	1779	1439
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	237	1272	364	60	535	18	121	146	31	22	148	256
RTOR Reduction (vph)	0	0	132	0	2	0	0	0	26	0	0	214
Lane Group Flow (vph)	237	1272	232	60	551	0	121	146	5	22	148	42
Heavy Vehicles (%)	14%	7%	4%	8%	14%	33%	4%	15%	13%	27%	8%	11%
Turn Type	pm+pt	NA	Perm	pm+pt	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2		1	6			4			8	
Permitted Phases	2		2	6			4		4	8		8
Actuated Green, G (s)	86.6	76.4	76.4	77.6	70.4		19.6	19.6	19.6	19.6	19.6	19.6
Effective Green, g (s)	86.6	76.4	76.4	77.6	70.4		19.6	19.6	19.6	19.6	19.6	19.6
Actuated g/C Ratio	0.72	0.64	0.64	0.65	0.59		0.16	0.16	0.16	0.16	0.16	0.16
Clearance Time (s)	3.0	6.9	6.9	3.0	6.9		6.9	6.9	6.9	6.9	6.9	6.9
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Lane Grp Cap (vph)	592	3120	977	302	2671		174	272	230	144	290	235
v/s Ratio Prot	c0.04	c0.26		0.01	0.12			0.09			0.08	
v/s Ratio Perm	0.24		0.15	0.12			c0.11		0.00	0.02		0.03
v/c Ratio	0.40	0.41	0.24	0.20	0.21		0.70	0.54	0.02	0.15	0.51	0.18
Uniform Delay, d1	5.5	10.7	9.3	7.8	11.7		47.4	46.0	42.2	43.1	45.8	43.3
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.9	0.4	0.6	0.7	0.2		14.3	3.7	0.1	1.0	3.0	0.8
Delay (s)	6.5	11.1	9.9	8.5	11.8		61.7	49.7	42.2	44.1	48.8	44.0
Level of Service	Α	В	Α	Α	В		Е	D	D	D	D	D
Approach Delay (s)		10.3			11.5			53.8			45.7	
Approach LOS		В			В			D			D	
Intersection Summary												
HCM 2000 Control Delay			19.3	Н	ICM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.47									
Actuated Cycle Length (s)			120.0	S	um of lost	time (s)			16.8			

Approach ECC		<u> </u>		
Intersection Summary				
HCM 2000 Control Delay	19.3	HCM 2000 Level of Service	В	
HCM 2000 Volume to Capacity ratio	0.47			
Actuated Cycle Length (s)	120.0	Sum of lost time (s)	16.8	
Intersection Capacity Utilization	63.8%	ICU Level of Service	В	
Analysis Period (min)	15			

c Critical Lane Group

	•	→	•	1	•	•	1	†	-	-	ļ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Configurations	7	***	7	*	ተተተ	7	*	↑	ř	*	↑ ↑	
Traffic Volume (vph)	204	1008	204	68	649	21	44	110	52	31	140	
Future Volume (vph)	204	1008	204	68	649	21	44	110	52	31	140	
Lane Group Flow (vph)	204	1008	204	68	649	21	44	110	52	31	233	
Turn Type	pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	
Protected Phases	5	2			6			4		3	8	
Permitted Phases	2		2	6		6	4		4	8		
Detector Phase	5	2	2	6	6	6	4	4	4	3	8	
Switch Phase												
Minimum Initial (s)	5.0	12.0	12.0	12.0	12.0	12.0	8.0	8.0	8.0	5.0	8.0	
Minimum Split (s)	8.0	55.2	55.2	55.2	55.2	55.2	54.1	54.1	54.1	8.0	54.1	
Total Split (s)	13.0	70.0	70.0	57.0	57.0	57.0	56.0	56.0	56.0	9.0	65.0	
Total Split (%)	9.6%	51.9%	51.9%	42.2%	42.2%	42.2%	41.5%	41.5%	41.5%	6.7%	48.1%	
Yellow Time (s)	3.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	3.0	4.0	
All-Red Time (s)	0.0	3.2	3.2	3.2	3.2	3.2	3.1	3.1	3.1	0.0	3.1	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	3.0	7.2	7.2	7.2	7.2	7.2	7.1	7.1	7.1	3.0	7.1	
Lead/Lag	Lead			Lag	Lag	Lag	Lag	Lag	Lag	Lead		
Lead-Lag Optimize?												
Recall Mode	None	C-Max	C-Max	C-Max	C-Max	C-Max	None	None	None	None	None	
v/c Ratio	0.32	0.29	0.17	0.23	0.23	0.03	0.40	0.60	0.24	0.17	0.43	
Control Delay	5.8	6.2	1.2	15.6	11.5	0.0	66.3	71.2	6.1	45.5	32.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	5.8	6.2	1.2	15.6	11.5	0.0	66.3	71.2	6.1	45.5	32.2	
Queue Length 50th (m)	7.7	18.2	0.0	4.6	15.8	0.0	6.6	16.9	0.0	4.1	10.2	
Queue Length 95th (m)	14.1	25.4	4.3	11.6	23.5	0.0	13.5	27.3	2.8	8.9	16.8	
Internal Link Dist (m)		1348.2			329.1			492.7			373.4	
Turn Bay Length (m)	125.0		110.0	75.0		100.0	75.0			75.0		
Base Capacity (vph)	647	3494	1212	293	2839	774	393	654	568	182	1464	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.32	0.29	0.17	0.23	0.23	0.03	0.11	0.17	0.09	0.17	0.16	


Intersection Summary

Cycle Length: 135
Actuated Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 130

Control Type: Actuated-Coordinated

Splits and Phases: 3: Bramalea Road & Mayfield Road

	١	→	•	•	-	•	1	†	~	1	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	***	7	*	**	7	1	↑	7	*	1	
Traffic Volume (vph)	204	1008	204	68	649	21	44	110	52	31	140	93
Future Volume (vph)	204	1008	204	68	649	21	44	110	52	31	140	93
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Total Lost time (s)	3.0	7.2	7.2	7.2	7.2	7.2	7.1	7.1	7.1	3.0	7.1	
Lane Util. Factor	1.00	0.91	1.00	1.00	0.91	1.00	1.00	1.00	1.00	1.00	0.95	
Frpb, ped/bikes	1.00	1.00	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.94	
FIt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1767	4641	1544	1593	4407	1157	1700	1807	1426	1580	3290	
FIt Permitted	0.38	1.00	1.00	0.27	1.00	1.00	0.61	1.00	1.00	0.53	1.00	
Satd. Flow (perm)	706	4641	1544	456	4407	1157	1086	1807	1426	882	3290	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	204	1008	204	68	649	21	44	110	52	31	140	93
RTOR Reduction (vph)	0	0	52	0	0	8	0	0	47	0	79	0
Lane Group Flow (vph)	204	1008	152	68	649	13	44	110	5	31	154	0
Confl. Peds. (#/hr)			2	2								
Heavy Vehicles (%)	1%	13%	2%	12%	19%	38%	5%	4%	12%	13%	2%	2%
Turn Type	pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	
Protected Phases	5	2			6			4		3	8	
Permitted Phases	2		2	6		6	4		4	8		
Actuated Green, G (s)	100.4	100.4	100.4	85.7	85.7	85.7	13.7	13.7	13.7	20.3	20.3	
Effective Green, g (s)	100.4	100.4	100.4	85.7	85.7	85.7	13.7	13.7	13.7	20.3	20.3	
Actuated g/C Ratio	0.74	0.74	0.74	0.63	0.63	0.63	0.10	0.10	0.10	0.15	0.15	
Clearance Time (s)	3.0	7.2	7.2	7.2	7.2	7.2	7.1	7.1	7.1	3.0	7.1	
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0	5.0	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	617	3451	1148	289	2797	734	110	183	144	151	494	
v/s Ratio Prot	c0.03	0.22			0.15			c0.06		0.01	c0.05	
v/s Ratio Perm	c0.22		0.10	0.15		0.01	0.04		0.00	0.03		
v/c Ratio	0.33	0.29	0.13	0.24	0.23	0.02	0.40	0.60	0.04	0.21	0.31	
Uniform Delay, d1	5.1	5.7	4.9	10.6	10.6	9.1	56.8	58.0	54.7	49.8	51.1	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.7	0.2	0.2	1.9	0.2	0.0	2.4	5.5	0.1	0.7	0.4	
Delay (s)	5.7	5.9	5.2	12.5	10.8	9.2	59.2	63.5	54.8	50.4	51.5	
Level of Service	Α	Α	Α	В	В	Α	Е	Е	D	D	D	
Approach Delay (s)		5.8			10.9			60.4			51.4	
Approach LOS		Α			В			Ε			D	
Intersection Summary												
HCM 2000 Control Delay			16.1	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.37									
Actuated Cycle Length (s)			135.0	Si	um of lost	time (s)			20.3			
Intersection Capacity Utiliza	ation		87.4%	IC	U Level	of Service			Е			
Analysis Period (min)			15									
c Critical Lane Group												

Synchro 11 Report Page 5

02-02-2021

HCM Unsignalized Intersection Capacity Analysis 1: Dixie Road & Merchant Road

Existing Conditions Weekday PM Peak

Queues 2: Dixie Road & Mayfield Road

Existing Conditions Weekday PM Peak

Lane Configurations		•	•	1	†	ţ	1		
Traffic Volume (veh/h)	Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Future Volume (Veh/h)	Lane Configurations	**				†			
Sign Control	Traffic Volume (veh/h)		34						
Grade 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%	Future Volume (Veh/h)	4	34	11	492	564	3		
Peak Hour Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Sign Control	Stop			Free	Free			
Hourly flow rate (vph)	Grade	0%			0%	0%			
Pedestrians 2	Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Pedestrians 2 2 2 2 3 5 5 5 5 5 5 5 5 5	Hourly flow rate (vph)	4	34	11	492	564	3		
Walking Speed (m/s) 1.2 Percent Blockage 0 Right turn flare (veh) Median type None Median storage veh) Upstream signal (m) pX, platoon unblocked vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 1080 566 569 vC2, stage 2 conf vol vCu, unblocked vol 1080 566 569 tC, single (s) 6.4 6.2 4.2 tC, 2 stage (s) tF (s) 3.5 3.3 2.3 p0 queue free % 98 94 99 cM capacity (veh/h) 240 527 968 Direction, Lane # EB 1 NB 1 NB 2 SB 1 SB 2 Volume Total 38 11 492 564 3 Volume Total 38 11 492 564 3 Volume Right 34 0 0 0 3 cSH 468 968 1700 1700 1700 Volume to Capacity 0.08	Pedestrians								
Walking Speed (m/s) 1.2 Percent Blockage 0 Right turn flare (veh) Median type None Median storage veh) Upstream signal (m) pX, platoon unblocked vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 1080 566 569 vC2, stage 2 conf vol vCu, unblocked vol 1080 566 569 tC, single (s) 6.4 6.2 4.2 tC, 2 stage (s) tF (s) 3.5 3.3 2.3 p0 queue free % 98 94 99 cM capacity (veh/h) 240 527 968 Direction, Lane # EB 1 NB 1 NB 2 SB 1 SB 2 Volume Total 38 11 492 564 3 Volume Total 38 11 492 564 3 Volume Right 34 0 0 0 3 cSH 468 968 1700 1700 1700 Volume to Capacity 0.08	Lane Width (m)	3.5							
Percent Blockage 0 Right turn flare (veh) Median storage veh) Upstream signal (m) pX, platoon unblocked vC1, stage 1 conf vol vC2, stage 2 conf vol vC3, stage 2 conf vol vC4, stage (s) tF (s) 3.5 3.3 2.3 p0 queue free % 98 94 99 cM capacity (veh/h) 240 527 968 Direction, Lane # EB 1 NB 1 NB 2 SB 1 SB 2 Volume Total 38 11 492 564 3 Volume Total 38 11 492 564 3 Volume Right 34 0 0 0 0 3 cSH 468 968 1700 1700 1700 Volume Right 34 0 0 0 0 3 cSH 468 968 1700 1700 1700 Volume Capacity (veh/h) 1.2 0.2 0.0 0.0 0.0 Control Delay (s) 13.4 8.8 0.0 0.0 0.0 Approach Delay (s) 13.4 0.2 0.0 Approach LOS B Intersection Summary Average Delay None None N	Walking Speed (m/s)								
Right turn flare (veh) Median type Median storage veh) Upstream signal (m) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage (s) If (s) p0 queue free % p1 septiments p1 septiments p2 septiments p3 septiments p4 septiments p4 septiments p5 septiments p6 septiments p6 septiments p6 septiments p8 septiments p8 septiments p8 septiments p8 septiments p8 septiments p9 septiments p9 septiments p9 septiments p9 septiments p9 septiments p1 septiments p8 septiments p9 septiment	Percent Blockage	0							
Median type None None Median storage veh) Upstream signal (m) pX, platoon unblocked vC, conflicting volume 1080 566 569 VC1, stage 1 conf vol vC2, stage 2 conf vol VC2, stage (s) 6.4 6.2 4.2 CC, 2 stage (s) 15 (c) 3.5 3.3 2.3 p0 queue free % 98 94 99 cM capacity (veh/h) 240 527 968 Direction, Lane # EB 1 NB 1 NB 2 SB 1 SB 2 Volume Total 38 11 492 564 3 Volume Left 4 11 0 0 0 Volume Right 34 0 0 0 3 cSH 468 968 1700 1700 1700 Volume to Capacity 0.08 0.01 0.29 0.33 0.00 Queue Length 95th (m) 1.2 0.2 0.0 0.0 0.0 Control Delay (s) 13.4 8.8 0.0 0.0 0.0 Lane LOS B A Approach Delay (s) 13.4 0.2 0.0 0.0 Approach Delay (s) 13.4	Right turn flare (veh)								
Median storage veh) Upstream signal (m) Upstream signal (m) px, platoon unblocked vC, conflicting volume 1080 566 569 vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage (s) 6.4 6.2 4.2 CC, 2 stage (s) 1F (s) 3.5 3.3 2.3 p0 queue free % 98 94 99 cM capacity (veh/h) 240 527 968 Direction, Lane # EB 1 NB 1 NB 2 SB 1 SB 2 Volume Total 38 11 492 564 3 Volume Left 4 11 0 0 0 Volume Right 34 0 0 0 3 cSH 468 968 1700 1700 1700 Volume to Capacity 0.08 0.01 0.29 0.33 0.00 Queue Length 95th (m) 1.2 0.2 0.0 0.0 0 Control Delay (s) 13.4 8.8 0.0 0.0 0 0	Median type				None	None			
Upstream signal (m) pX, platoon unblocked vCc, conflicting volume 1080 566 569 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 1080 566 569 vC1, stage (s) tC, single (s) 6.4 6.2 4.2 tC, 2 stage (s) tF (s) 3.5 3.3 2.3 p0 queue free % 98 94 99 cM capacity (veh/h) 240 527 968 Direction, Lane # EB 1 NB 1 NB 2 SB 1 SB 2 Volume Total 38 11 492 564 3 Volume Total 38 11 492 564 3 Volume Right 4 11 0 0 0 0 Volume Right 34 0 0 0 3 cSH 468 968 1700 1700 1700 Volume Right 34 0 0 0 0 3 cSH 468 968 1700 1700 1700 Volume to Capacity 0.08 0.01 0.29 0.33 0.00 Queue Length 95th (m) 1.2 0.2 0.0 0.0 0.0 Control Delay (s) 13.4 8.8 0.0 0.0 0.0 Control Delay (s) 13.4 0.2 0.0 Approach LOS B Intersection Summary Average Delay Intersection Capacity Utilization 9.7% ICU Level of Service A	Median storage veh)								
pX, platoon unblocked VC, conflicting volume 1080 566 569 VC1, stage 1 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol VC2, stage 1 conf vol VC3, stage 1 conf vol VC2, stage 2 conf vol VC3, stage 2 conf vol VC4, unblocked vol 1080 566 569 CC, single (s) 6.4 6.2 4.2 10, 2 stage (s) Eff (s) 98 94 99 CM capacity (veh/h) 240 527 968 Direction, Lane # EB 1 NB 1 NB 2 SB 1 SB 2 Volume Total 38 11 492 564 3 Volume Right 34 0 0 0 0 3 cSH Volume Right 34 0 0 0 0 3 cSH Volume Capacity 0,08 0,01 0,29 0,33 0,00 Queue Length 95th (m) 1,2 0,2 0,0 0,0 0,0 Control Delay (s) 13,4 8,8 0,0 0,0 0,0 Control Delay (s) 13,4 0,2 0,0 Approach Delay (s) 13,4 0,2 0,5 Intersection Summary Average Delay Intersection Capacity Utilization 0,5 Intersection Capacity Utilization 0,5 ICU Level of Service	Upstream signal (m)								
VCI, stage 1 conf vol VC1, stage 2 conf vol VC2, stage 2 conf vol VC2, stage 1 conf vol VC2, stage 2 conf vol VC2, unblocked vol 1080 566 569 1C, Single (s) 6.4 6.2 4.2 1C, 2 stage (s) 1Ef (s) 3.5 3.3 2.3 p0 queue free % 98 94 99 cM capacity (veh/h) 240 527 968 Direction, Lane # EB 1 NB 1 NB 2 SB 1 SB 2 Volume Total 38 11 492 564 3 Volume Left 4 11 0 0 0 0 Volume Left 4 11 0 0 0 0 Volume Right 34 0 0 0 3 cSH 468 968 1700 1700 1700 Volume to Capacity 0.08 0.01 0.29 0.33 0.00 Queue Length 95th (m) 1.2 0.2 0.0 0.0 0.0 Control Delay (s) 13.4 8.8 0.0 0.0 0.0 Lane LOS B Approach Delay (s) 13.4 0.2 0.0 Approach Delay (s) 13.4 0.2 0.0 Aperoach Delay (s) 13.4 0.2 0.0 Aperoach Delay (s) 13.4 0.2 0.0 Intersection Summary Average Delay Intersection Capacity Utilization 9.7% ICU Level of Service A									
vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, unblocked vol 1080 566 569 LC, single (s) 6.4 6.2 4.2 LC, 2 stage (s) LF (s) 3.5 3.3 2.3 p0 queue free % 98 94 99 cM capacity (veh/h) 240 527 968 Direction, Lane # EB 1 NB 1 NB 2 SB 1 SB 2 Volume Total 38 11 492 564 3 Volume Right 4 11 0 0 0 0 Volume Right 34 0 0 0 3 SSH 468 968 1700 1700 1700 Volume Right 34 0 0 0 0 3 SSH 468 968 1700 1700 1700 Volume to Capacity 0.08 0.01 0.29 0.33 0.00 Queue Length 95th (m) 1.2 0.2 0.0 0.0 0.0 Control Delay (s) 13.4 8.8 0.0 0.0 0.0 Lane LOS B A Approach Delay (s) 13.4 0.2 0.0 BIntersection Summary Average Delay Intersection Capacity Utilization 9.7% ICU Level of Service A	vC, conflicting volume	1080	566	569					
VCQ, stage 2 conf vol VCu, unblocked vol 1080 566 569 ICC, single (s) 1080 566 569 ICC, 2 stage (s) IF (s) 3.5 3.3 2.3 p0 queue free % 98 94 99 CM capacity (veh/h) 240 527 968 Direction, Lane # EB 1 NB 1 NB 2 SB 1 SB 2 Volume Total 38 11 492 564 3 Volume Total 38 11 492 564 3 Volume Right 4 11 0 0 0 Volume Right 34 0 0 0 3 cSH 468 968 1700 1700 1700 Volume to Capacity Volume to Capacity Volume to Capacity 0.08 0.01 0.29 0.33 0.00 Queue Length 95th (m) 1.2 0.2 0.0 0.0 0.0 Control Delay (s) 13.4 8.8 0.0 0.0 0.0 Approach Delay (s) 13.4 0.2 0.0 Approach LOS B Intersection Summary Average Delay Note the stage of the service A EB 1 NB 2 SB 1 SB 2 Average Delay 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									
vCu, unblocked vol 1080 566 569 C., single (s) 6.4 6.2 4.2 C., stage (s) C., stage (s) C. (stage (s)									
tC, single (s) 6.4 6.2 4.2 tC, 2 stage (s) tF (s) 3.5 3.3 2.3 p0 queue free % 98 94 99 cM capacity (veh/h) 240 527 968 Direction, Lane # EB 1 NB 1 NB 2 SB 1 SB 2 Volume Total 38 11 492 564 3 Volume Right 4 11 0 0 0 0 CSH 468 968 1700 1700 1700 Volume Right 34 0 0 0 3 3 CSH 468 968 1700 1700 1700 Volume to Capacity 0.08 0.01 0.29 0.33 0.00 Queue Length 95th (m) 1.2 0.2 0.0 0.0 0.0 Control Delay (s) 13.4 8.8 0.0 0.0 0.0 Lane LOS B A Approach Delay (s) 13.4 0.2 0.0 Intersection Summary Average Delay Intersection Capacity Utilization 99 0.5 Intersection Capacity Utilization A 99 0.5 ICU Level of Service A		1080	566	569					
tC, 2 stage (s) tF (s)									
tF (s) 3.5 3.3 2.3 pD queue free % 98 94 99									
p0 queue free % 98 94 99 CM capacity (veh/h) 240 527 968 Direction, Lane # EB 1 NB 1 NB 2 SB 1 SB 2 Volume Total 38 11 492 564 3 Volume Left 4 11 0 0 0 0 Volume Right 34 0 0 0 3 CSH 468 968 1700 1700 1700 Volume to Capacity 0.08 0.01 0.29 0.33 0.00 Queue Length 95th (m) 1.2 0.2 0.0 0.0 0.0 Control Delay (s) 13.4 8.8 0.0 0.0 0.0 Lane LOS B A Approach Delay (s) 13.4 0.2 0.0 Refresection Summary Average Delay Intersection Capacity Utilization 598		3.5	3.3	2.3					
Direction, Lane # EB 1 NB 1 NB 2 SB 1 SB 2									
Direction, Lane # EB I NB I NB 2 SB 1 SB 2 Volume Total 38 11 492 564 3 Volume Left 4 11 0 0 0 Volume Right 34 0 0 0 3 cSH 468 968 1700 1700 1700 Volume to Capacity 0.08 0.01 0.29 0.33 0.00 Queue Length 95th (m) 1.2 0.2 0.0 0.0 0.0 Control Delay (s) 13.4 8.8 0.0 0.0 0.0 Lane LOS B A Approach Delay (s) 13.4 0.2 0.0 Approach LOS B Intersection Summary A Volume Capacity Utilization 0.5 Intersection Capacity Utilization 39.7% ICU Level of Service A									
Volume Total 38 11 492 564 3 Volume Left 4 11 0 0 0 Volume Right 34 0 0 0 3 cSH 468 968 1700 1700 Volume to Capacity 0.08 0.01 0.29 0.33 0.00 Queue Length 95th (m) 1.2 0.2 0.0 0.0 0.0 Control Delay (s) 13.4 8.8 0.0 0.0 0.0 Lane LOS B A Approach Delay (s) 13.4 0.2 0.0 Approach LOS B Intersection Summary New Total Control Capacity Utilization 0.5 Intersection Capacity Utilization 39.7% ICU Level of Service A					00.4	00.0			
Volume Left 4 11 0 0 0 Volume Right 34 0 0 0 3 cSH 468 968 1700 1700 Volume to Capacity 0.08 0.01 0.29 0.33 0.00 Queue Length 95th (m) 1.2 0.2 0.0 0.0 0.0 Control Delay (s) 13.4 8.8 0.0 0.0 0.0 Lane LOS B A Approach Delay (s) 13.4 0.2 0.0 Approach LOS B Intersection Summary Average Delay 0.5 Intersection Capacity Utilization 39.7% ICU Level of Service A									
Volume Right 34 0 0 0 3 cSH 468 968 1700 1700 1700 Volume to Capacity 0.08 0.01 0.29 0.03 0.00 Queue Length 95th (m) 1.2 0.2 0.0 0.0 0.0 Control Delay (s) 13.4 8.8 0.0 0.0 0.0 Lane LOS B A Approach Delay (s) 13.4 0.2 0.0 Approach LOS B Intersection Summary B A A Average Delay 0.5 Intersection Capacity Utilization 10.5 ICU Level of Service A									
CSH 468 968 1700 1700 1700 Volume to Capacity 0.08 0.01 0.29 0.33 0.00 Queue Length 95th (m) 1.2 0.2 0.0 0.0 0.0 Control Delay (s) 13.4 8.8 0.0 0.0 0.0 Lane LOS B A Approach Delay (s) 13.4 0.2 0.0 Approach LOS B Intersection Summary Average Delay Intersection Capacity Utilization 39.7% ICU Level of Service A									
Volume to Capacity 0.08 0.01 0.29 0.33 0.00 Queue Length 95th (m) 1.2 0.2 0.0 0.0 0.0 Control Delay (s) 13.4 8.8 0.0 0.0 0.0 Lane LOS B A Approach Delay (s) 13.4 0.2 0.0 Approach LOS B Intersection Summary Average Delay 0.5 Intersection Capacity Utilization 0.01 0.00 Intersection Capacity Utilization 0.05 0.00 Intersection Capacity Utilization 0.05 0.00 ICU Level of Service A									
Queue Length 95th (m) 1.2 0.2 0.0 0.0 0.0 Control Delay (s) 13.4 8.8 0.0 0.0 0.0 Lane LOS B A Approach Delay (s) 13.4 0.2 0.0 Approach LOS B Intersection Summary Average Delay 0.5 Intersection Capacity Utilization 39.7% ICU Level of Service A									
Control Delay (s) 13.4 8.8 0.0 0.0 0.0 Lane LOS B A Approach Delay (s) 13.4 0.2 0.0 Approach LOS B Intersection Summary Average Delay 0.5 Intersection Capacity Utilization 39.7% ICU Level of Service A									
Lane LOS B A Approach Delay (s) 13.4 0.2 0.0 Approach LOS B Intersection Summary Average Delay 0.5 Intersection Capacity Utilization 39.7% ICU Level of Service A									
Approach Delay (s) 13.4 0.2 0.0 Approach LOS B Intersection Summary Average Delay 0.5 Intersection Capacity Utilization 39.7% ICU Level of Service A				0.0	0.0	0.0			
Approach LOS B Intersection Summary Verage Delay Average Delay 0.5 Intersection Capacity Utilization 39.7% ICU Level of Service A									
Intersection Summary Average Delay Unitersection Capacity Utilization 0.5 Intersection Capacity Utilization 39.7% ICU Level of Service A			0.2		0.0				
Average Delay 0.5 Intersection Capacity Utilization 39.7% ICU Level of Service A	Approach LOS	В							
Intersection Capacity Utilization 39.7% ICU Level of Service A	Intersection Summary								
	Average Delay								
	Intersection Capacity Utiliza	ation		39.7%	IC	CU Level o	of Service	Α	

15

	•	-	7	1	•	1	Ť	-	-	Ţ	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	*	**	ř	7	444	7	1	7	7	†	7	
Traffic Volume (vph)	262	882	186	43	996	289	221	33	36	269	293	
Future Volume (vph)	262	882	186	43	996	289	221	33	36	269	293	
Lane Group Flow (vph)	262	882	186	43	1016	289	221	33	36	269	293	
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	NA	Perm	Perm	NA	Perm	
Protected Phases	5	2		1	6		4			8		
Permitted Phases	2		2	6		4		4	8		8	
Detector Phase	5	2	2	1	6	4	4	4	8	8	8	
Switch Phase												
Minimum Initial (s)	5.0	8.0	8.0	5.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	
Minimum Split (s)	8.0	44.9	44.9	8.0	44.9	47.9	47.9	47.9	47.9	47.9	47.9	
Total Split (s)	10.0	60.0	60.0	10.0	60.0	50.0	50.0	50.0	50.0	50.0	50.0	
Total Split (%)	8.3%	50.0%	50.0%	8.3%	50.0%	41.7%	41.7%	41.7%	41.7%	41.7%	41.7%	
Yellow Time (s)	3.0	4.6	4.6	3.0	4.6	4.6	4.6	4.6	4.6	4.6	4.6	
All-Red Time (s)	0.0	2.3	2.3	0.0	2.3	2.3	2.3	2.3	2.3	2.3	2.3	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	3.0	6.9	6.9	3.0	6.9	6.9	6.9	6.9	6.9	6.9	6.9	
Lead/Lag	Lead	Lag	Lag	Lead	Lag							
Lead-Lag Optimize?												
Recall Mode	None	C-Max	C-Max	None	C-Max	None	None	None	None	None	None	
v/c Ratio	0.85	0.39	0.22	0.16	0.47	0.95	0.34	0.06	0.11	0.43	0.46	
Control Delay	45.2	21.7	3.5	13.4	24.1	78.7	30.7	1.6	27.0	32.8	13.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	45.2	21.7	3.5	13.4	24.1	78.7	30.7	1.6	27.0	32.8	13.9	
Queue Length 50th (m)	18.2	30.1	0.0	2.6	35.6	37.7	22.1	0.0	3.3	28.0	11.4	
Queue Length 95th (m)	#43.2	36.8	7.4	5.8	42.8	#68.4	34.0	1.3	7.8	41.8	25.5	
Internal Link Dist (m)		1129.7			1348.2		456.4			472.6		
Turn Bay Length (m)	140.0		75.0	105.0		75.0		45.0	35.0		135.0	
Base Capacity (vph)	307	2278	845	277	2179	324	689	597	347	657	668	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.85	0.39	0.22	0.16	0.47	0.89	0.32	0.06	0.10	0.41	0.44	

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120

Offset: 32 (27%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 105

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 2: Dixie Road & Mayfield Road

Synchro 11 Report Page 1

Synchro 11 Report Page 2

02-02-2021

Analysis Period (min)

02-02-2021

	•	\rightarrow	•	1	•	•	1	1	1	-	ļ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Configurations	7	**	7	7	ተተተ	7	1	↑	7	*	↑ ↑	
Traffic Volume (vph)	111	834	116	113	846	22	231	163	57	26	97	
Future Volume (vph)	111	834	116	113	846	22	231	163	57	26	97	
Lane Group Flow (vph)	111	834	116	113	846	22	231	163	57	26	192	
Turn Type	pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	
Protected Phases	5	2			6			4		3	8	
Permitted Phases	2		2	6		6	4		4	8		
Detector Phase	5	2	2	6	6	6	4	4	4	3	8	
Switch Phase												
Minimum Initial (s)	5.0	12.0	12.0	12.0	12.0	12.0	8.0	8.0	8.0	5.0	8.0	
Minimum Split (s)	8.0	55.2	55.2	55.2	55.2	55.2	54.1	54.1	54.1	8.0	54.1	
Total Split (s)	12.0	70.0	70.0	58.0	58.0	58.0	56.0	56.0	56.0	9.0	65.0	
Total Split (%)	8.9%	51.9%	51.9%	43.0%	43.0%	43.0%	41.5%	41.5%	41.5%	6.7%	48.1%	
Yellow Time (s)	3.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	3.0	4.0	
All-Red Time (s)	0.0	3.2	3.2	3.2	3.2	3.2	3.1	3.1	3.1	0.0	3.1	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	3.0	7.2	7.2	7.2	7.2	7.2	7.1	7.1	7.1	3.0	7.1	
Lead/Lag	Lead			Lag	Lag	Lag	Lag	Lag	Lag	Lead		
Lead-Lag Optimize?							Yes	Yes	Yes			
Recall Mode	None	C-Max	C-Max	C-Max	C-Max	C-Max	None	None	None	None	None	
v/c Ratio	0.26	0.30	0.12	0.37	0.34	0.03	0.82	0.36	0.13	0.08	0.20	
Control Delay	13.1	14.3	3.1	29.7	22.5	0.1	70.6	43.3	3.4	27.6	16.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	13.1	14.3	3.1	29.7	22.5	0.1	70.6	43.3	3.4	27.6	16.3	
Queue Length 50th (m)	6.8	23.2	0.0	11.1	29.9	0.0	34.7	21.5	0.0	2.8	5.7	
Queue Length 95th (m)	14.2	34.4	5.6	25.8	44.3	0.0	47.7	29.9	2.9	5.8	9.7	
Internal Link Dist (m)		1348.2			329.1			492.7			373.4	
Turn Bay Length (m)	125.0		110.0	75.0		100.0	75.0			75.0		
Base Capacity (vph)	436	2804	998	304	2460	756	425	680	620	347	1444	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.25	0.30	0.12	0.37	0.34	0.03	0.54	0.24	0.09	0.07	0.13	

Intersection Summary

Cycle Length: 135
Actuated Cycle Length: 135
Offset: 16 (12%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 130

02-02-2021

Control Type: Actuated-Coordinated

Splits and Phases: 3: Bramalea Road & Mayfield Road

	•	→	*	•	•	•	1	†	-	-	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	***	7	*	ተተጉ		×	†	7	×	1	7
Traffic Volume (vph)	262	882	186	43	996	20	289	221	33	36	269	293
Future Volume (vph)	262	882	186	43	996	20	289	221	33	36	269	293
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5
Total Lost time (s)	3.0	6.9	6.9	3.0	6.9		6.9	6.9	6.9	6.9	6.9	6.9
Lane Util. Factor	1.00	0.91	1.00	1.00	0.91		1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00		1.00	1.00	0.85	1.00	1.00	0.85
FIt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1700	4768	1566	1342	4884		1750	1921	1551	1653	1830	1551
FIt Permitted	0.21	1.00	1.00	0.29	1.00		0.49	1.00	1.00	0.56	1.00	1.00
Satd. Flow (perm)	368	4768	1566	407	4884		904	1921	1551	967	1830	1551
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	262	882	186	43	996	20	289	221	33	36	269	293
RTOR Reduction (vph)	0	0	98	0	2	0	0	0	22	0	0	115
Lane Group Flow (vph)	262	882	88	43	1014	0	289	221	11	36	269	178
Heavy Vehicles (%)	5%	10%	2%	33%	7%	10%	2%	0%	3%	8%	5%	3%
Turn Type	pm+pt	NA	Perm	pm+pt	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2		1	6			4			8	
Permitted Phases	2		2	6			4		4	8		8
Actuated Green, G (s)	65.6	56.7	56.7	59.4	53.5		40.6	40.6	40.6	40.6	40.6	40.6
Effective Green, g (s)	65.6	56.7	56.7	59.4	53.5		40.6	40.6	40.6	40.6	40.6	40.6
Actuated g/C Ratio	0.55	0.47	0.47	0.49	0.45		0.34	0.34	0.34	0.34	0.34	0.34
Clearance Time (s)	3.0	6.9	6.9	3.0	6.9		6.9	6.9	6.9	6.9	6.9	6.9
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Lane Grp Cap (vph)	302	2252	739	247	2177		305	649	524	327	619	524
v/s Ratio Prot	c0.07	0.18		0.01	0.21			0.12			0.15	
v/s Ratio Perm	c0.41		0.06	0.08			c0.32		0.01	0.04		0.11
v/c Ratio	0.87	0.39	0.12	0.17	0.47		0.95	0.34	0.02	0.11	0.43	0.34
Uniform Delay, d1	17.4	20.5	17.7	15.9	23.3		38.7	29.7	26.5	27.3	30.8	29.7
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	23.8	0.5	0.3	0.7	0.7		38.2	0.7	0.0	0.3	1.0	0.8
Delay (s)	41.2	21.0	18.0	16.6	24.0		76.9	30.3	26.5	27.6	31.8	30.5
Level of Service	D	С	В	В	С		Е	С	С	С	С	С
Approach Delay (s)		24.6			23.7			54.9			30.9	
Approach LOS		С			С			D			С	
Intersection Summary												
HCM 2000 Control Delay			30.0	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	city ratio		0.92									
Actuated Cycle Length (s)			120.0	S	um of lost	time (s)			16.8			
Intersection Capacity Utiliza	tion		85.0%	IC	CU Level	of Service			Е			
Analysis Period (min)			15									
c Critical Lane Group												

Synchro 11 Report Page 3 Synchro 11 Report Page 4

	۶	→	•	•	-	•	1	†	~	/	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ተተተ	7	*	**	7	*	†	7	*	1	
Traffic Volume (vph)	111	834	116	113	846	22	231	163	57	26	97	95
Future Volume (vph)	111	834	116	113	846	22	231	163	57	26	97	95
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Total Lost time (s)	3.0	7.2	7.2	7.2	7.2	7.2	7.1	7.1	7.1	3.0	7.1	
Lane Util. Factor	1.00	0.91	1.00	1.00	0.91	1.00	1.00	1.00	1.00	1.00	0.95	
Frpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.93	
FIt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1767	4561	1551	1733	4812	1401	1767	1879	1568	1781	3240	
FIt Permitted	0.28	1.00	1.00	0.33	1.00	1.00	0.63	1.00	1.00	0.54	1.00	
Satd. Flow (perm)	516	4561	1551	594	4812	1401	1174	1879	1568	1013	3240	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	111	834	116	113	846	22	231	163	57	26	97	95
RTOR Reduction (vph)	0	0	46	0	0	11	0	0	43	0	68	0
Lane Group Flow (vph)	111	834	70	113	846	11	231	163	14	26	124	0
Confl. Peds. (#/hr)									7	7		-
Heavy Vehicles (%)	1%	15%	3%	3%	9%	14%	1%	0%	0%	0%	1%	3%
Turn Type	pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	
Protected Phases	5	2	1 01111	1 01111	6	1 01111	1 01111	4	1 01111	3	8	
Permitted Phases	2	_	2	6	U	6	4	-	4	8	U	
Actuated Green, G (s)	81.8	81.8	81.8	67.8	67.8	67.8	32.3	32.3	32.3	38.9	38.9	
Effective Green, g (s)	81.8	81.8	81.8	67.8	67.8	67.8	32.3	32.3	32.3	38.9	38.9	
Actuated g/C Ratio	0.61	0.61	0.61	0.50	0.50	0.50	0.24	0.24	0.24	0.29	0.29	
Clearance Time (s)	3.0	7.2	7.2	7.2	7.2	7.2	7.1	7.1	7.1	3.0	7.1	
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0	5.0	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	414	2763	939	298	2416	703	280	449	375	312	933	
v/s Ratio Prot	0.02	c0.18	303	230	0.18	700	200	0.09	373	0.00	c0.04	
v/s Ratio Perm	0.14	60.10	0.05	c0.19	0.10	0.01	c0.20	0.00	0.01	0.02	00.04	
v/c Ratio	0.14	0.30	0.03	0.38	0.35	0.02	0.82	0.36	0.01	0.02	0.13	
Uniform Delay, d1	11.6	12.8	11.0	20.7	20.3	16.9	48.7	42.8	39.4	34.9	35.6	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.7	0.3	0.2	3.6	0.4	0.0	17.6	0.5	0.0	0.1	0.1	
Delay (s)	12.4	13.1	11.1	24.3	20.7	16.9	66.3	43.3	39.4	35.0	35.6	
Level of Service	12. 1	13.1 B	В	24.5 C	20.7 C	10.3 B	00.5 E	73.3 D	D	00.0 C	55.0 D	
Approach Delay (s)		12.8			21.0			54.6			35.6	
Approach LOS		12.0 B			C C			D D			D	
Intersection Summary												
HCM 2000 Control Delay			24.6	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	city ratio		0.49									
Actuated Cycle Length (s)	,		135.0	Sı	um of lost	time (s)			20.3			
Intersection Capacity Utiliza	ition		69.4%		U Level	,			C			
Analysis Period (min)			15			2000						
c Critical Lane Group												

Synchro 11 Report Page 5

02-02-2021

APPENDIX C

Intersection Capacity Analysis – Future Background Conditions

	•	•	•	Ť	Ţ	1	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	¥		*	1	↑	7	
Traffic Volume (veh/h)	1	17	49	611	536	2	
Future Volume (Veh/h)	1	17	49	611	536	2	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph)	1	17	49	611	536	2	
Pedestrians							
ane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Jpstream signal (m)							
X, platoon unblocked							
C, conflicting volume	1245	536	538				
C1, stage 1 conf vol							
C2, stage 2 conf vol							
Cu, unblocked vol	1245	536	538				
C, single (s)	7.4	6.4	4.2				
C, 2 stage (s)							
F (s)	4.4	3.5	2.3				
00 queue free %	99	97	95				
cM capacity (veh/h)	117	504	991				
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2		
/olume Total	18	49	611	536	2		
/olume Left	1	49	0	0	0		
/olume Right	17	0	0	0	2		
SH	426	991	1700	1700	1700		
/olume to Capacity	0.04	0.05	0.36	0.32	0.00		
Queue Length 95th (m)	0.6	0.7	0.0	0.0	0.0		
Control Delay (s)	13.8	8.8	0.0	0.0	0.0		
ane LOS	В	A					
Approach Delay (s)	13.8	0.7		0.0			
Approach LOS	В						
ntersection Summary							
Average Delay			0.6				
	41		44.00/				

ICU Level of Service

15

44.9%

	•	-	*	1	•	1	Ť	1	-	Ţ	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	*	**	7	*	ተተጉ	*	•	7	*	↑	7	
Traffic Volume (vph)	385	1399	364	60	589	121	207	31	27	172	329	
Future Volume (vph)	385	1399	364	60	589	121	207	31	27	172	329	
Lane Group Flow (vph)	385	1399	364	60	637	121	207	31	27	172	329	
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	NA	Perm	Perm	NA	Perm	
Protected Phases	5	2		1	6		4			8		
Permitted Phases	2		2	6		4		4	8		8	
Detector Phase	5	2	2	1	6	4	4	4	8	8	8	
Switch Phase												
Minimum Initial (s)	5.0	8.0	8.0	5.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	
Minimum Split (s)	8.0	44.9	44.9	8.0	44.9	47.9	47.9	47.9	47.9	47.9	47.9	
Total Split (s)	10.0	60.0	60.0	10.0	60.0	50.0	50.0	50.0	50.0	50.0	50.0	
Total Split (%)	8.3%	50.0%	50.0%	8.3%	50.0%	41.7%	41.7%	41.7%	41.7%	41.7%	41.7%	
Yellow Time (s)	3.0	4.6	4.6	3.0	4.6	4.6	4.6	4.6	4.6	4.6	4.6	
All-Red Time (s)	0.0	2.3	2.3	0.0	2.3	2.3	2.3	2.3	2.3	2.3	2.3	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	3.0	6.9	6.9	3.0	6.9	6.9	6.9	6.9	6.9	6.9	6.9	
Lead/Lag	Lead	Lag	Lag	Lead	Lag							
Lead-Lag Optimize?												
Recall Mode	None	C-Max	C-Max	None	C-Max	None	None	None	None	None	None	
v/c Ratio	0.61	0.46	0.33	0.21	0.30	0.66	0.67	0.10	0.21	0.52	0.65	
Control Delay	11.1	14.2	2.3	8.9	19.7	61.4	55.4	2.1	43.0	48.7	13.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	11.1	14.2	2.3	8.9	19.7	61.4	55.4	2.1	43.0	48.7	13.0	
Queue Length 50th (m)	16.6	37.3	0.0	2.0	19.0	15.8	27.2	0.0	3.2	21.9	3.9	
Queue Length 95th (m)	31.9	53.9	8.2	5.4	25.7	25.9	38.8	1.1	7.8	32.1	19.1	
Internal Link Dist (m)		1129.7			1348.2		456.4			472.6		
Turn Bay Length (m)	140.0		75.0	105.0		75.0		45.0	35.0		135.0	
Base Capacity (vph)	628	3031	1088	280	2149	356	600	547	247	638	706	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.61	0.46	0.33	0.21	0.30	0.34	0.34	0.06	0.11	0.27	0.47	

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120

Offset: 44 (37%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 105

Control Type: Actuated-Coordinated

Splits and Phases: 2: Dixie Road & Mayfield Road

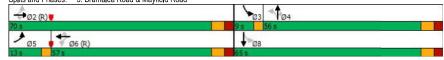
Α

Intersection Capacity Utilization
Analysis Period (min)

	•	-	*	1	•	•	1	†	-	1	Ţ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Configurations	×	***	7	*	ተተተ	7	*	1	7	×	† ‡	
Traffic Volume (vph)	204	1114	204	68	744	21	44	121	52	31	154	
Future Volume (vph)	204	1114	204	68	744	21	44	121	52	31	154	
Lane Group Flow (vph)	204	1114	204	68	744	21	44	121	52	31	247	
Turn Type	pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	
Protected Phases	5	2			6			4		3	8	
Permitted Phases	2		2	6		6	4		4	8		
Detector Phase	5	2	2	6	6	6	4	4	4	3	8	
Switch Phase												
Minimum Initial (s)	5.0	12.0	12.0	12.0	12.0	12.0	8.0	8.0	8.0	5.0	8.0	
Minimum Split (s)	8.0	55.2	55.2	55.2	55.2	55.2	54.1	54.1	54.1	8.0	54.1	
Total Split (s)	13.0	70.0	70.0	57.0	57.0	57.0	56.0	56.0	56.0	9.0	65.0	
Total Split (%)	9.6%	51.9%	51.9%	42.2%	42.2%	42.2%	41.5%	41.5%	41.5%	6.7%	48.1%	
Yellow Time (s)	3.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	3.0	4.0	
All-Red Time (s)	0.0	3.2	3.2	3.2	3.2	3.2	3.1	3.1	3.1	0.0	3.1	
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	3.0	7.2	7.2	7.2	7.2	7.2	7.1	7.1	7.1	3.0	7.1	
_ead/Lag	Lead			Lag	Lag	Lag	Lag	Lag	Lag	Lead		
_ead-Lag Optimize?												
Recall Mode	None	C-Max	C-Max	C-Max	C-Max	C-Max	None	None	None	None	None	
v/c Ratio	0.35	0.32	0.17	0.26	0.26	0.03	0.38	0.62	0.23	0.17	0.44	
Control Delay	6.4	6.7	1.2	17.2	12.3	0.0	64.2	71.0	5.8	44.6	33.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	6.4	6.7	1.2	17.2	12.3	0.0	64.2	71.0	5.8	44.6	33.0	
Queue Length 50th (m)	8.0	21.3	0.0	4.8	19.0	0.0	6.6	18.6	0.0	4.0	11.2	
Queue Length 95th (m)	14.6	29.5	4.4	12.4	27.9	0.0	13.4	29.4	2.8	8.8	17.9	
Internal Link Dist (m)		1348.2			329.1			492.7			373.4	
Turn Bay Length (m)	125.0		110.0	75.0		100.0	75.0			75.0		
Base Capacity (vph)	591	3464	1204	260	2808	766	388	654	568	181	1470	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.35	0.32	0.17	0.26	0.26	0.03	0.11	0.19	0.09	0.17	0.17	

Intersection Summary

Cycle Length: 135
Actuated Cycle Length: 135


Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 130

02-25-2021

Control Type: Actuated-Coordinated

Splits and Phases: 3: Bramalea Road & Mayfield Road

EBR NBL Movement EBL EBT WBL WBT WBR NBT NBR SBR Lane Configurations Traffic Volume (vph) 385 1399 364 121 207 27 172 329 Future Volume (vph) 385 1399 364 60 589 48 121 207 31 27 172 329 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 Lane Width 3.5 3.7 3.5 3.5 3.7 3.5 3.5 3.7 3.5 3.7 3.5 3.5 Total Lost time (s) 3.0 6.9 6.9 3.0 6.9 6.9 6.9 6.9 6.9 6.9 6.9 Lane Util. Factor 1.00 0.91 1.00 1.00 0.91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.85 1.00 0.99 1.00 1.00 0.85 1.00 1.00 0.85 0.95 1.00 1.00 0.95 1.00 FIt Protected 1.00 0.95 1.00 1.00 0.95 1.00 Satd. Flow (prot) 1566 1536 1653 4492 1716 1405 1779 1439 4902 1671 1413 FIt Permitted 0.36 1.00 0.18 1.00 0.55 1.00 1.00 0.46 1.00 1.00 1.00 Satd, Flow (perm) 598 4902 1536 314 4492 992 1671 1413 688 1779 1439 Peak-hour factor, PHF 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Adj. Flow (vph) 385 1399 364 60 589 121 207 31 27 172 329 RTOR Reduction (vph) 0 0 141 0 0 0 25 0 0 241 Lane Group Flow (vph) 385 1399 223 60 630 0 121 207 6 27 172 88 Heavy Vehicles (%) 14% 7% 4% 8% 14% 33% 4% 15% 13% 27% 8% 11% Turn Type pm+pt NA Perm pm+pt NA Perm NA Perm Perm NA Perm Protected Phases 5 2 6 4 8 Permitted Phases Actuated Green, G (s) 83.9 73.6 73.6 64.5 57.2 22.3 22.3 22.3 22.3 22.3 22.3 Effective Green, g (s) 83.9 73.6 73.6 64.5 57.2 22.3 22.3 22.3 22.3 22.3 22.3 Actuated g/C Ratio 0.70 0.61 0.61 0.54 0.19 0.19 0.19 0.48 0.19 0.19 0.19 Clearance Time (s) 3.0 6.9 6.9 6.9 6.9 3.0 6.9 6.9 6.9 6.9 6.9 Vehicle Extension (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Lane Grp Cap (vph) 609 3006 942 250 2141 184 310 262 127 330 267 v/s Ratio Prot c0.12 0.01 c0.12 0.29 0.14 0.10 v/s Ratio Perm c0.32 0.12 0.00 0.04 0.06 0.15 0.11 v/c Ratio 0.63 0.47 0.24 0.24 0.29 0.66 0.67 0.02 0.21 0.52 0.33 Uniform Delay, d1 10.5 44.0 7.5 12.6 13.3 19.1 45.3 45.4 39.9 41.4 42.4 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 3.0 0.5 0.6 1.0 0.3 10.9 0.1 1.8 2.8 1.5 7.0 10.5 13.1 19.5 56.2 52.4 40.0 43.2 46.9 43.9 Delay (s) 11.1 14.4 Level of Service D D Approach Delay (s) 12.3 19.0 52.6 44.8 Approach LOS D Intersection Summary HCM 2000 Control Delay 22.0 HCM 2000 Level of Service С HCM 2000 Volume to Capacity ratio 0.66 Actuated Cycle Length (s) 120.0 Sum of lost time (s) 16.8 Intersection Capacity Utilization 71.9% ICU Level of Service С Analysis Period (min) 15 c Critical Lane Group

> Synchro 11 Report Page 3

Synchro 11 Report Page 4

	•	→	•	•	←	•	4	†	1	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	***	7	7	ተተተ	7	*	†	7	*	*	
Traffic Volume (vph)	204	1114	204	68	744	21	44	121	52	31	154	93
Future Volume (vph)	204	1114	204	68	744	21	44	121	52	31	154	93
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Total Lost time (s)	3.0	7.2	7.2	7.2	7.2	7.2	7.1	7.1	7.1	3.0	7.1	
Lane Util. Factor	1.00	0.91	1.00	1.00	0.91	1.00	1.00	1.00	1.00	1.00	0.95	
Frpb, ped/bikes	1.00	1.00	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.94	
FIt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1767	4641	1544	1593	4407	1157	1700	1807	1426	1580	3302	
FIt Permitted	0.34	1.00	1.00	0.24	1.00	1.00	0.60	1.00	1.00	0.50	1.00	
Satd. Flow (perm)	629	4641	1544	408	4407	1157	1071	1807	1426	834	3302	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	204	1114	204	68	744	21	44	121	52	31	154	93
RTOR Reduction (vph)	0	0	53	0	0	8	0	0	46	0	78	0
Lane Group Flow (vph)	204	1114	151	68	744	13	44	121	6	31	169	0
Confl. Peds. (#/hr)			2	2								
Heavy Vehicles (%)	1%	13%	2%	12%	19%	38%	5%	4%	12%	13%	2%	2%
Turn Type	pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	
Protected Phases	5	2			6			4		3	8	
Permitted Phases	2		2	6		6	4		4	8		
Actuated Green, G (s)	99.6	99.6	99.6	84.8	84.8	84.8	14.5	14.5	14.5	21.1	21.1	
Effective Green, g (s)	99.6	99.6	99.6	84.8	84.8	84.8	14.5	14.5	14.5	21.1	21.1	
Actuated g/C Ratio	0.74	0.74	0.74	0.63	0.63	0.63	0.11	0.11	0.11	0.16	0.16	
Clearance Time (s)	3.0	7.2	7.2	7.2	7.2	7.2	7.1	7.1	7.1	3.0	7.1	
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0	5.0	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	563	3424	1139	256	2768	726	115	194	153	150	516	
v/s Ratio Prot	c0.03	0.24			0.17			c0.07		0.01	c0.05	
v/s Ratio Perm	c0.24		0.10	0.17	•	0.01	0.04		0.00	0.03		
v/c Ratio	0.36	0.33	0.13	0.27	0.27	0.02	0.38	0.62	0.04	0.21	0.33	
Uniform Delay, d1	5.4	6.1	5.1	11.2	11.2	9.4	56.1	57.6	54.0	49.1	50.6	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.8	0.3	0.2	2.5	0.2	0.0	2.1	6.1	0.1	0.7	0.4	
Delay (s)	6.2	6.4	5.4	13.7	11.5	9.5	58.2	63.8	54.1	49.8	51.0	
Level of Service	A	Α	Α	В	В	Α	Е	Е	D	D	D	
Approach Delay (s)		6.2			11.6			60.3			50.9	
Approach LOS		Α			В			Е			D	
Intersection Summary												
HCM 2000 Control Delay			16.3	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.40									
Actuated Cycle Length (s)					Sum of lost time (s)				20.3			
Intersection Capacity Utiliza	ersection Capacity Utilization 87.7%					of Service			Е			
Analysis Period (min)	alysis Period (min) 15											
c Critical Lane Group												

Synchro 11 Report Page 5

02-25-2021

Movement EBL EBR NBL NBT SBR
Lane Configurations Y 1 1
Traffic Volume (veh/h) 4 34 11 657 858 3
Future Volume (Veh/h) 4 34 11 657 858 3
Sign Control Stop Free Free
Grade 0% 0% 0%
Peak Hour Factor 1.00 1.00 1.00 1.00 1.00
Hourly flow rate (vph) 4 34 11 657 858 3
Pedestrians 2
Lane Width (m) 3.5
Walking Speed (m/s) 1.2
Percent Blockage 0
Right turn flare (veh)
Median type None None
Median storage veh)
Upstream signal (m)
pX, platoon unblocked
vC, conflicting volume 1539 860 863
vC1, stage 1 conf vol
vC2, stage 2 conf vol
vCu, unblocked vol 1539 860 863
tC, single (s) 6.4 6.2 4.2
tC, 2 stage (s)
tF (s) 3.5 3.3 2.3
p0 queue free % 97 91 99
cM capacity (veh/h) 126 358 749
Direction, Lane # EB 1 NB 1 NB 2 SB 1 SB 2
Volume Total 38 11 657 858 3
Volume Left 4 11 0 0 0
Volume Right 34 0 0 0 3
cSH 300 749 1700 1700 1700
Volume to Capacity 0.13 0.01 0.39 0.50 0.00
Queue Length 95th (m) 1.9 0.2 0.0 0.0 0.0
Control Delay (s) 18.7 9.9 0.0 0.0 0.0
Lane LOS C A
Approach Delay (s) 18.7 0.2 0.0
Approach LOS C
Intersection Summary
Average Delay 0.5
Intersection Capacity Utilization 55.2% ICU Level of Service
Analysis Period (min) 15

	•	-	•	1	•	1	Ť	-	-	ţ	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	*	ተተተ	7	*	ተተጉ	×	1	7	*	1	7	
Traffic Volume (vph)	364	970	186	43	1096	289	252	33	67	346	450	
Future Volume (vph)	364	970	186	43	1096	289	252	33	67	346	450	
Lane Group Flow (vph)	364	970	186	43	1122	289	252	33	67	346	450	
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	NA	Perm	Perm	NA	Perm	
Protected Phases	5	2		1	6		4			8		
Permitted Phases	2		2	6		4		4	8		8	
Detector Phase	5	2	2	1	6	4	4	4	8	8	8	
Switch Phase												
Minimum Initial (s)	5.0	8.0	8.0	5.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	
Minimum Split (s)	8.0	44.9	44.9	8.0	44.9	47.9	47.9	47.9	47.9	47.9	47.9	
Total Split (s)	10.0	60.0	60.0	10.0	60.0	50.0	50.0	50.0	50.0	50.0	50.0	
Total Split (%)	8.3%	50.0%	50.0%	8.3%	50.0%	41.7%	41.7%	41.7%	41.7%	41.7%	41.7%	
Yellow Time (s)	3.0	4.6	4.6	3.0	4.6	4.6	4.6	4.6	4.6	4.6	4.6	
All-Red Time (s)	0.0	2.3	2.3	0.0	2.3	2.3	2.3	2.3	2.3	2.3	2.3	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	3.0	6.9	6.9	3.0	6.9	6.9	6.9	6.9	6.9	6.9	6.9	
Lead/Lag	Lead	Lag	Lag	Lead	Lag							
Lead-Lag Optimize?												
Recall Mode	None	C-Max	C-Max	None	C-Max	None	None	None	None	None	None	
v/c Ratio	1.44	0.44	0.23	0.18	0.52	1.07	0.37	0.06	0.20	0.53	0.68	
Control Delay	243.4	23.3	3.5	14.0	25.2	113.9	30.3	1.6	28.8	34.0	26.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	243.4	23.3	3.5	14.0	25.2	113.9	30.3	1.6	28.8	34.0	26.4	
Queue Length 50th (m)	~46.4	33.9	0.0	2.6	40.4	~44.8	25.7	0.0	6.4	37.8	34.4	
Queue Length 95th (m)	#82.5	41.1	7.4	5.8	48.3	#76.4	38.7	1.3	13.1	55.0	56.8	
Internal Link Dist (m)		1129.7			1348.2		456.4			472.6		
Turn Bay Length (m)	140.0		75.0	105.0		75.0		45.0	35.0		135.0	
Base Capacity (vph)	252	2189	819	239	2163	269	689	597	327	657	660	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.44	0.44	0.23	0.18	0.52	1.07	0.37	0.06	0.20	0.53	0.68	

Intersection Summary

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 32 (27%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 115

Control Type: Actuated-Coordinated

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 2: Dixie Road & Mayfield Road

Synchro 11 Report 02-25-2021 Page 1

Page 2

3:	Bramale	a Road	& Mayfield	Road

	•	\rightarrow	*	1	•	•	1	Ť	-	-	ļ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Configurations	*	ተተተ	7	*	ተ ተተ	7	*	1	7	×	↑ ↑	
Traffic Volume (vph)	111	948	116	113	937	22	231	179	57	26	107	
Future Volume (vph)	111	948	116	113	937	22	231	179	57	26	107	
Lane Group Flow (vph)	111	948	116	113	937	22	231	179	57	26	202	
Turn Type	pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	
Protected Phases	5	2			6			4		3	8	
Permitted Phases	2		2	6		6	4		4	8		
Detector Phase	5	2	2	6	6	6	4	4	4	3	8	
Switch Phase												
Minimum Initial (s)	5.0	12.0	12.0	12.0	12.0	12.0	8.0	8.0	8.0	5.0	8.0	
Minimum Split (s)	8.0	55.2	55.2	55.2	55.2	55.2	54.1	54.1	54.1	8.0	54.1	
Total Split (s)	12.0	70.0	70.0	58.0	58.0	58.0	56.0	56.0	56.0	9.0	65.0	
Total Split (%)	8.9%	51.9%	51.9%	43.0%	43.0%	43.0%	41.5%	41.5%	41.5%	6.7%	48.1%	
Yellow Time (s)	3.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	3.0	4.0	
All-Red Time (s)	0.0	3.2	3.2	3.2	3.2	3.2	3.1	3.1	3.1	0.0	3.1	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	3.0	7.2	7.2	7.2	7.2	7.2	7.1	7.1	7.1	3.0	7.1	
Lead/Lag	Lead			Lag	Lag	Lag	Lag	Lag	Lag	Lead		
Lead-Lag Optimize?							Yes	Yes	Yes			
Recall Mode	None	C-Max	C-Max	C-Max	C-Max	C-Max	None	None	None	None	None	
v/c Ratio	0.28	0.34	0.12	0.42	0.38	0.03	0.82	0.39	0.13	0.08	0.21	
Control Delay	13.7	15.0	3.1	32.3	23.1	0.1	70.0	43.7	3.3	27.3	17.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	13.7	15.0	3.1	32.3	23.1	0.1	70.0	43.7	3.3	27.3	17.1	
Queue Length 50th (m)	6.8	27.3	0.0	11.5	34.1	0.0	34.7	23.8	0.0	2.8	6.3	
Queue Length 95th (m)	14.5	40.6	5.7	27.4	49.6	0.0	47.3	32.4	2.9	5.7	10.3	
Internal Link Dist (m)		1348.2			329.1			492.7			373.4	
Turn Bay Length (m)	125.0		110.0	75.0		100.0	75.0			75.0		
Base Capacity (vph)	398	2791	994	269	2453	754	421	680	620	336	1449	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.28	0.34	0.12	0.42	0.38	0.03	0.55	0.26	0.09	0.08	0.14	

Intersection Summary

Cycle Length: 135 Actuated Cycle Length: 135

Offset: 16 (12%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 130

Control Type: Actuated-Coordinated

Splits and Phases: 3: Bramalea Road & Mayfield Road

EBR NBL Movement EBL EBT WBL WBT WBR NBT NBR SBL SBR Lane Configurations ** Traffic Volume (vph) 970 186 43 289 252 450 26 Future Volume (vph) 364 970 186 43 1096 26 289 252 33 67 346 450 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 Lane Width 3.5 3.7 3.5 3.5 3.7 3.5 3.5 3.7 3.5 3.7 3.5 3.5 Total Lost time (s) 3.0 6.9 6.9 3.0 6.9 6.9 6.9 6.9 6.9 6.9 6.9 Lane Util. Factor 1.00 0.91 1.00 1.00 0.91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.85 1.00 1.00 1.00 1.00 0.85 1.00 1.00 0.85 0.95 1.00 0.95 FIt Protected 1.00 0.95 1.00 1.00 1.00 0.95 1.00 1.00 Satd. Flow (prot) 1566 1342 4881 1750 1653 1830 1551 1700 4768 1921 1551 FIt Permitted 0.18 1.00 0.24 1.00 0.41 1.00 1.00 0.52 1.00 1.00 1.00 Satd, Flow (perm) 319 4768 1566 341 4881 750 1921 1551 912 1830 1551 Peak-hour factor, PHF 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Adj. Flow (vph) 43 450 364 970 186 1096 26 289 252 33 67 346 RTOR Reduction (vph) 0 0 102 0 0 0 21 0 0 103 Lane Group Flow (vph) 364 970 84 43 1120 0 289 252 12 67 346 347 Heavy Vehicles (%) 5% 10% 2% 33% 7% 10% 2% 0% 3% 8% 5% 3% Turn Type pm+pt NA Perm pm+pt NA Perm NA Perm Perm NA Perm Protected Phases 5 2 6 4 8 Permitted Phases Actuated Green, G (s) 61.5 54.5 54.5 58.7 53.1 43.1 43.1 43.1 43.1 43.1 43.1 Effective Green, g (s) 61.5 54.5 54.5 58.7 53.1 43.1 43.1 43.1 43.1 43.1 43.1 0.51 Actuated g/C Ratio 0.45 0.45 0.49 0.44 0.36 0.36 0.36 0.36 0.36 0.36 Clearance Time (s) 3.0 6.9 6.9 6.9 6.9 6.9 6.9 3.0 6.9 6.9 6.9 Vehicle Extension (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Lane Grp Cap (vph) 244 2165 711 213 2159 269 689 557 327 657 557 v/s Ratio Prot c0.09 0.01 0.23 0.13 0.19 0.20 v/s Ratio Perm c0.68 c0.39 0.01 0.07 0.22 0.05 0.09 v/c Ratio 1.49 0.45 0.12 0.20 0.52 1.07 0.37 0.02 0.20 0.53 0.62 Uniform Delay, d1 24.5 22.4 18.9 16.5 24.2 38.5 28.4 24.8 26.6 30.4 31.7 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 241.8 0.7 0.3 1.0 0.9 76.0 0.7 0.0 0.7 1.5 3.1 266.3 23.1 19.2 17.4 25.1 29.1 24.9 27.2 31.8 34.8 Delay (s) 114.5 Level of Service С Approach Delay (s) 80.9 24.8 71.8 33.0 Approach LOS С Intersection Summary HCM 2000 Control Delay 53.8 HCM 2000 Level of Service D HCM 2000 Volume to Capacity ratio 1.34 Actuated Cycle Length (s) 120.0 Sum of lost time (s) 16.8 Intersection Capacity Utilization 96.7% ICU Level of Service F Analysis Period (min) 15 c Critical Lane Group

> Synchro 11 Report Page 3

Synchro 11 Report Page 4

	١	→	•	1	←	•	1	†	~	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	444	7	*	^	7	×	1	7	×	†	
Traffic Volume (vph)	111	948	116	113	937	22	231	179	57	26	107	95
Future Volume (vph)	111	948	116	113	937	22	231	179	57	26	107	95
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Total Lost time (s)	3.0	7.2	7.2	7.2	7.2	7.2	7.1	7.1	7.1	3.0	7.1	
Lane Util. Factor	1.00	0.91	1.00	1.00	0.91	1.00	1.00	1.00	1.00	1.00	0.95	
Frpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.93	
FIt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1767	4561	1551	1733	4812	1401	1767	1879	1568	1781	3255	
FIt Permitted	0.24	1.00	1.00	0.29	1.00	1.00	0.62	1.00	1.00	0.51	1.00	
Satd. Flow (perm)	455	4561	1551	528	4812	1401	1163	1879	1568	965	3255	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	111	948	116	113	937	22	231	179	57	26	107	95
RTOR Reduction (vph)	0	0	46	0	0	11	0	0	43	0	67	0
Lane Group Flow (vph)	111	948	70	113	937	11	231	179	14	26	135	0
Confl. Peds. (#/hr)									7	7		
Heavy Vehicles (%)	1%	15%	3%	3%	9%	14%	1%	0%	0%	0%	1%	3%
Turn Type	pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	
Protected Phases	5	2			6			4		3	8	
Permitted Phases	2		2	6		6	4		4	8		
Actuated Green, G (s)	81.4	81.4	81.4	67.6	67.6	67.6	32.7	32.7	32.7	39.3	39.3	
Effective Green, g (s)	81.4	81.4	81.4	67.6	67.6	67.6	32.7	32.7	32.7	39.3	39.3	
Actuated g/C Ratio	0.60	0.60	0.60	0.50	0.50	0.50	0.24	0.24	0.24	0.29	0.29	
Clearance Time (s)	3.0	7.2	7.2	7.2	7.2	7.2	7.1	7.1	7.1	3.0	7.1	
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0	5.0	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	379	2750	935	264	2409	701	281	455	379	302	947	
v/s Ratio Prot	0.02	c0.21			0.19			0.10		0.00	c0.04	
v/s Ratio Perm	0.15		0.05	c0.21		0.01	c0.20		0.01	0.02		
v/c Ratio	0.29	0.34	0.07	0.43	0.39	0.02	0.82	0.39	0.04	0.09	0.14	
Uniform Delay, d1	12.0	13.4	11.1	21.4	20.9	17.0	48.4	42.8	39.1	34.6	35.4	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.9	0.3	0.2	5.0	0.5	0.0	17.3	0.6	0.0	0.1	0.1	
Delay (s)	12.9	13.8	11.3	26.4	21.4	17.0	65.7	43.4	39.1	34.7	35.5	
Level of Service	В	В	В	С	С	В	Е	D	D	С	D	
Approach Delay (s)		13.4			21.8			53.9			35.4	
Approach LOS		В			С			D			D	
Intersection Summary												
HCM 2000 Control Delay			24.6	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.52									
Actuated Cycle Length (s)					um of lost				20.3			
Intersection Capacity Utilization 71.6%					U Level o	of Service			С			
Analysis Period (min) 15												
c Critical Lane Group												

Synchro 11 Report Page 5

02-25-2021

APPENDIX D

Intersection Capacity Analysis Results – Future Background Conditions (Optimized)

2: Dixie Road & Mayfield Road

EBR Lane Group EBL EBT WBT NBL NBT NBR SBL SBR Lane Configurations Traffic Volume (vph) 970 186 289 252 33 346 450 Future Volume (vph) 364 970 186 43 1096 289 252 33 67 346 450 Lane Group Flow (vph) 364 970 186 43 1122 289 252 33 67 346 450 Turn Type pm+pt NA Perm NA NA Perm Perm NA Perm pm+pt pm+pt Protected Phases Permitted Phases 2 2 4 8 6 4 8 **Detector Phase** Switch Phase Minimum Initial (s) 5.0 8.0 8.0 8.0 5.0 80 Minimum Split (s) 8.0 44.9 44.9 8.0 44.9 8.0 47.9 47.9 47.9 47.9 47.9 Total Split (s) 14.9 51.8 51.8 8.0 44.9 12.3 60.2 60.2 47.9 47.9 47.9 Total Split (%) 12.4% 43.2% 43.2% 6.7% 37.4% 10.3% 50.2% 50.2% 39.9% 39.9% 39.9% Yellow Time (s) 3.0 4.6 4.6 3.0 4.6 3.0 4.6 4.6 4.6 4.6 4.6 All-Red Time (s) 2.3 2.3 0.0 0.0 2.3 0.0 2.3 2.3 2.3 2.3 2.3 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 3.0 6.9 6.9 3.0 6.9 3.0 6.9 6.9 6.9 6.9 6.9 Lead/Lag Lead Lag Lag Lead Lag Lead Lag Lag Lag Lead-Lag Optimize? Yes Yes Yes Recall Mode None C-Max C-Max None C-Max None None None None None None v/c Ratio 0.98 0.46 0.23 0.19 0.72 0.94 0.35 0.05 0.24 0.70 0.79 Control Delay 71.9 26.1 4.3 18.0 39.5 66.7 27.6 0.2 34.0 46.8 31.8 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 71.9 26.1 4.3 18.0 39.5 66.7 27.6 0.2 34.0 46.8 31.8 Queue Length 50th (m) 38.9 36.4 2.7 50.5 28.1 43.3 0.0 24.9 0.0 7.3 32.8 Queue Length 95th (m) #92.5 46.7 60.3 #45.6 0.0 13.2 8.5 7.1 33.2 56.6 51.6 1348.2 Internal Link Dist (m) 1129.7 456.4 472.6 Turn Bay Length (m) 75.0 75.0 45.0 35.0 135.0 Base Capacity (vph) 373 2103 794 226 1548 308 853 738 358 625 664 Starvation Cap Reductn 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 n 0

Storage Cap Reductn Reduced v/c Ratio Intersection Summary

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 32 (27%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

0.98

0.46

0.23

0.19

0.72

0.94

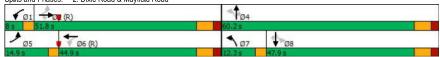
0.30

0.04

0.19

0.55

0.68


Natural Cycle: 120

Control Type: Actuated-Coordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 2: Dixie Road & Mayfield Road

	•	→	•	1	←	•	1	†	-	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	*	**	7	*	个个个		*	↑	7	*	↑	7
Traffic Volume (vph)	364	970	186	43	1096	26	289	252	33	67	346	450
Future Volume (vph)	364	970	186	43	1096	26	289	252	33	67	346	450
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.
Total Lost time (s)	3.0	6.9	6.9	3.0	6.9		3.0	6.9	6.9	6.9	6.9	6.9
Lane Util. Factor	1.00	0.91	1.00	1.00	0.91		1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00		1.00	1.00	0.85	1.00	1.00	0.85
FIt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1700	4768	1566	1342	4881		1750	1921	1551	1653	1830	1551
FIt Permitted	0.12	1.00	1.00	0.28	1.00		0.29	1.00	1.00	0.60	1.00	1.00
Satd. Flow (perm)	218	4768	1566	400	4881		529	1921	1551	1049	1830	1551
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	364	970	186	43	1096	26	289	252	33	67	346	450
RTOR Reduction (vph)	0	0	105	0	2	0	0	0	21	0	0	150
Lane Group Flow (vph)	364	970	81	43	1120	0	289	252	12	67	346	300
Heavy Vehicles (%)	5%	10%	2%	33%	7%	10%	2%	0%	3%	8%	5%	3%
Turn Type	pm+pt	NA	Perm	pm+pt	NA		pm+pt	NA	Perm	Perm	NA	Perm
Protected Phases	5	2		1	6		7	4			8	
Permitted Phases	2		2	6			4		4	8		8
Actuated Green, G (s)	61.6	52.3	52.3	44.3	38.0		44.6	44.6	44.6	32.3	32.3	32.3
Effective Green, g (s)	61.6	52.3	52.3	44.3	38.0		44.6	44.6	44.6	32.3	32.3	32.3
Actuated g/C Ratio	0.51	0.44	0.44	0.37	0.32		0.37	0.37	0.37	0.27	0.27	0.27
Clearance Time (s)	3.0	6.9	6.9	3.0	6.9		3.0	6.9	6.9	6.9	6.9	6.9
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Lane Grp Cap (vph)	366	2078	682	197	1545		291	713	576	282	492	417
v/s Ratio Prot	c0.17	0.20		0.01	0.23		c0.08	0.13			0.19	
v/s Ratio Perm	c0.34		0.05	0.07			c0.29		0.01	0.06		0.19
v/c Ratio	0.99	0.47	0.12	0.22	0.72		0.99	0.35	0.02	0.24	0.70	0.72
Uniform Delay, d1	33.5	24.0	20.1	24.7	36.4		36.3	27.3	23.9	34.2	39.5	39.7
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	45.5	0.8	0.4	1.2	3.0		50.8	0.6	0.0	0.9	5.7	7.2
Delay (s)	79.0	24.7	20.5	25.8	39.4		87.1	27.9	23.9	35.1	45.2	47.0
Level of Service	Е	С	С	С	D		F	С	С	D	D	
Approach Delay (s)		37.2			38.9			57.5			45.3	
Approach LOS		D			D			Е			D	
Intersection Summary												
HCM 2000 Control Delay			42.2	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	acity ratio		1.04									
Actuated Cycle Length (s)			120.0	S	um of lost	time (s)			19.8			
Intersection Capacity Utilization 94.3%					CU Level		9		F			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

 Synchro 11 Report

 02-25-2021
 Page 3

APPENDIX E

Detailed TTS Data

Incoming AM
Fri Dec 11 2020 16:55:15 GMT-0500 (Eastern Standard Time) - Run Time: 2467ms

Cross Tabulation Query Form - Trip - 2016 v1.1

Row: 2006 GTA zone of origin - gta06_orig

Column: 2006 GTA zone of destination - gta06_dest

Filters:

Start time of trip - start_time In 600-900

Trip purpose - trip_purp In 1

and

Primary travel mode of trip - mode_prime In d, m

2006 GTA zone of destination - gta06_dest In 3012,3013,3014,3015,3016,3191

Trip 2016 Table:

Table.	То					1			2118	85	21211		
	-	3014	3015	3016	3191	Sum	%	PD	Gateway		Gateway2	Notes	
72	0	0	0	0	_	43	0.9%	_	Mayfield EB	_	Mayfield EB		410
124	0	0	0	0		12	0.2%		Mayfield EB		Mayfield EB		410
150	0	19	0	0		19	0.4%		Mayfield EB		Mayfield EB		410
160	0	0	0	0	21	21	0.4%		Mayfield EB	-	Mayfield EB		410
163	0	0	0	0	34	34	0.7%	3	Mayfield EB		Mayfield EB		410
173	0	0	0	0	24	24	0.5%	3	Mayfield EB		Mayfield EB		410
178	0	0	0	0	23	23	0.5%	3	Mayfield EB		Mayfield EB		410
194	0	0	0	0	11	11	0.2%	4	Mayfield EB		Mayfield EB		410
222	0	0	0	0	12	12	0.2%	4	Mayfield EB		Mayfield EB		410
223	0	0	0	0	17	17	0.4%	5	Mayfield EB		Mayfield EB		410
255	0	0	0	0	13	13	0.3%	6	Mayfield EB		Mayfield EB		410
261	0	0	0	0	15	15	0.3%	6	Mayfield EB		Mayfield EB		410
294	0	17	0	0	0	17	0.4%	7	Mayfield EB		Mayfield EB		410
295	0	0	0	0	6	6	0.1%	7	Mayfield EB		Mayfield EB		410
326	0	0	0	0		13	0.3%	8	Mayfield EB		Mayfield EB		410
365	0	0	0	0	52	52	1.1%	9	Mayfield EB		Mayfield EB		410
366	0	0	20	0	0	20	0.4%		Mayfield EB		Mayfield EB		410
371	0	0	0	0		17	0.4%	9	Mayfield EB		Mayfield EB		410
376	0	0	0	0		25	0.5%		Mayfield EB		Mayfield EB		410
382	0	0	0	0		20	0.4%		Mayfield EB		Mayfield EB		410
384	0	0	0	0		10	0.2%		Mayfield EB		Mayfield EB		410
385	0	0	0	0		8	0.2%		Mayfield EB		Mayfield EB		410
396	0	0	0	0		8	0.2%		Mayfield EB		Mayfield EB		410
413	0	0	0	0		18	0.4%		Mayfield EB		Mayfield EB		410
443	0	0	0	0		17	0.4%		Mayfield EB		Mayfield EB		410
459	0	0	0	0		27	0.6%		Mayfield EB		Mayfield EB		410
568	0	0	0	0		16	0.3%		Mayfield EB		Mayfield EB		410
1063	0	0	0	7	0	7	0.1%		Mayfield EB	\rightarrow	Mayfield EB		410
1180	0	0	0	0		21	0.4%		Mayfield EB	\rightarrow	Mayfield EB		410
2258	0	0	0	0		18	0.4%		Mayfield EB		Mayfield EB		410
2402	55	0	0	0		55	1.1%		Mayfield EB		Mayfield EB		410
2427	0	0	0	0		16	0.3%		Mayfield EB		Mayfield EB		410
2434	0	0	0	0		45	0.9%		Mayfield EB		Mayfield EB		410
2868	0	0	0	0		27	0.6%		Mayfield EB		Mayfield EB		410
3008	0	26	0	0		26	0.5%		Mayfield EB		Old School EB	very close to sites	
3010	0	37	0	0		53	1.1%		Mayfield EB		Old School EB	very close to sites	
3011	0	4	0	0		4	0.1%		Mayfield EB		Mayfield EB	very close to sites	440
3338	0	0	0	0		39	0.8%		Mayfield EB		Mayfield EB		410
3351	0	0	0	0		53	1.1%		Mayfield EB		Mayfield EB		410
3352	0	0	0	0	50	50	1.0%	35	Mayfield EB		Mayfield EB		410

3360	0	4	0	0	7	11	0.2%	35	Mayfield EB	Mayfield EB	410
3362	0	0	0	0	12	12	0.2%		Mayfield EB	Mayfield EB	410
3364	0	0	0	0	85	85	1.8%		Mayfield EB	Mayfield EB	410
3367	0	0	0	0	42	42	0.9%		Mayfield EB	Mayfield EB	410
3375	0	0	0	0	41	41	0.9%		Mayfield EB	Mayfield EB	from SW on Mayfield/Old School
3417	13	0	0	0	0	13	0.3%	35	Mayfield EB	Mayfield EB	410
3432	0	0	10	0	0	10	0.2%	35	Mayfield EB	Mayfield EB	from SW on Mayfield/Old School
3434	14	0	0	29	51	94	1.9%	35	Mayfield EB	Mayfield EB	from SW on Mayfield/Old School
3456	0	0	0	0	14	14	0.3%	35	Mayfield EB	Mayfield EB	from SW on Mayfield/Old School
3460	24	0	0	0	0	24	0.5%	35	Mayfield EB	Mayfield EB	from SW on Mayfield
3466	0	0	0	0	18	18	0.4%	35	Mayfield EB	Mayfield EB	from SW on Mayfield
3485	0	0	0	0	36	36	0.7%	35	Mayfield EB	Mayfield EB	410
3486	0	0	24	0	0	24	0.5%	35	Mayfield EB	Mayfield EB	41
3515	0	0	0	0	23	23	0.5%		Mayfield EB	Mayfield EB	41
3602	0	0	0	0	14	14	0.3%	36	Mayfield EB	Mayfield EB	41
3603	0	0	0	0	18	18	0.4%	36	Mayfield EB	Mayfield EB	41
3606	0	0	0	0	6	6	0.1%	36	Mayfield EB	Mayfield EB	41
3607	0	0	0	0	27	27	0.6%	36	Mayfield EB	Mayfield EB	41
3615	0	0	0	0	18	18	0.4%		Mayfield EB	Mayfield EB	41
3617	0	0	0	0	14	14	0.3%	36	Mayfield EB	Mayfield EB	41
3629	0	0	0	0	58	58	1.2%	36	Mayfield EB	Mayfield EB	41
3638	0	0	0	0	7	7	0.1%	36	Mayfield EB	Mayfield EB	41
3644	0	0	0	0	10	10	0.2%	36	Mayfield EB	Mayfield EB	41
3645	0	0	0	0	22	22	0.5%	36	Mayfield EB	Mayfield EB	41
3664	0	0	0	48	0	48	1.0%	36	Mayfield EB	Mayfield EB	41
3671	0	0	0	0	19	19	0.4%	36	Mayfield EB	Mayfield EB	41
3681	0	0	0	0	12	12	0.2%	36	Mayfield EB	Mayfield EB	41
3686	0	0	0	0	28	28	0.6%	36	Mayfield EB	Mayfield EB	41
3688	0	0	0	0	8	8	0.2%	36	Mayfield EB	Mayfield EB	41
3714	0	0	0	0	15	15	0.3%	36	Mayfield EB	Mayfield EB	41
3877	0	0	0	0	41	41	0.9%	36	Mayfield EB	Mayfield EB	41
4084	0	0	0	0	32	32	0.7%	40	Mayfield EB	Mayfield EB	41
4110	0	0	0	0	69	69	1.4%	38	Mayfield EB	Mayfield EB	41
4119	0	0	27	0	0	27	0.6%	38	Mayfield EB	Mayfield EB	41
4123	0	0	0	0	23	23	0.5%	38	Mayfield EB	Mayfield EB	41
4159	0	0	0	0	55	55	1.1%	37	Mayfield EB	Old School EB	from SW on Mayfield/Old School
4160	0	0	0	0	15	15	0.3%	37	Mayfield EB	Old School EB	from SW on Mayfield/Old School
4162	0	0	0	26	0	26	0.5%		Mayfield EB	Old School EB	from SW on Mayfield/Old School
4164	0	47	0	0	0	47	1.0%		Mayfield EB	Old School EB	from SW on Mayfield/Old School

Outgoing AM

Fri Dec 11 2020 17:01:04 GMT-0500 (Eastern Standard Time) - Run Time: 2545ms

Cross Tabulation Query Form - Trip - 2016 v1.1

Row: 2006 GTA zone of destination - gta06_dest Column: 2006 GTA zone of origin - gta06_orig

Filters:

Start time of trip - start_time In 600-900

and
Trip purpose - trip_purp In 1

and

Primary travel mode of trip - mode_prime In D, M

2006 GTA zone of origin - gta06_orig In 3012,3013,3014,3015,3016,3191

Trip 2016

Tal	hle

i abie.				_					
	From						21185	21211	
То	3012	3015	3191	Sum	%	PD	Gateway	Gateway	Notes
421	0	30	0	30	11.2%	10	Mayfield WB	Mayfield WB	to 410
2070	0	30	0	30	11.2%	33	Dixie SB	Dixie SB	to NE on Dixie
3005	19	0	0	19	7.1%	34	Mayfield WB	Mayfield WB	to SW on Mayfield/Old School
3192	0	14	0	14	5.2%	34	Dixie NB	Dixie NB	to NW on Dixie
3376	0	26	0	26	9.7%	35	Mayfield WB	Mayfield WB	to SW on Mayfield
3448	16	0	0	16	6.0%	35	Mayfield EB	Mayfield EB	to NE on Dixie/Mayfield
3816	0	35	0	35	13.1%	36	Mayfield WB	Mayfield WB	to 410
8663	0	0	48	48	17.9%	84	Dixie NB	Dixie NB	to NW on Dixie
8904	0	50	0	50	18.7%	147	Mayfield WB	Mayfield WB	to 410

APPENDIX F

Intersection Capacity Analysis – Future Total Conditions

1: Dixie Road & Merchant Road/West Access 3

	•	→	•	←	4	†	-	ļ	4
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR
Lane Configurations		4		4	- 1	ĵ.	7	•	7
Traffic Volume (vph)	1	0	17	0	49	640	56	559	2
Future Volume (vph)	1	0	17	0	49	640	56	559	2
Lane Group Flow (vph)	0	18	0	108	49	712	224	559	2
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	Perm
Protected Phases		4		8		2		6	
Permitted Phases	4		8		2		6		6
Detector Phase	4	4	8	8	2	2	6	6	6
Switch Phase									
Minimum Initial (s)	8.0	8.0	8.0	8.0	12.0	12.0	12.0	12.0	12.0
Minimum Split (s)	44.9	44.9	44.9	44.9	44.9	44.9	44.9	44.9	44.9
Total Split (s)	45.0	45.0	45.0	45.0	75.0	75.0	75.0	75.0	75.0
Total Split (%)	37.5%	37.5%	37.5%	37.5%	62.5%	62.5%	62.5%	62.5%	62.5%
Yellow Time (s)	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6
All-Red Time (s)	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3
Lost Time Adjust (s)		0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		6.9		6.9	6.9	6.9	6.9	6.9	6.9
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	Max	Max	Max	Max	Max
v/c Ratio		0.11		0.58	0.09	0.55	0.46	0.42	0.00
Control Delay		6.6		39.7	4.4	7.7	9.0	6.0	0.0
Queue Delay		0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		6.6		39.7	4.4	7.7	9.0	6.0	0.0
Queue Length 50th (m)		0.0		7.7	1.2	27.3	7.8	18.5	0.0
Queue Length 95th (m)		0.0		1.7	3.6	51.9	3.2	34.5	0.0
Internal Link Dist (m)		280.5		194.8		216.9		214.8	
Turn Bay Length (m)					60.0		60.0		60.0
Base Capacity (vph)		502		568	550	1284	487	1335	808
Starvation Cap Reductn		0		0	0	0	0	0	0
Spillback Cap Reductn		0		0	0	0	0	0	0
Storage Cap Reductn		0		0	0	0	0	0	0
Reduced v/c Ratio		0.04		0.19	0.09	0.55	0.46	0.42	0.00
Intersection Summary									
Cycle Length: 120									
Actuated Cycle Length: 99.	.3								
Natural Cycle: 110									
Control Type: Semi Act-Un	coord								
, , , , , , , , , , , , , , , , , , ,									
Splits and Phases: 1: Di	xie Road	& Mercha	nt Road/	West Ac	cess 3				
≪.†							1		

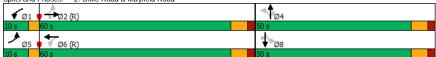
	ၨ	→	•	•	•	•	•	†	<i>></i>	\	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		J.	ĵ.		, J	+	7
Traffic Volume (vph)	1	0	17	17	0	10	49	640	18	56	559	2
Future Volume (vph)	1	0	17	17	0	10	49	640	18	56	559	2
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.7	3.5	3.5	3.7	3.5
Total Lost time (s)		6.9			6.9		6.9	6.9		6.9	6.9	6.9
Lane Util. Factor		1.00			1.00		1.00	1.00		1.00	1.00	1.00
Frt		0.87			0.95		1.00	0.98		1.00	1.00	0.85
Flt Protected		1.00			0.97		0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)		1275			1730		1623	1708		1785	1779	1065
Flt Permitted		0.98			0.80		0.43	1.00		0.35	1.00	1.00
Satd. Flow (perm)		1252			1424		733	1708		649	1779	1065
Peak-hour factor, PHF	1.00	0.25	1.00	0.25	0.25	0.25	1.00	1.00	0.25	0.25	1.00	1.00
Adj. Flow (vph)	1	0	17	68	0	40	49	640	72	224	559	2
RTOR Reduction (vph)	0	16	0	0	31	0	0	2	0	0	0	0
Lane Group Flow (vph)	0	2	0	0	77	0	49	710	0	224	559	2
Heavy Vehicles (%)	100%	0%	24%	0%	0%	0%	10%	12%	0%	0%	8%	50%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	Perm
Protected Phases		4			8			2			6	
Permitted Phases	4	40.0		8	40.0		2	74.		6	74.6	6
Actuated Green, G (s)		10.9			10.9		74.6	74.6		74.6	74.6	74.6
Effective Green, g (s)		10.9			10.9		74.6	74.6		74.6	74.6	74.6
Actuated g/C Ratio		0.11			0.11		0.75 6.9	0.75 6.9		0.75 6.9	0.75	0.75
Clearance Time (s)		3.0			3.0					3.0	6.9	6.9
Vehicle Extension (s)		137			156		3.0 550	3.0 1283		487	3.0	3.0
Lane Grp Cap (vph)		137			156		550			487	1336	800
v/s Ratio Prot		0.00			c0.05		0.07	c0.42		0.35	0.31	0.00
v/s Ratio Perm v/c Ratio		0.00			0.49		0.07	0.55		0.35	0.42	0.00
Uniform Delay, d1		39.4			41.6		3.3	5.3		4.7	4.5	3.1
Progression Factor		1.00			1.00		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2		0.0			2.4		0.3	1.7		3.1	1.00	0.0
Delay (s)		39.5			44.0		3.6	7.0		7.8	5.4	3.1
Level of Service		J7.J			44.0 D		3.0 A	7.0 A		7.0 A	Α.4	J. 1
Approach Delay (s)		39.5			44.0		А	6.8		А	6.1	А
Approach LOS		D			D			A			A	
Intersection Summary								,,				
HCM 2000 Control Delay			9.2	Ц	CM 2000	Level of	Service		A			
HCM 2000 Volume to Capa	acity ratio		0.55		CIVI 2000	LCVCI UI	Scivice					
Actuated Cycle Length (s)	acity ratio		99.3	9	um of los	t time (s)			13.8			
Intersection Capacity Utiliz	ation		66.3%			of Service			13.6 C			
Analysis Period (min)	unon		15	10	O LCVCI	51 5CI VICI			Ü			
c Critical Lane Group			13									

c Critical Lane Group

03-10-2021 Synchro 11 Report 03-10-2021 Synchro 11 Report Page 1 03-10-2021 Synchro 11 Report Page 2

Synchro 11 Report Page 3

	۶	-	•	•	←	•	†	~	>	ļ	4	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	7	ተተተ	7	7	ተተኈ	ነ		7	<u>ነ</u>		7	
Traffic Volume (vph)	442	1474	364	64	620	121	222	54	27	176	358	
Future Volume (vph)	442	1474	364	64	620	121	222	54	27	176	358	
Lane Group Flow (vph)	442	1474	364	64	668	121	222	54	27	176	358	
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	NA	Perm	Perm	NA	Perm	
Protected Phases	5	2		1	6		4			8		
Permitted Phases	2		2	6		4		4	8		8	
Detector Phase	5	2	2	1	6	4	4	4	8	8	8	
Switch Phase												
Minimum Initial (s)	5.0	8.0	8.0	5.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	
Minimum Split (s)	8.0	44.9	44.9	8.0	44.9	47.9	47.9	47.9	47.9	47.9	47.9	
Total Split (s)	10.0	60.0	60.0	10.0	60.0	50.0	50.0	50.0	50.0	50.0	50.0	
Total Split (%)	8.3%	50.0%	50.0%	8.3%	50.0%	41.7%	41.7%	41.7%	41.7%	41.7%	41.7%	
Yellow Time (s)	3.0	4.6	4.6	3.0	4.6	4.6	4.6	4.6	4.6	4.6	4.6	
All-Red Time (s)	0.0	2.3	2.3	0.0	2.3	2.3	2.3	2.3	2.3	2.3	2.3	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	3.0	6.9	6.9	3.0	6.9	6.9	6.9	6.9	6.9	6.9	6.9	
Lead/Lag	Lead	Lag	Lag	Lead	Lag							
Lead-Lag Optimize?												
Recall Mode	None	C-Max	C-Max	None	C-Max	None	None	None	None	None	None	
v/c Ratio	0.71	0.50	0.34	0.25	0.33	0.62	0.67	0.16	0.21	0.50	0.70	
Control Delay	16.0	15.6	2.5	10.1	21.8	56.7	54.2	8.0	41.5	46.8	18.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	16.0	15.6	2.5	10.1	21.8	56.7	54.2	8.0	41.5	46.8	18.0	
Queue Length 50th (m)	20.9	41.2	0.0	2.3	21.3	15.7	29.1	0.0	3.2	22.2	9.4	
Queue Length 95th (m)	#51.0	60.4	8.6	5.8	26.4	25.3	40.5	4.8	7.6	32.0	26.7	
Internal Link Dist (m)		1129.7			571.8		456.4			231.7		
Turn Bay Length (m)	140.0		75.0	105.0		75.0		45.0	35.0		135.0	
Base Capacity (vph)	626	2969	1073	261	1996	357	600	547	237	638	696	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.71	0.50	0.34	0.25	0.33	0.34	0.37	0.10	0.11	0.28	0.51	
Intersection Cummers												


Intersection Summary Cycle Length: 120

Actuated Cycle Length: 120
Offset: 44 (37%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green
Natural Cycle: 105

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 2: Dixie Road & Mayfield Road

	۶	→	•	•	—	•	1	†	~	/	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ተተተ	7	ሻ	ተተኈ		ሻ	•	7	7	•	7
Traffic Volume (vph)	442	1474	364	64	620	48	121	222	54	27	176	358
Future Volume (vph)	442	1474	364	64	620	48	121	222	54	27	176	358
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5
Total Lost time (s)	3.0	6.9	6.9	3.0	6.9		6.9	6.9	6.9	6.9	6.9	6.9
Lane Util. Factor	1.00	0.91	1.00	1.00	0.91		1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	0.99		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1566	4902	1536	1653	4497		1716	1671	1413	1405	1779	1439
Flt Permitted	0.34	1.00	1.00	0.17	1.00		0.55	1.00	1.00	0.45	1.00	1.00
Satd. Flow (perm)	562	4902	1536	290	4497		993	1671	1413	660	1779	1439
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	442	1474	364	64	620	48	121	222	54	27	176	358
RTOR Reduction (vph)	0	0	145	0	7	0	0	0	43	0	0	225
Lane Group Flow (vph)	442	1474	219	64	661	0	121	222	11	27	176	133
Heavy Vehicles (%)	14%	7%	4%	8%	14%	33%	4%	15%	13%	27%	8%	11%
Turn Type	pm+pt	NA	Perm	pm+pt	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2		1	6			4			8	
Permitted Phases	2		2	6			4		4	8		8
Actuated Green, G (s)	82.5	72.1	72.1	60.5	53.1		23.7	23.7	23.7	23.7	23.7	23.7
Effective Green, g (s)	82.5	72.1	72.1	60.5	53.1		23.7	23.7	23.7	23.7	23.7	23.7
Actuated g/C Ratio	0.69	0.60	0.60	0.50	0.44		0.20	0.20	0.20	0.20	0.20	0.20
Clearance Time (s)	3.0	6.9	6.9	3.0	6.9		6.9	6.9	6.9	6.9	6.9	6.9
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Lane Grp Cap (vph)	607	2945	922	230	1989		196	330	279	130	351	284
v/s Ratio Prot	c0.16	0.30		0.02	0.15			c0.13			0.10	
v/s Ratio Perm	c0.34		0.14	0.12			0.12		0.01	0.04		0.09
v/c Ratio	0.73	0.50	0.24	0.28	0.33		0.62	0.67	0.04	0.21	0.50	0.47
Uniform Delay, d1	8.8	13.7	11.1	15.3	21.9		44.0	44.6	38.9	40.3	42.9	42.6
Progression Factor	1.00	1.00	1.00	1.02	0.99		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	5.3	0.6	0.6	1.3	0.4		8.1	6.9	0.1	1.7	2.3	2.6
Delay (s)	14.1	14.3	11.8	17.1	22.1		52.1	51.5	39.1	42.0	45.2	45.1
Level of Service	В	В	В	В	С		D	D	D	D	D	D
Approach Delay (s)		13.8			21.6			50.0			45.0	
Approach LOS		В			С			D			D	
Intersection Summary												
HCM 2000 Control Delay			23.3	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Car			0.73									
Actuated Cycle Length (s)			120.0	S	um of los	t time (s)			16.8			
Intersection Capacity Utiliz	zation		76.5%	IC	CU Level	of Service	е		D			
Analysis Period (min)			15									

c Critical Lane Group

Synchro 11 Report 03-10-2021 Page 4

3: Bramalea Road & Mayfield Road

	۶	→	•	•	•	•	4	†	/	>	ļ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Configurations	ሻ	ተተተ	7	ሻ	ተተተ	7	ሻ		7	7	∱ ∱	
Traffic Volume (vph)	204	1117	204	68	770	21	44	121	52	31	154	
Future Volume (vph)	204	1117	204	68	770	21	44	121	52	31	154	
Lane Group Flow (vph)	204	1117	204	68	770	21	44	121	52	31	247	
Turn Type	pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	
Protected Phases	5	2			6			4		3	8	
Permitted Phases	2		2	6		6	4		4	8		
Detector Phase	5	2	2	6	6	6	4	4	4	3	8	
Switch Phase												
Minimum Initial (s)	5.0	12.0	12.0	12.0	12.0	12.0	8.0	8.0	8.0	5.0	8.0	
Minimum Split (s)	8.0	55.2	55.2	55.2	55.2	55.2	54.1	54.1	54.1	8.0	54.1	
Total Split (s)	13.0	70.0	70.0	57.0	57.0	57.0	56.0	56.0	56.0	9.0	65.0	
Total Split (%)	9.6%	51.9%	51.9%	42.2%	42.2%	42.2%	41.5%	41.5%	41.5%	6.7%	48.1%	
Yellow Time (s)	3.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	3.0	4.0	
All-Red Time (s)	0.0	3.2	3.2	3.2	3.2	3.2	3.1	3.1	3.1	0.0	3.1	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	3.0	7.2	7.2	7.2	7.2	7.2	7.1	7.1	7.1	3.0	7.1	
Lead/Lag	Lead			Lag	Lag	Lag	Lag	Lag	Lag	Lead		
Lead-Lag Optimize?												
Recall Mode	None	C-Max	C-Max	C-Max	C-Max	C-Max	None	None	None	None	None	
v/c Ratio	0.35	0.32	0.17	0.26	0.27	0.03	0.38	0.62	0.23	0.17	0.44	
Control Delay	6.5	6.7	1.2	17.2	12.4	0.0	64.2	71.0	5.8	44.6	33.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	6.5	6.7	1.2	17.2	12.4	0.0	64.2	71.0	5.8	44.6	33.0	
Queue Length 50th (m)	8.0	21.3	0.0	4.8	19.8	0.0	6.6	18.6	0.0	4.0	11.2	
Queue Length 95th (m)	14.6	29.6	4.4	12.4	29.1	0.0	13.4	29.4	2.8	8.8	17.9	
Internal Link Dist (m)		752.4			329.1			492.7			373.4	
Turn Bay Length (m)	125.0		110.0	75.0		100.0	75.0			75.0		
Base Capacity (vph)	577	3464	1204	260	2808	766	388	654	568	181	1470	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.35	0.32	0.17	0.26	0.27	0.03	0.11	0.19	0.09	0.17	0.17	

Intersection Summary
Cycle Length: 135
Actuated Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green
Natural Cycle: 130

03-10-2021

Control Type: Actuated-Coordinated

Splits and Phases: 3: Bramalea Road & Mayfield Road

5. Diamalea Noac		ileiu ix	Joau								AWITC	ik Houi
	۶	-	•	•	•	*	1	†	/	-	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ተተተ	7	*	ተተተ	7	ነ	↑	7	7	∱ ⊅	
Traffic Volume (vph)	204	1117	204	68	770	21	44	121	52	31	154	93
Future Volume (vph)	204	1117	204	68	770	21	44	121	52	31	154	93
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Total Lost time (s)	3.0	7.2	7.2	7.2	7.2	7.2	7.1	7.1	7.1	3.0	7.1	
Lane Util. Factor	1.00	0.91	1.00	1.00	0.91	1.00	1.00	1.00	1.00	1.00	0.95	
Frpb, ped/bikes	1.00	1.00	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.94	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1767	4641	1544	1593	4407	1157	1700	1807	1426	1580	3302	
Flt Permitted	0.33	1.00	1.00	0.24	1.00	1.00	0.60	1.00	1.00	0.50	1.00	
Satd. Flow (perm)	610	4641	1544	407	4407	1157	1071	1807	1426	834	3302	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	204	1117	204	68	770	21	44	121	52	31	154	93
RTOR Reduction (vph)	0	0	53	0	0	8	0	0	46	0	78	C
Lane Group Flow (vph)	204	1117	151	68	770	13	44	121	6	31	169	C
Confl. Peds. (#/hr)			2	2								
Heavy Vehicles (%)	1%	13%	2%	12%	19%	38%	5%	4%	12%	13%	2%	2%
Turn Type	pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	
Protected Phases	5	2			6			4		3	8	
Permitted Phases	2		2	6		6	4		4	8		
Actuated Green, G (s)	99.6	99.6	99.6	84.8	84.8	84.8	14.5	14.5	14.5	21.1	21.1	
Effective Green, g (s)	99.6	99.6	99.6	84.8	84.8	84.8	14.5	14.5	14.5	21.1	21.1	
Actuated g/C Ratio	0.74	0.74	0.74	0.63	0.63	0.63	0.11	0.11	0.11	0.16	0.16	
Clearance Time (s)	3.0	7.2	7.2	7.2	7.2	7.2	7.1	7.1	7.1	3.0	7.1	
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0	5.0	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	551	3424	1139	255	2768	726	115	194	153	150	516	
v/s Ratio Prot	c0.03	0.24			0.17			c0.07		0.01	c0.05	
v/s Ratio Perm	c0.24		0.10	0.17		0.01	0.04		0.00	0.03		
v/c Ratio	0.37	0.33	0.13	0.27	0.28	0.02	0.38	0.62	0.04	0.21	0.33	
Uniform Delay, d1	5.4	6.1	5.1	11.2	11.3	9.4	56.1	57.6	54.0	49.1	50.6	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.9	0.3	0.2	2.5	0.3	0.0	2.1	6.1	0.1	0.7	0.4	
Delay (s)	6.3	6.4	5.4	13.8	11.6	9.5	58.2	63.8	54.1	49.8	51.0	
Level of Service	Α	Α	Α	В	В	Α	E	E	D	D	D	
Approach Delay (s)		6.2			11.7			60.3			50.9	
Approach LOS		Α			В			Е			D	
Intersection Summary												
HCM 2000 Control Delay			16.2	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Cap	pacity ratio		0.41									
Actuated Cycle Length (s)			135.0	S	um of los	t time (s))		20.3			
Intersection Capacity Utili	zation		87.7%	IC	CU Level	of Service	e		Е			
Analysis Period (min)			15									
c Critical Lane Group												
· ·												

03-10-2021

	٠	→	+	<u> </u>	 	
Lane Group	EBL	EBT	WBT	SBL	SBT	Ø8
Lane Configurations	*	ተተኈ	↑ ₽		4	
Traffic Volume (vph)	98	1457	881	2	0	
Future Volume (vph)	98	1457	881	2	0	
Lane Group Flow (vph)	98	1457	907	0	37	
Turn Type	Perm	NA	NA	Perm	NA	
Protected Phases		2	6		4	8
Permitted Phases	2			4		
Detector Phase	2	2	6	4	4	
Switch Phase						
Minimum Initial (s)	12.0	12.0	12.0	8.0	8.0	8.0
Minimum Split (s)	47.9	47.9	44.9	47.9	47.9	47.9
Total Split (s)	72.0	72.0	72.0	48.0	48.0	48.0
Total Split (%)	60.0%	60.0%	60.0%	40.0%	40.0%	40%
Yellow Time (s)	4.6	4.6	4.6	4.6	4.6	4.6
All-Red Time (s)	2.3	2.3	2.3	2.3	2.3	2.3
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	
Total Lost Time (s)	6.9	6.9	6.9		6.9	
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	C-Max	C-Max	C-Max	None	None	None
v/c Ratio	0.19	0.31	0.28		0.25	
Control Delay	0.8	0.2	2.3		21.8	
Queue Delay	0.0	0.0	0.0		0.0	
Total Delay	0.8	0.2	2.3		21.8	
Queue Length 50th (m)	0.1	0.4	12.5		0.3	
Queue Length 95th (m)	0.2	0.6	18.1		6.4	
Internal Link Dist (m)		571.8	752.4		168.0	
Turn Bay Length (m)	100.0	2				
Base Capacity (vph)	522	4643	3219		573	
Starvation Cap Reductn	0	0	0		0	
Spillback Cap Reductn	0	0	0		0	
Storage Cap Reductn	0	0	0		0	
Reduced v/c Ratio	0.19	0.31	0.28		0.06	
Intersection Summary						
Cycle Length: 120						
Actuated Cycle Length: 12	0					
Offset: 83 (69%), Reference		se 2·FRT	I and 6:	NRTI S	tart of Gre	en
Natural Cycle: 100	ou to priu	30 Z.LD1	L dild 0.	WDIL, J	art of Ort	2011
Control Type: Actuated-Co	ordinated					
Control Type. Actualeu-Co	oraniaicu					
Culity and Dharas A. D.		-I. D.:				

Control Type: Actual	ea-Coordinated		
Splits and Phases:	4: Russell Creek Drive/South Access & Mayfield Ro	oad	
ø2 (R)			ø ₄
72 s			48 s
▼ Ø6 (R)			<↑øs
72 s			48 s

	ၨ	→	•	•	←	•	4	†	-	\	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ተ ተጉ		7	∱ ⊅			₩			4	
Traffic Volume (vph)	98	1457	0	0	881	26	0	0	0	2	0	35
Future Volume (vph)	98	1457	0	0	881	26	0	0	0	2	0	35
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Total Lost time (s)	6.9	6.9			6.9						6.9	
Lane Util. Factor	1.00	0.91			0.95						1.00	
Frt	1.00	1.00			1.00						0.87	
Flt Protected	0.95	1.00			1.00						1.00	
Satd. Flow (prot)	1785	5245			3634						1635	
Flt Permitted	0.31	1.00			1.00						0.98	
Satd. Flow (perm)	590	5245			3634						1606	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	98	1457	0	0	881	26	0	0	0	2	0	35
RTOR Reduction (vph)	0	0	0	0	1	0	0	0	0	0	33	C
Lane Group Flow (vph)	98	1457	0	0	906	0	0	0	0	0	4	C
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA					Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2			6			8			4		
Actuated Green, G (s)	100.7	100.7			100.7						5.5	
Effective Green, q (s)	100.7	100.7			100.7						5.5	
Actuated g/C Ratio	0.84	0.84			0.84						0.05	
Clearance Time (s)	6.9	6.9			6.9						6.9	
Vehicle Extension (s)	5.0	5.0			5.0						5.0	
Lane Grp Cap (vph)	495	4401			3049						73	
v/s Ratio Prot		c0.28			0.25							
v/s Ratio Perm	0.17										c0.00	
v/c Ratio	0.20	0.33			0.30						0.05	
Uniform Delay, d1	1.9	2.1			2.1						54.7	
Progression Factor	0.03	0.03			1.00						1.00	
Incremental Delay, d2	0.8	0.2			0.2						0.6	
Delay (s)	0.9	0.2			2.3						55.3	
Level of Service	Α	Α			Α						Е	
Approach Delay (s)		0.3			2.3			0.0			55.3	
Approach LOS		Α			Α			Α			E	
Intersection Summary												
HCM 2000 Control Delay			1.8	Н	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Cap			0.32									
Actuated Cycle Length (s)			120.0			st time (s)			13.8			
Intersection Capacity Utiliz	zation		62.1%	IC	CU Level	of Servic	e		В			
Analysis Period (min)			15									
0.111 1.1 0												

c Critical Lane Group

Synchro 11 Report 03-10-2021 Synchro 11 Report Page 7

	•	•	†	~	/	ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	W		f a			4	
Traffic Volume (veh/h)	6	2	626	0	13	611	
Future Volume (Veh/h)	6	2	626	0	13	611	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph)	6	2	626	0	13	611	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)			373				
pX, platoon unblocked	0.85	0.85			0.85		
vC, conflicting volume	1263	626			626		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	1223	477			477		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	96	100			99		
cM capacity (veh/h)	169	506			936		
Direction, Lane #	WB 1	NB 1	SB 1				
Volume Total	8	626	624				
Volume Left	6	0	13				
Volume Right	2	0	0				
cSH	202	1700	936				
Volume to Capacity	0.04	0.37	0.01				
Queue Length 95th (m)	0.6	0.0	0.2				
Control Delay (s)	23.5	0.0	0.4				
Lane LOS	C	0.0	A				
Approach Delay (s)	23.5	0.0	0.4				
Approach LOS	C						
Intersection Summary							i
			0.3				
Average Delay	zation			10	NIII awal	of Comileo	
Intersection Capacity Utili:	zation		52.6%	IC	U Level	of Service	
Analysis Period (min)			15				

	•	•	†	/	\	+
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	13			^
Traffic Volume (veh/h)	0	1	625	26	0	617
Future Volume (Veh/h)	0	1	625	26	0	617
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	0	1	625	26	0	617
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)			239			
pX, platoon unblocked	0.84	0.84			0.84	
vC, conflicting volume	1255	638			651	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	1207	468			483	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	100	100			100	
cM capacity (veh/h)	171	501			910	
Direction, Lane #	WB 1	NB 1	SB 1		7.0	
Volume Total	1	651	617			
Volume Left	0	0	0			
Volume Right	1	26	0			
cSH	501	1700	1700			
Volume to Capacity	0.00	0.38	0.36			
Queue Length 95th (m)	0.0	0.0	0.0			
Control Delay (s)	12.2	0.0	0.0			
Lane LOS	В					
Approach Delay (s)	12.2	0.0	0.0			
Approach LOS	В					
Intersection Summary						
Average Delay			0.0			
Intersection Capacity Utili	zation		44.5%	IC	:U Level o	of Service
Analysis Period (min)	Lation		15		C LOVOI (J. 00. 1100
raidiyələ i cirou (ilili)			13			

7. DIXIC ROAG & V							-
	€	•	Ť	~	-	ţ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	W		1 2			4	
Traffic Volume (veh/h)	9	3	684	28	16	552	
Future Volume (Veh/h)	9	3	684	28	16	552	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph)	9	3	684	28	16	552	
Pedestrians	7	3	004	20	10	332	
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)			256			241	
pX, platoon unblocked	0.79	0.74			0.74		
vC, conflicting volume	1282	698			712		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	934	416			435		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	96	99			98		
cM capacity (veh/h)	231	474			840		
Direction. Lane #	WB 1	NB 1	SB 1				
Volume Total							
	12	712	568				
Volume Left	9	0	16				
Volume Right	3	28	0				
cSH	265	1700	840				
Volume to Capacity	0.05	0.42	0.02				
Queue Length 95th (m)	0.6	0.0	0.3				
Control Delay (s)	19.2	0.0	0.5				
Lane LOS	С		Α				
Approach Delay (s)	19.2	0.0	0.5				
Approach LOS	С						
Intersection Summary							
Average Delay			0.4				
Intersection Capacity Utili	ization		51.9%	ıc	III ovel i	of Service	
Analysis Period (min)	ZallUII		15	IC	o Level (JI SELVICE	;
Analysis Period (min)			15				

03-10-2021 Synchro 11 Report Page 11

₽ø6

Lane Group EBL EBT WBL WBT NBL NBT SBL SBT SBR	4 4 0 Perm 4 4 8.0 44.9 45.0	0 0 38 NA 4	22 22 0 Perm 8	0 0 328 NA 8	11 11 11 11 Perm	690 690 786 NA	10 10 10 40	885 885 885	3 3 3	
Lane Configurations	4 0 Perm 4 4 8.0 44.9 45.0	0 0 38 NA 4	22 0 Perm 8 8	0 0 328 NA 8	11 11 11 Perm	690 690 786 NA	10 10 40	885 885 885	3 3 3	
Traffic Volume (vph)	4 0 Perm 4 4 8.0 44.9 45.0	0 0 38 NA 4	22 0 Perm 8 8	0 0 328 NA 8	11 11 Perm	690 786 NA	10 40	885 885	3	
Lane Group Flow (vph)	0 Perm 4 4 8.0 44.9 45.0	38 NA 4 4	0 Perm 8 8	328 NA 8	Perm 2	786 NA	40	885	3	
Trum Type	Perm 4 4 8.0 44.9 45.0	NA 4 4 8.0	Perm 8 8	NA 8	Perm 2	NA				
Pertected Phases	8.0 44.9 45.0	4 8.0	8	8	2		Perm	NA	Perm	
Detector Phase	8.0 44.9 45.0	4 8.0	8			2				
Detector Phase	8.0 44.9 45.0	8.0	8	8				6		
Switch Phase Minimum Initial (s)	8.0 44.9 45.0	8.0		8			6		6	
Winimum Initial (s) 8.0 8.0 8.0 8.0 12.0	44.9 45.0		0.0		2	2	6	6	6	
Minimum Split (s)	44.9 45.0		0.0							
Minimum Split (s)	45.0	44.9	0.0	8.0	12.0	12.0	12.0	12.0	12.0	
Total Split (s)			44.9	44.9	44.9	44.9	44.9	44.9	44.9	
Total Split (%) 37.5% 37.5% 37.5% 37.5% 62	27 50/	45.0	45.0	45.0	75.0	75.0	75.0	75.0	75.0	
Alfred Time (s)	51.5%	37.5%	37.5%	37.5%	62.5%	62.5%	62.5%	62.5%	62.5%	
All-Red Time (s) 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3										
Cost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0										
Total Lost Time (s) 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 Lead/Lag Lead-Lag Optimize? Recall Mode None None None None Max										
Lead/Lag										
Lead-Lag Optimize? Recall Mode None None None Max Ma		0.7		0.7	0.7	0.7	0.7	0.7	0.7	
Recall Mode None None None None Max										
//c Ratio 0.11 0.83 0.05 0.65 0.12 0.73 0.00 Control Delay 12.1 42.1 9.0 14.7 9.4 17.6 0.0 Dueue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Dueue Length 50th (m) 0.3 24.1 0.4 48.0 1.5 60.6 0.0 Dueue Length 95th (m) 0.0 0.4 2.1 96.9 1.3 122.9 0.0 Internal Link Dist (m) 280.5 194.8 216.9 214.8 Turn Bay Length (m) 60.0 60.0 60.0 Base Capacity (vph) 606 641 239 1208 329 1208 1051 Starvation Cap Reductn 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0 Reduced v/c Ratio 0.06 0.51 0.05 0.65 0.12 0.73 0.00 Internaction Summary Cycycle Length: 120 Actuated Cycle Length: 102.6 Natural Cycle: 100	None	None	None	None	Max	Max	Max	Max	Max	
Control Delay	110110		140110							
Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 12.1 42.1 9.0 14.7 9.4 17.6 0.0 Queue Length 50th (m) 0.3 24.1 0.4 48.0 1.5 60.6 0.0 Queue Length 95th (m) 0.0 0.4 2.1 96.9 1.3 122.9 0.0 Internal Link Dist (m) 280.5 194.8 216.9 214.8 Irun Bay Length (m) 60.0 60.0 60.0 Base Capacity (vph) 606 641 239 1208 329 1208 1051 Starvation Cap Reductn 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 Reduced v/c Ratio 0.06 0.51 0.05 0.65 0.12 0.73 0.00 Intersection Summary Cycle Length: 120 Actuated Cycle Length: 102.6 Natural Cycle: 100										
Total Delay										
Queue Length 50th (m) 0.3 24.1 0.4 48.0 1.5 60.6 0.0 Queue Length 95th (m) 0.0 0.4 2.1 96.9 1.3 122.9 0.0 Internal Link Dist (m) 280.5 194.8 216.9 214.8 Furn Bay Length (m) 60.0 60.0 60.0 Base Capacitly (vph) 606 641 239 1208 329 1208 1051 Starvation Cap Reductn 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 Reduced v/c Ratio 0.06 0.51 0.05 0.65 0.12 0.73 0.00 Intersection Summary Cycle Length: 120 Actuated Cycle: Length: 102.6 Natural Cycle: 100										
Queue Length 95th (m) 0.0 0.4 2.1 96.9 1.3 122.9 0.0 Internal Link Dist (m) 280.5 194.8 216.9 214.8 Furn Bay Length (m) 60.0 60.0 60.0 Base Capacity (vph) 606 641 239 1208 329 1208 1051 Starvation Cap Reductn 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 Reduced v/c Ratio 0.06 0.51 0.05 0.65 0.12 0.73 0.00 Intersection Summary Cycle Length: 120 Actuated Cycle Length: 102.6 Valuated Cycle: 100										
Internal Link Dist (m) 280.5 194.8 216.9 214.8 Turn Bay Length (m) 60.0 60.0 60.0 Base Capacity (vph) 606 641 239 1208 329 1208 1051 Starvation Cap Reductn 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0 0 Reduced v/c Ratio 0.06 0.51 0.05 0.65 0.12 0.73 0.00 Intersection Summary Cycle Length: 120 Actuated Cycle Length: 102.6 Natural Cycle: 100										
Furn Bay Length (m) 60.0 60.0 60.0 Base Capacity (vph) 606 641 239 1208 329 1208 1051 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 0 Reduced v/c Ratio 0.06 0.51 0.05 0.65 0.12 0.73 0.00 Intersection Summary Cycle Length: 120 Actuated Cycle Length: 102.6 Natural Cycle: 100					2.1		1.0		0.0	
Base Capacity (vph) 606 641 239 1208 329 1208 1051 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 0 Reduced v/c Ratio 0.06 0.51 0.05 0.65 0.12 0.73 0.00 Intersection Summary Cycle Length: 120 Actuated Cycle Length: 102.6 Natural Cycle: 100		200.0		171.0	60.0	210.7	60.0	211.0	60.0	
Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		606		6/11		1208		1208		
Spillback Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 Reduced v/c Ratio 0.06 0.51 0.05 0.65 0.12 0.73 0.00 Intersection Summary Cycle Length: 120 Actuated Cycle Length: 120.6 Valural Cycle: 100										
Storage Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										
Neduced v/c Ratio 0.06 0.51 0.05 0.65 0.12 0.73 0.00 Intersection Summary Cycle Length: 120 Actuated Cycle Length: 102.6 Natural Cycle: 100							_	_		
ntersection Summary Cycle Length: 120 Actuated Cycle Length: 102.6 Natural Cycle: 100				-		-				
Cycle Length: 120 Actuated Cycle Length: 102.6 Natural Cycle: 100		0.00		0.51	0.05	0.03	0.12	0.73	0.00	
Actuated Cycle Length: 102.6 Natural Cycle: 100										
Natural Cycle: 100	,									
	.6									
Control Type: Semi Act-Uncoord										
	oord									
Splits and Phases: 1: Dixio		37.5% 4.6 2.3 None	37.5% 37.5% 4.6 4.6 2.3 2.3 0.0 6.9 None None 0.11 12.1 0.0 12.1 0.3 0.0 280.5 606	37.5% 37.5% 37.5% 4.6 4.6 4.6 2.3 2.3 2.3 2.3 0.0 6.9 None None None None 12.1 0.0 12.1 0.0 280.5 606 0 0 0 0.06	37.5% 37.5% 37.5% 37.5% 4.6 4.6 4.6 4.6 4.6 4.6 2.3 2.3 2.3 2.3 0.0 0.0 6.9 None None None None 0.11 0.83 12.1 42.1 0.0 0.0 12.1 42.1 0.3 24.1 0.0 0.4 280.5 194.8 606 641 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	37.5% 37.5% 37.5% 62.5% 4.6 4.6 4.6 4.6 2.3 2.3 2.3 2.3 2.3 2.3 0.0 0.0 0.0 6.9 6.9 None None None None Max 0.11 0.83 0.05 12.1 42.1 9.0 0.0 0.0 0.0 12.1 42.1 9.0 0.3 24.1 0.4 0.0 0.4 2.1 280.5 194.8 60.0 606 641 239 0	37.5% 37.5% 37.5% 37.5% 62.5% 62.5% 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 2.3 2.3 2.3 2.3 2.3 2.3 0.0 0.0 0.0 0.0 0.0 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9	37.5% 37.5% 37.5% 37.5% 62.5% 62.5% 62.5% 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	37.5% 37.5% 37.5% 37.5% 62.5% 62.5% 62.5% 62.5% 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6	37.5% 37.5% 37.5% 37.5% 62.5% 62.5% 62.5% 62.5% 62.5% 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6

	۶	-	•	•	←	•	1	†	1	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		44			4		7	î,		*		
Traffic Volume (vph)	4	0	34	22	0	60	11	690	24	10	885	3
Future Volume (vph)	4	0	34	22	0	60	11	690	24	10	885	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.7	3.5	3.5	3.7	3.5
Total Lost time (s)		6.9			6.9		6.9	6.9		6.9	6.9	6.9
Lane Util. Factor		1.00			1.00		1.00	1.00		1.00	1.00	1.00
Frpb, ped/bikes		1.00			1.00		1.00	1.00		1.00	1.00	0.98
Flpb, ped/bikes		1.00			1.00		1.00	1.00		1.00	1.00	1.00
Frt		0.88			0.90		1.00	0.98		1.00	1.00	0.85
Flt Protected		0.99			0.99		0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)		1643			1671		1637	1807		1785	1812	1561
Flt Permitted		0.95			0.90		0.21	1.00		0.26	1.00	1.00
Satd. Flow (perm)		1568			1517		358	1807		494	1812	1561
Peak-hour factor, PHF	1.00	0.25	1.00	0.25	0.25	0.25	1.00	1.00	0.25	0.25	1.00	1.00
Adj. Flow (vph)	4	0	34	88	0	240	11	690	96	40	885	3
RTOR Reduction (vph)	0	28	0	0	96	0	0	3	0	0	0	1
Lane Group Flow (vph)	0	10	0	0	232	0	11	783	0	40	885	2
Confl. Peds. (#/hr)							2					2
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	9%	5%	0%	0%	6%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	Perm
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		6
Actuated Green, G (s)		20.3			20.3		68.4	68.4		68.4	68.4	68.4
Effective Green, g (s)		20.3			20.3		68.4	68.4		68.4	68.4	68.4
Actuated g/C Ratio		0.20			0.20		0.67	0.67		0.67	0.67	0.67
Clearance Time (s)		6.9			6.9		6.9	6.9		6.9	6.9	6.9
Vehicle Extension (s)		3.0			3.0		3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)		310			300		238	1205		329	1209	1041
v/s Ratio Prot								0.43			c0.49	
v/s Ratio Perm		0.01			c0.15		0.03			0.08		0.00
v/c Ratio		0.03			0.77		0.05	0.65		0.12	0.73	0.00
Uniform Delay, d1		33.2			38.9		5.9	10.0		6.2	11.1	5.7
Progression Factor		1.00			1.00		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2		0.0			11.7		0.4	2.7		0.8	3.9	0.0
Delay (s)		33.2			50.6		6.2	12.7		6.9	15.0	5.7
Level of Service		С			D		Α	В		Α	В	Α
Approach Delay (s)		33.2			50.6			12.6			14.6	
Approach LOS		С			D			В			В	
Intersection Summary												
HCM 2000 Control Delay			19.9	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.74									
Actuated Cycle Length (s)			102.5		um of los				13.8			
Intersection Capacity Utiliza	ation		67.9%	IC	U Level	of Servic	е		С			
Analysis Period (min)			15									
c Critical Lane Group												

03-10-2021 Synchro 11 Report Page 1

₩ Ø8

03-10-2021

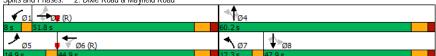
Synchro 11 Report Page 2

Synchro 11 Report Page 3

	•	→	•	•	←	4	†	/	>	ţ	4	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	7	ተተተ	7	- ነ	↑ ↑₽	7	•	7	7	•	7	
Traffic Volume (vph)	410	1008	186	68	1175	289	255	38	67	362	510	
Future Volume (vph)	410	1008	186	68	1175	289	255	38	67	362	510	
Lane Group Flow (vph)	410	1008	186	68	1201	289	255	38	67	362	510	
Turn Type	pm+pt	NA	Perm	pm+pt	NA	pm+pt	NA	Perm	Perm	NA	Perm	
Protected Phases	5	2		1	6	7	4			8		
Permitted Phases	2		2	6		4		4	8		8	
Detector Phase	5	2	2	1	6	7	4	4	8	8	8	
Switch Phase												
Minimum Initial (s)	5.0	8.0	8.0	5.0	8.0	5.0	8.0	8.0	8.0	8.0	8.0	
Minimum Split (s)	8.0	44.9	44.9	8.0	44.9	8.0	47.9	47.9	47.9	47.9	47.9	
Total Split (s)	14.9	51.8	51.8	8.0	44.9	12.3	60.2	60.2	47.9	47.9	47.9	
Total Split (%)	12.4%	43.2%	43.2%	6.7%	37.4%	10.3%	50.2%	50.2%	39.9%	39.9%	39.9%	
Yellow Time (s)	3.0	4.6	4.6	3.0	4.6	3.0	4.6	4.6	4.6	4.6	4.6	
All-Red Time (s)	0.0	2.3	2.3	0.0	2.3	0.0	2.3	2.3	2.3	2.3	2.3	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	3.0	6.9	6.9	3.0	6.9	3.0	6.9	6.9	6.9	6.9	6.9	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lead			Lag	Lag	Lag	
Lead-Lag Optimize?									Yes	Yes	Yes	
Recall Mode	None	C-Max	C-Max	None	C-Max	None	None	None	None	None	None	
v/c Ratio	1.25	0.49	0.24	0.32	0.78	0.91	0.34	0.06	0.22	0.69	0.86	
Control Delay	166.6	27.5	4.3	31.7	52.6	58.5	26.0	0.2	32.2	44.4	38.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	166.6	27.5	4.3	31.7	52.6	58.5	26.0	0.2	32.2	44.4	38.8	
Queue Length 50th (m)	~66.5	40.4	0.0	5.5	59.0	26.4	23.9	0.0	6.9	43.6	41.8	
Queue Length 95th (m)	#111.9	48.7	8.5	14.4	74.4	#45.4	33.5	0.0	13.2	59.4	65.6	
Internal Link Dist (m)		1129.7			571.8		456.4			231.7		
Turn Bay Length (m)	140.0		75.0	105.0		75.0		45.0	35.0		135.0	
Base Capacity (vph)	328	2040	776	215	1548	318	853	738	357	625	664	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.25	0.49	0.24	0.32	0.78	0.91	0.30	0.05	0.19	0.58	0.77	

Intersection Summary

Cycle Length: 120


Actuated Cycle Length: 120
Offset: 32 (27%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green
Natural Cycle: 130

Control Type: Actuated-Coordinated

- Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 2: Dixie Road & Mayfield Road

	•	→	•	•	←	•	4	†	/	>	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ተተተ	7	7	↑ ↑		7		7	. ነ	↑	- 1
Traffic Volume (vph)	410	1008	186	68	1175	26	289	255	38	67	362	510
Future Volume (vph)	410	1008	186	68	1175	26	289	255	38	67	362	510
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5
Total Lost time (s)	3.0	6.9	6.9	3.0	6.9		3.0	6.9	6.9	6.9	6.9	6.9
Lane Util. Factor	1.00	0.91	1.00	1.00	0.91		1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1700	4768	1566	1342	4883		1750	1921	1551	1653	1830	1551
Flt Permitted	0.10	1.00	1.00	0.27	1.00		0.29	1.00	1.00	0.60	1.00	1.00
Satd. Flow (perm)	178	4768	1566	384	4883		532	1921	1551	1046	1830	1551
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	410	1008	186	68	1175	26	289	255	38	67	362	510
RTOR Reduction (vph)	0	0	107	0	2	0	0	0	23	0	0	145
Lane Group Flow (vph)	410	1008	79	68	1199	0	289	255	15	67	362	365
Heavy Vehicles (%)	5%	10%	2%	33%	7%	10%	2%	0%	3%	8%	5%	3%
Turn Type	pm+pt	NA	Perm	pm+pt	NA		pm+pt	NA	Perm	Perm	NA	Perm
Protected Phases	5	2		1	6		7	4			8	
Permitted Phases	2		2	6			4		4	8		8
Actuated Green, G (s)	59.4	50.7	50.7	43.7	38.0		46.8	46.8	46.8	34.5	34.5	34.5
Effective Green, g (s)	59.4	50.7	50.7	43.7	38.0		46.8	46.8	46.8	34.5	34.5	34.5
Actuated g/C Ratio	0.49	0.42	0.42	0.36	0.32		0.39	0.39	0.39	0.29	0.29	0.29
Clearance Time (s)	3.0	6.9	6.9	3.0	6.9		3.0	6.9	6.9	6.9	6.9	6.9
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Lane Grp Cap (vph)	321	2014	661	185	1546		301	749	604	300	526	445
v/s Ratio Prot	c0.20	0.21		0.02	0.25		c0.07	0.13			0.20	
v/s Ratio Perm	c0.43		0.05	0.12			c0.30		0.01	0.06		0.24
v/c Ratio	1.28	0.50	0.12	0.37	0.78		0.96	0.34	0.02	0.22	0.69	0.82
Uniform Delay, d1	35.8	25.4	21.1	25.6	37.1		34.5	25.7	22.5	32.5	38.0	39.8
Progression Factor	1.00	1.00	1.00	1.56	1.31		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	146.7	0.9	0.4	2.4	3.6		41.6	0.6	0.0	0.8	4.8	12.6
Delay (s)	182.5	26.3	21.4	42.3	52.4		76.2	26.3	22.6	33.3	42.8	52.4
Level of Service	F	С	С	D	D		Е	С	С	С	D	D
Approach Delay (s)		65.6			51.8			50.8			47.3	
Approach LOS		Е			D			D			D	
Intersection Summary												
HCM 2000 Control Delay			55.8	Н	CM 2000	Level o	f Service		Е			
HCM 2000 Volume to Cap	acity ratio		1.19									
Actuated Cycle Length (s)			120.0	S	um of los	t time (s)		19.8			
Intersection Capacity Utiliz	zation		99.2%	IC	CU Level	of Service	ce		F			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

03-10-2021 Synchro 11 Report Page 4

3: Bramalea Road & Mayfield Road

	۶	→	•	•	•	•	4	†	/	/	ļ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Configurations	7	ተተተ	7	- ነ	ተተተ	7	7		7	7	∱ ⊅	
Traffic Volume (vph)	111	975	116	113	940	22	231	179	57	26	107	
Future Volume (vph)	111	975	116	113	940	22	231	179	57	26	107	
Lane Group Flow (vph)	111	975	116	113	940	22	231	179	57	26	202	
Turn Type	pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	
Protected Phases	5	2			6			4		3	8	
Permitted Phases	2		2	6		6	4		4	8		
Detector Phase	5	2	2	6	6	6	4	4	4	3	8	
Switch Phase												
Minimum Initial (s)	5.0	12.0	12.0	12.0	12.0	12.0	8.0	8.0	8.0	5.0	8.0	
Minimum Split (s)	8.0	55.2	55.2	55.2	55.2	55.2	54.1	54.1	54.1	8.0	54.1	
Total Split (s)	12.0	70.0	70.0	58.0	58.0	58.0	56.0	56.0	56.0	9.0	65.0	
Total Split (%)	8.9%	51.9%	51.9%	43.0%	43.0%	43.0%	41.5%	41.5%	41.5%	6.7%	48.1%	
Yellow Time (s)	3.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	3.0	4.0	
All-Red Time (s)	0.0	3.2	3.2	3.2	3.2	3.2	3.1	3.1	3.1	0.0	3.1	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	3.0	7.2	7.2	7.2	7.2	7.2	7.1	7.1	7.1	3.0	7.1	
Lead/Lag	Lead			Lag	Lag	Lag	Lag	Lag	Lag	Lead		
Lead-Lag Optimize?							Yes	Yes	Yes			
Recall Mode	None	C-Max	C-Max	C-Max	C-Max	C-Max	None	None	None	None	None	
v/c Ratio	0.28	0.35	0.12	0.43	0.38	0.03	0.82	0.39	0.13	0.08	0.21	
Control Delay	13.7	15.1	3.1	33.0	23.1	0.1	70.0	43.7	3.3	27.3	17.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	13.7	15.1	3.1	33.0	23.1	0.1	70.0	43.7	3.3	27.3	17.1	
Queue Length 50th (m)	6.8	28.4	0.0	11.6	34.2	0.0	34.7	23.8	0.0	2.8	6.3	
Queue Length 95th (m)	14.5	41.9	5.7	27.8	49.8	0.0	47.3	32.4	2.9	5.7	10.3	
Internal Link Dist (m)		752.4			329.1			492.7			373.4	
Turn Bay Length (m)	125.0		110.0	75.0		100.0	75.0			75.0		
Base Capacity (vph)	397	2791	994	262	2453	754	421	680	620	336	1449	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.28	0.35	0.12	0.43	0.38	0.03	0.55	0.26	0.09	0.08	0.14	

Intersection Summary
Cycle Length: 135
Actuated Cycle Length: 135
Offset: 16 (12%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green
Natural Cycle: 130

Control Type: Actuated-Coordinated

Splits and Phases: 3: Bramalea Road & Mayfield Road

	•	→	\rightarrow	•	←	•	•	†	/	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	7	ተተተ	7	- 1	^ ^	7	7		7	- 1	∱ ⊅	
Traffic Volume (vph)	111	975	116	113	940	22	231	179	57	26	107	95
Future Volume (vph)	111	975	116	113	940	22	231	179	57	26	107	95
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Total Lost time (s)	3.0	7.2	7.2	7.2	7.2	7.2	7.1	7.1	7.1	3.0	7.1	
Lane Util. Factor	1.00	0.91	1.00	1.00	0.91	1.00	1.00	1.00	1.00	1.00	0.95	
Frpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.93	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1767	4561	1551	1733	4812	1401	1767	1879	1568	1781	3255	
Flt Permitted	0.24	1.00	1.00	0.28	1.00	1.00	0.62	1.00	1.00	0.51	1.00	
Satd. Flow (perm)	453	4561	1551	514	4812	1401	1163	1879	1568	965	3255	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	111	975	116	113	940	22	231	179	57	26	107	95
RTOR Reduction (vph)	0	0	46	0	0	11	0	0	43	0	67	(
Lane Group Flow (vph)	111	975	70	113	940	11	231	179	14	26	135	(
Confl. Peds. (#/hr)									7	7		
Heavy Vehicles (%)	1%	15%	3%	3%	9%	14%	1%	0%	0%	0%	1%	3%
Turn Type	pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	
Protected Phases	5	2			6			4		3	8	
Permitted Phases	2		2	6		6	4		4	8		
Actuated Green, G (s)	81.4	81.4	81.4	67.6	67.6	67.6	32.7	32.7	32.7	39.3	39.3	
Effective Green, g (s)	81.4	81.4	81.4	67.6	67.6	67.6	32.7	32.7	32.7	39.3	39.3	
Actuated g/C Ratio	0.60	0.60	0.60	0.50	0.50	0.50	0.24	0.24	0.24	0.29	0.29	
Clearance Time (s)	3.0	7.2	7.2	7.2	7.2	7.2	7.1	7.1	7.1	3.0	7.1	
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0	5.0	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	378	2750	935	257	2409	701	281	455	379	302	947	
v/s Ratio Prot	0.02	c0.21			0.20			0.10		0.00	c0.04	
v/s Ratio Perm	0.15		0.05	c0.22		0.01	c0.20		0.01	0.02		
v/c Ratio	0.29	0.35	0.07	0.44	0.39	0.02	0.82	0.39	0.04	0.09	0.14	
Uniform Delay, d1	12.0	13.5	11.1	21.6	20.9	17.0	48.4	42.8	39.1	34.6	35.4	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.9	0.4	0.2	5.4	0.5	0.0	17.3	0.6	0.0	0.1	0.1	
Delay (s)	12.9	13.9	11.3	27.0	21.4	17.0	65.7	43.4	39.1	34.7	35.5	
Level of Service	В	В	В	С	С	В	E	D	D	С	D	
Approach Delay (s)		13.6			21.9			53.9			35.4	
Approach LOS		В			С			D			D	
Intersection Summary												
HCM 2000 Control Delay			24.6	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Cap	oacity ratio		0.53									
Actuated Cycle Length (s)	_		135.0	S	um of los	st time (s))		20.3			
Intersection Capacity Utiliz	zation		72.1%	IC	U Level	of Service	e		С			
Analysis Period (min)			15									
c Critical Lane Group												

	٠	→	←	\	ļ		
Lane Group	EBL	EBT	WBT	SBL	SBT	Ø8	
Lane Configurations	ሻ	ተ ቀኈ	† 1>		43-		
Traffic Volume (vph)	43	1070	1263	27	0		
uture Volume (vph)	43	1070	1263	27	0		
ane Group Flow (vph)	43	1070	1266	0	131		
urn Type	Perm	NA	NA	Perm	NA		
Protected Phases		2	6		4	8	
Permitted Phases	2			4			
Detector Phase	2	2	6	4	4		
Switch Phase							
Minimum Initial (s)	12.0	12.0	12.0	8.0	8.0	8.0	
Minimum Split (s)	44.9	44.9	44.9	47.9	47.9	47.9	
Total Split (s)	71.0	71.0	71.0	49.0	49.0	49.0	
Total Split (%)	59.2%	59.2%	59.2%	40.8%	40.8%	41%	
/ellow Time (s)	4.6	4.6	4.6	4.6	4.6	4.6	
All-Red Time (s)	2.3	2.3	2.3	2.3	2.3	2.3	
ost Time Adjust (s)	0.0	0.0	0.0		0.0		
otal Lost Time (s)	6.9	6.9	6.9		6.9		
ead/Lag							
ead-Lag Optimize?							
tecall Mode	C-Max		C-Max	None	None	None	
/c Ratio	0.15	0.27	0.45		0.59		
Control Delay	1.4	0.9	5.9		43.0		
Queue Delay	0.0	0.0	0.0		0.0		
otal Delay	1.4	0.9	5.9		43.0		
Queue Length 50th (m)	0.1	1.0	27.7		11.4		
Queue Length 95th (m)	m0.3	1.4	43.0		22.2		
ternal Link Dist (m)		571.8	752.4		168.0		
urn Bay Length (m)	100.0						
ase Capacity (vph)	284	4030	2804		575		
tarvation Cap Reductn	0	0	0		0		
pillback Cap Reductn	0	0	0		0		
torage Cap Reductn	0	0	0		0		
teduced v/c Ratio	0.15	0.27	0.45		0.23		
tersection Summary							
cycle Length: 120							
Actuated Cycle Length: 120	0						
Offset: 67 (56%), Reference		se 2:EBT	L and 6:1	WBTL, S	tart of Gr	een	
latural Cycle: 95							
Control Type: Actuated-Cod	ordinated						
n Volume for 95th percer	ntile queu	e is mete	ered by u	pstream :	signal.		
•							
Splits and Phases: 4: Ru	ıssell Cre	ek Drive/	South Ac	cess & N	layfield R	Road	
Ø2 (R)							Ø4
שי (R)							דש ד

↑↑ Ø8

	۶	→	\rightarrow	•	←	•	•	†	/	-	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ተተ _ጉ		7	↑ ↑			4			4	
Traffic Volume (vph)	43	1070	0	0	1263	3	0	0	0	27	0	104
Future Volume (vph)	43	1070	0	0	1263	3	0	0	0	27	0	104
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Total Lost time (s)	6.9	6.9			6.9						6.9	
Lane Util. Factor	1.00	0.91			0.95						1.00	
Frt	1.00	1.00			1.00						0.89	
Flt Protected	0.95	1.00			1.00						0.99	
Satd. Flow (prot)	1785	5245			3649						1660	
Flt Permitted	0.20	1.00			1.00						0.93	
Satd. Flow (perm)	370	5245			3649						1557	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	43	1070	0	0	1263	3	0	0	0	27	0	104
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	40	0
Lane Group Flow (vph)	43	1070	0	0	1266	0	0	0	0	0	91	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA					Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2			6			8			4		
Actuated Green, G (s)	92.2	92.2			92.2						14.0	
Effective Green, g (s)	92.2	92.2			92.2						14.0	
Actuated g/C Ratio	0.77	0.77			0.77						0.12	
Clearance Time (s)	6.9	6.9			6.9						6.9	
Vehicle Extension (s)	5.0	5.0			5.0						5.0	
Lane Grp Cap (vph)	284	4029			2803						181	
v/s Ratio Prot		0.20			c0.35							
v/s Ratio Perm	0.12										c0.06	
v/c Ratio	0.15	0.27			0.45						0.50	
Uniform Delay, d1	3.6	4.0			4.9						49.7	
Progression Factor	0.07	0.18			1.00						1.00	
Incremental Delay, d2	1.0	0.1			0.5						4.6	
Delay (s)	1.3	0.9			5.5						54.3	
Level of Service	Α	Α			Α						D	
Approach Delay (s)		0.9			5.5			0.0			54.3	
Approach LOS		Α			Α			Α			D	
Intersection Summary												
HCM 2000 Control Delay			6.0	Н	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Cap	acity ratio		0.46									
Actuated Cycle Length (s)			120.0	S	um of los	t time (s)			13.8			
Intersection Capacity Utiliz	zation		55.1%	IC	CU Level	of Service	е		В			
Analysis Period (min)			15									
0 111 11 0												

c Critical Lane Group

▼ø6 (R)

	•	•	†	/	/	↓	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	W		1,			4	
Traffic Volume (veh/h)	24	10	742	0	3	874	
Future Volume (Veh/h)	24	10	742	0	3	874	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph)	24	10	742	0	3	874	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)			373				
pX, platoon unblocked	0.84	0.84			0.84		
vC, conflicting volume	1622	742			742		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	1645	600			600		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	74	98			100		
cM capacity (veh/h)	93	425			831		
Direction, Lane #	WB 1	NB 1	SB 1				
Volume Total	34	742	877				_
Volume Left	24	0	3				
Volume Right	10	0	0				
cSH	121	1700	831				
Volume to Capacity	0.28	0.44	0.00				
Queue Length 95th (m)	4.8	0.0	0.0				
Control Delay (s)	46.2	0.0	0.1				
Lane LOS	F	0.0	A				
Approach Delay (s)	46.2	0.0	0.1				
Approach LOS	E	0.0	0.1				
Intersection Summary							
Average Delay			1.0				
Intersection Capacity Utiliz	zation		58.4%	IC	HLevel	of Service	
Analysis Period (min)	241011		15	10	O LCVCI	or octales	
Anarysis Periou (IIIII)			13				

	•	•	†	1	>	Į.
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	î,			^
Traffic Volume (veh/h)	0	4	738	16	0	898
Future Volume (Veh/h)	0	4	738	16	0	898
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	0	4	738	16	0	898
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)			239			
pX, platoon unblocked	0.80	0.80			0.80	
vC, conflicting volume	1644	746			754	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	1680	556			566	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	100	99			100	
cM capacity (veh/h)	84	427			811	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	4	754	898			
Volume Left	0 4	0	0			
Volume Right		16	0			
cSH Malamana ta Camanalta	427	1700	1700			
Volume to Capacity	0.01	0.44	0.53			
Queue Length 95th (m)	0.1	0.0	0.0			
Control Delay (s)	13.5	0.0	0.0			
Lane LOS	В	0.0	0.0			
Approach Delay (s)	13.5	0.0	0.0			
Approach LOS	В					
Intersection Summary						
Average Delay			0.0			
Intersection Capacity Utili	ization		50.6%	IC	CU Level of	Service
Analysis Period (min)			15			
,						

7. DIXIE ROAU & W	rest Act						FINIFEARTION
	•	•	†	/	-	ţ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	W		ĵ.			4	
Traffic Volume (veh/h)	30	17	682	9	3	909	
Future Volume (Veh/h)	30	17	682	9	3	909	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph) Pedestrians	30	17	682	9	3	909	
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)			256			241	
pX, platoon unblocked	0.79	0.73			0.73		
vC, conflicting volume	1602	686			691		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	872	393			399		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	88	96			100		
cM capacity (veh/h)	254	485			860		
Direction, Lane #	WB 1	NB 1	SB 1				
Volume Total	47	691	912				
Volume Left	30	0	3				
Volume Right	17	9	0				
cSH	307	1700	860				
Volume to Capacity	0.15	0.41	0.00				
Queue Length 95th (m)	2.4	0.0	0.0				
Control Delay (s)	18.8	0.0	0.1				
Lane LOS	С		Α				
Approach Delay (s)	18.8	0.0	0.1				
Approach LOS	С						
Intersection Summary							
Average Delay			0.6				
Intersection Capacity Utiliz	zation		60.2%	IC	U Level	of Service	В
Analysis Period (min)			15				

03-10-2021 Synchro 11 Report Page 11

Average Delay Intersection Capacity Utilization Analysis Period (min) Future Total Conditions (Unsignalized West Access #3)

AM Peak Hour

В

1: Dixie Road & Merc	hant Roa	d/W ['] est	Áccess	3				`			AM Pea	k Hour
	٠	→	•	•	←	•	4	†	/	>	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		7	ĵ,		¥	*	7
Traffic Volume (veh/h)	1	0	17	17	0	10	49	641	18	56	558	2
Future Volume (Veh/h)	1	0	17	17	0	10	49	641	18	56	558	2
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	1.00	0.25	1.00	0.25	0.25	0.25	1.00	1.00	0.25	0.25	1.00	1.00
Hourly flow rate (vph)	1	0	17	68	0	40	49	641	72	224	558	2
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	1785	1817	558	1798	1783	677	560			713		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1785	1817	558	1798	1783	677	560			713		
tC, single (s)	8.1	6.5	6.4	7.1	6.5	6.2	4.2			4.1		
tC, 2 stage (s)												
tF (s)	4.4	4.0	3.5	3.5	4.0	3.3	2.3			2.2		
p0 queue free %	96	100	97	0	100	91	95			75		
cM capacity (veh/h)	26	56	489	47	59	456	972			896		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	SB 1	SB 2	SB 3					
Volume Total	18	108	49	713	224	558	2					
Volume Left	1	68	49	0	224	0	0					
Volume Right	17	40	0	72	0	0	2					
cSH	245	71	972	1700	896	1700	1700					
Volume to Capacity	0.07	1.53	0.05	0.42	0.25	0.33	0.00					
Queue Length 95th (m)	1.1	41.0	0.7	0.0	4.4	0.0	0.0					
Control Delay (s)	20.9	397.8	8.9	0.0	10.4	0.0	0.0					
Lane LOS	С	F	Α		В							
Approach Delay (s)	20.9	397.8	0.6		3.0							
Approach LOS	С	F										
Intersection Summary												

ICU Level of Service

27.6 56.4% 15

03-10-2021 Synchro 11 Report 03-10-2021 Synchro 11 Report Page 1 03-10-2021 Synchro 11 Report Page 1

HCM Unsignalized Intersection Capacity Analysis
1: Dixie Road & Merchant Road/West Access 3

Future Total Conditions (Unsignalized West Access #3)
PM Peak Hour

	•	-	\rightarrow	•	←	•	1	†	-	>	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		4			4		J.	ĵ»		, J		7
Traffic Volume (veh/h)	4	0	34	22	0	60	11	690	24	10	885	3
Future Volume (Veh/h)	4	0	34	22	0	60	11	690	24	10	885	3
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	1.00	0.25	1.00	0.25	0.25	0.25	1.00	1.00	0.25	0.25	1.00	1.00
Hourly flow rate (vph)	4	0	34	88	0	240	11	690	96	40	885	3
Pedestrians		2										
Lane Width (m)		3.5										
Walking Speed (m/s)		1.2										
Percent Blockage		0										
Right turn flare (veh)												
Median type								None			None	
Median storage veh)								140110			Tione	
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	1919	1775	887	1759	1730	738	890			786		
vC1, stage 1 conf vol	1717	1773	007	1737	1730	730	070			700		
vC2, stage 2 conf vol												
vCu, unblocked vol	1919	1775	887	1759	1730	738	890			786		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.2			4.1		
tC, 2 stage (s)	7.1	0.5	0.2	7.1	0.5	0.2	4.2			4.1		
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.3			2.2		
p0 queue free %	81	100	90	0.0	100	43	98			95		
cM capacity (veh/h)	21	78	345	57	84	43	732			842		
										842		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	SB 1	SB 2	SB 3					
Volume Total	38	328	11	786	40	885	3					
Volume Left	4	88	11	0	40	0	0					
Volume Right	34	240	0	96	0	0	3					
cSH	132	156	732	1700	842	1700	1700					
Volume to Capacity	0.29	2.10	0.02	0.46	0.05	0.52	0.00					
Queue Length 95th (m)	5.0	117.9	0.2	0.0	0.7	0.0	0.0					
Control Delay (s)	43.0	565.4	10.0	0.0	9.5	0.0	0.0					
Lane LOS	E	F	Α		Α							
Approach Delay (s)	43.0	565.4	0.1		0.4							
Approach LOS	E	F										
Intersection Summary												
Average Delay			89.7									
Intersection Capacity Utiliz	ation		63.0%	IC	CU Level	of Servic	е		В			
Analysis Period (min)			15									

APPENDIX G

Intersection Capacity Analysis Results – Future Total Conditions (Optimized)

Synchro 11 Report Page 1

	۶	→	•	•	←	4	†	~	/	ļ	4	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	7	ተተተ	7	7	ተ ተ ጉ	7	†	7	7	*	7	
Traffic Volume (vph)	410	1008	186	68	1175	289	255	38	67	362	510	
Future Volume (vph)	410	1008	186	68	1175	289	255	38	67	362	510	
Lane Group Flow (vph)	410	1008	186	68	1201	289	255	38	67	362	510	
Turn Type	pm+pt	NA	Perm	pm+pt	NA	pm+pt	NA	Perm	Perm	NA	Perm	
Protected Phases	5	2		1	6	7	4			8		
Permitted Phases	2		2	6		4		4	8		8	
Detector Phase	5	2	2	1	6	7	4	4	8	8	8	
Switch Phase												
Minimum Initial (s)	5.0	8.0	8.0	5.0	8.0	5.0	8.0	8.0	8.0	8.0	8.0	
Minimum Split (s)	8.0	44.9	44.9	8.0	44.9	8.0	47.9	47.9	47.9	47.9	47.9	
Total Split (s)	26.5	63.4	63.4	8.0	44.9	15.7	63.6	63.6	47.9	47.9	47.9	
Total Split (%)	19.6%	47.0%	47.0%	5.9%	33.3%	11.6%	47.1%	47.1%	35.5%	35.5%	35.5%	
Yellow Time (s)	3.0	4.6	4.6	3.0	4.6	3.0	4.6	4.6	4.6	4.6	4.6	
All-Red Time (s)	0.0	2.3	2.3	0.0	2.3	0.0	2.3	2.3	2.3	2.3	2.3	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	3.0	6.9	6.9	3.0	6.9	3.0	6.9	6.9	6.9	6.9	6.9	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lead			Lag	Lag	Lag	
Lead-Lag Optimize?									Yes	Yes	Yes	
Recall Mode	None	C-Max	C-Max	None	C-Max	None	None	None	None	None	None	
v/c Ratio	0.97	0.46	0.23	0.35	0.87	0.94	0.35	0.06	0.24	0.75	0.78	
Control Delay	75.4	27.2	3.9	25.5	54.2	69.8	30.6	0.2	39.8	55.7	22.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	75.4	27.2	3.9	25.5	54.2	69.8	30.6	0.2	39.8	55.7	22.8	
Queue Length 50th (m)	~55.8	42.4	0.0	5.0	66.2	31.5	28.2	0.0	8.3	52.1	25.3	
Queue Length 95th (m)	#104.7	50.3	8.3	10.3	77.2	#55.8	39.0	0.1	15.3	70.0	49.7	
Internal Link Dist (m)		1129.7			571.8		456.4			231.7		
Turn Bay Length (m)	140.0		75.0	105.0		75.0		45.0	35.0		135.0	
Base Capacity (vph)	423	2184	818	192	1376	306	806	697	317	555	708	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.97	0.46	0.23	0.35	0.87	0.94	0.32	0.05	0.21	0.65	0.72	

Intersection Summary

Cycle Length: 135

Actuated Cycle Length: 135
Offset: 32 (24%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 130

Control Type: Actuated-Coordinated

- Volume exceeds capacity, queue is theoretically infinite.
- Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 2: Dixie Road & Mayfield Road

	۶	→	•	•	-	•	1	†	/	/	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	ሻ	ተተተ	7	7	ተተ _ጮ		ሻ		7	ሻ		7
Traffic Volume (vph)	410	1008	186	68	1175	26	289	255	38	67	362	510
Future Volume (vph)	410	1008	186	68	1175	26	289	255	38	67	362	510
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5
Total Lost time (s)	3.0	6.9	6.9	3.0	6.9		3.0	6.9	6.9	6.9	6.9	6.9
Lane Util. Factor	1.00	0.91	1.00	1.00	0.91		1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1700	4768	1566	1342	4883		1750	1921	1551	1653	1830	1551
Flt Permitted	0.10	1.00	1.00	0.27	1.00		0.25	1.00	1.00	0.60	1.00	1.00
Satd. Flow (perm)	175	4768	1566	384	4883		453	1921	1551	1046	1830	1551
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	410	1008	186	68	1175	26	289	255	38	67	362	510
RTOR Reduction (vph)	0	0	102	0	1	0	0	0	24	0	0	251
Lane Group Flow (vph)	410	1008	84	68	1200	0	289	255	14	67	362	259
Heavy Vehicles (%)	5%	10%	2%	33%	7%	10%	2%	0%	3%	8%	5%	3%
Turn Type	pm+pt	NA	Perm	pm+pt	NA		pm+pt	NA	Perm	Perm	NA	Pern
Protected Phases	5	2	2	1	6		7	4		0	8	
Permitted Phases	2	(1.0	2	6	38.0		4	F1 0	51.2	8 35.5	25.5	35.5
Actuated Green, G (s) Effective Green, g (s)	70.0 70.0	61.2 61.2	61.2 61.2	43.8 43.8	38.0		51.2 51.2	51.2 51.2	51.2	35.5	35.5 35.5	35.5
Actuated g/C Ratio	0.52	0.45	0.45	0.32	0.28		0.38	0.38	0.38	0.26	0.26	0.20
Clearance Time (s)	3.0	6.9	6.9	3.0	6.9		3.0	6.9	6.9	6.9	6.9	6.9
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Lane Grp Cap (vph)	418	2161	709	165	1374		293	728	588	275	481	40
v/s Ratio Prot	c0.21	0.21	709	0.02	0.25		c0.09	0.13	300	213	0.20	40
v/s Ratio Perm	c0.21	0.21	0.05	0.02	0.23		c0.09	0.13	0.01	0.06	0.20	0.17
v/c Ratio	0.98	0.47	0.03	0.12	0.87		0.99	0.35	0.01	0.00	0.75	0.64
Uniform Delay, d1	41.6	25.6	21.3	32.4	46.2		38.1	30.0	26.3	39.2	45.7	44.0
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	39.1	0.7	0.3	3.5	7.9		48.7	0.6	0.0	1.0	7.8	4.
Delay (s)	80.6	26.3	21.7	35.9	54.1		86.8	30.6	26.3	40.1	53.5	48.
Level of Service	F	C	C	D	D		F	C	C	D	D	[
Approach Delay (s)		39.7	_		53.1			58.2	_		49.8	
Approach LOS		D			D			Е			D	
Intersection Summary												
HCM 2000 Control Delay			48.2	Н	CM 2000	Level o	f Service		D			
HCM 2000 Volume to Car	pacity ratio		1.03									
Actuated Cycle Length (s)			135.0	S	um of los	st time (s)		19.8			
Intersection Capacity Utili:			99.2%		CU Level				F			
Analysis Period (min)			15									
a Critical Lana Craun												

HCM Signalized Intersection Capacity Analysis

2: Dixie Road & Mayfield Road

c Critical Lane Group

03-10-2021 Synchro 11 Report Page 2

APPENDIX H

Signal Warrant Analysis Results

Table 21 - Justification 7 - Projected Volumes

		Minimum Poquiro	ment 1 Lane Highways	Minimum Poquiro	ment 2 or more lanes			
Justification	Description	wiii iii iii ii kequire	willing in requirement i tane riigiways		ment 2 of more lanes	Sectional		Entire %
		Free Flow	Restricted Flow	Free Flow	Restricted Flow	Numerical	%	LITTIE 70
1. Minimum	A. Vehicle volume, all approaches (average hour)	480	720	600	900			
Vehicular Volume	B. Vehicle volume, along minor streets (average hour)*	120	170	120	170			
2. Delay to Cross	A. Vehicle volume, major street (average hour)	480	720	600	900			
Traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	120	170			

Table 21 - Justification 7 - Projected Volumes (Expanded as per Table 22)

Table 21 - Justinicat	ion 7 - Projected volumes (Expanded as per Table	7 22)							
Justification	Justification Description		Minimum Requirement 1 Lane Highways		ment 2 or more lanes	FT 2026 Volumes		Compliance	
		Free Flow	Restricted Flow	Free Flow	Restricted Flow	amPHV	pmPHV	AHV ²	Entire %
1. Minimum	A. Vehicle volume, all approaches (average hour)	576	864	720	1080	1369	1743	778	100%
Vehicular Volume	B. Vehicle volume, along minor streets (average hour)	144	204	144	204	45	120	41	29%
2. Delay to Cross	A. Vehicle volume, along major streets (average hour)	576	864	720	1080	1324	1623	737	100%
Traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	60	90	144	204	18	26	11	18%

²AHV = (amPHV+pmPHV)/4

	luctifi	cation 7 (Projected Volumes)	Compliance	Signal Justified?			
	Justiii	cation / (Frojected volumes)	Compliance	YES	NO		
1. Minimum	Α	Total Volume (Average Hour)	100%		v		
Vehicular	В	Crossing Volume (Average Hour)	29%		^		
2. Delay to	Α	Main Road (Average Hour)	100%		٧		
Cross	В	Crossing Road (Average Hour)	18%		^		

Table 21 - Justification 7 - Projected Volumes

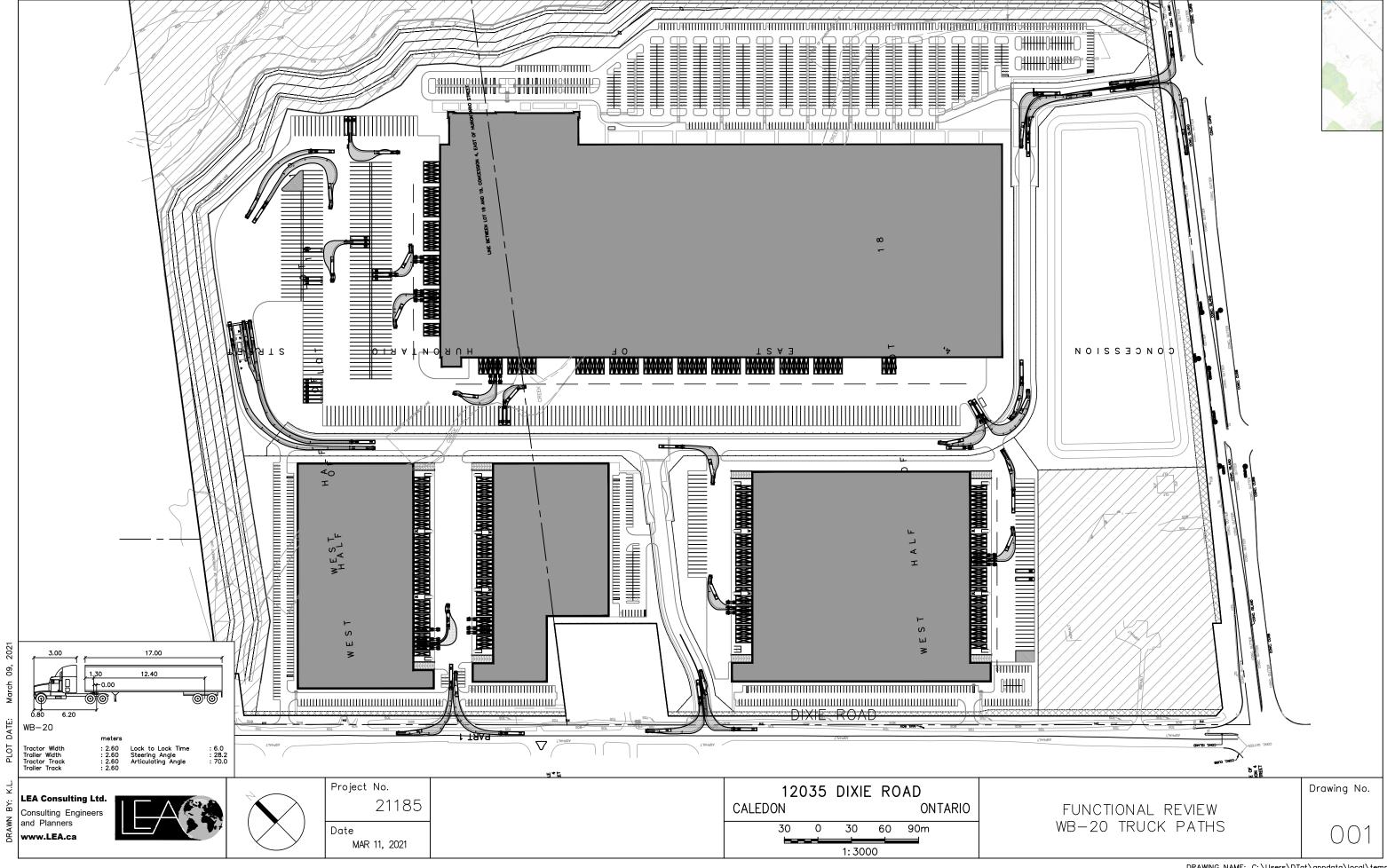
		Minimum Doguiro	mont 1 Lano Highways	Minimum Poquiro	ment 2 or more lanes		Compliance	
Justification	Description	Minimum Requirement 1 Lane Highways		iviii iii iiiii kequii ei	ment 2 or more lanes	Sectional		Entire %
		Free Flow	Restricted Flow	Free Flow	Restricted Flow	Numerical	%	LITTIE 70
1. Minimum	A. Vehicle volume, all approaches (average hour)	480	720	600	900			
Vehicular Volume	B. Vehicle volume, along minor streets (average hour)*	120	170	120	170			
2. Delay to Cross	A. Vehicle volume, major street (average hour)	480	720	600	900			
Traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	120	170			

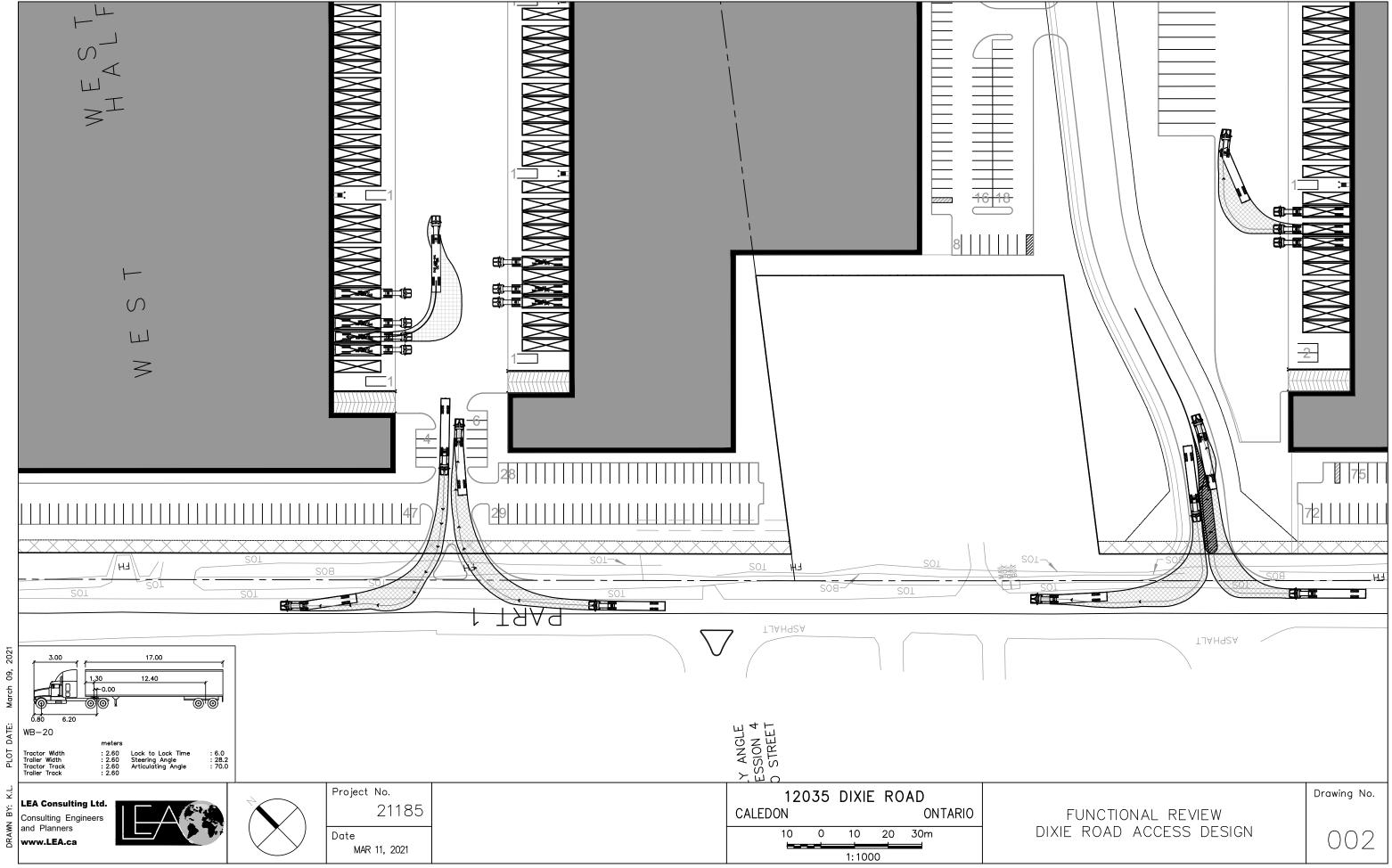
Table 21 - Justificat	ion 7 - Projected Volumes (Expanded as per Table	22)							
Justification	Justification Description		Minimum Requirement 1 Lane Highways		ment 2 or more lanes	FT 2026 V	olumes	Compliance	
	· ·	Free Flow	Restricted Flow	Free Flow	Restricted Flow	amPHV	pmPHV	AHV ²	Entire %
1. Minimum	A. Vehicle volume, all approaches (average hour)	576	864	720	1080	2499	2510	1252	100%
Vehicular Volume	B. Vehicle volume, along minor streets (average hour)	144	204	144	204	37	132	42	29%
2. Delay to Cross	A. Vehicle volume, along major streets (average hour)	576	864	720	1080	2462	2379	1210	100%
Traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	60	90	144	204	2	27	7	12%

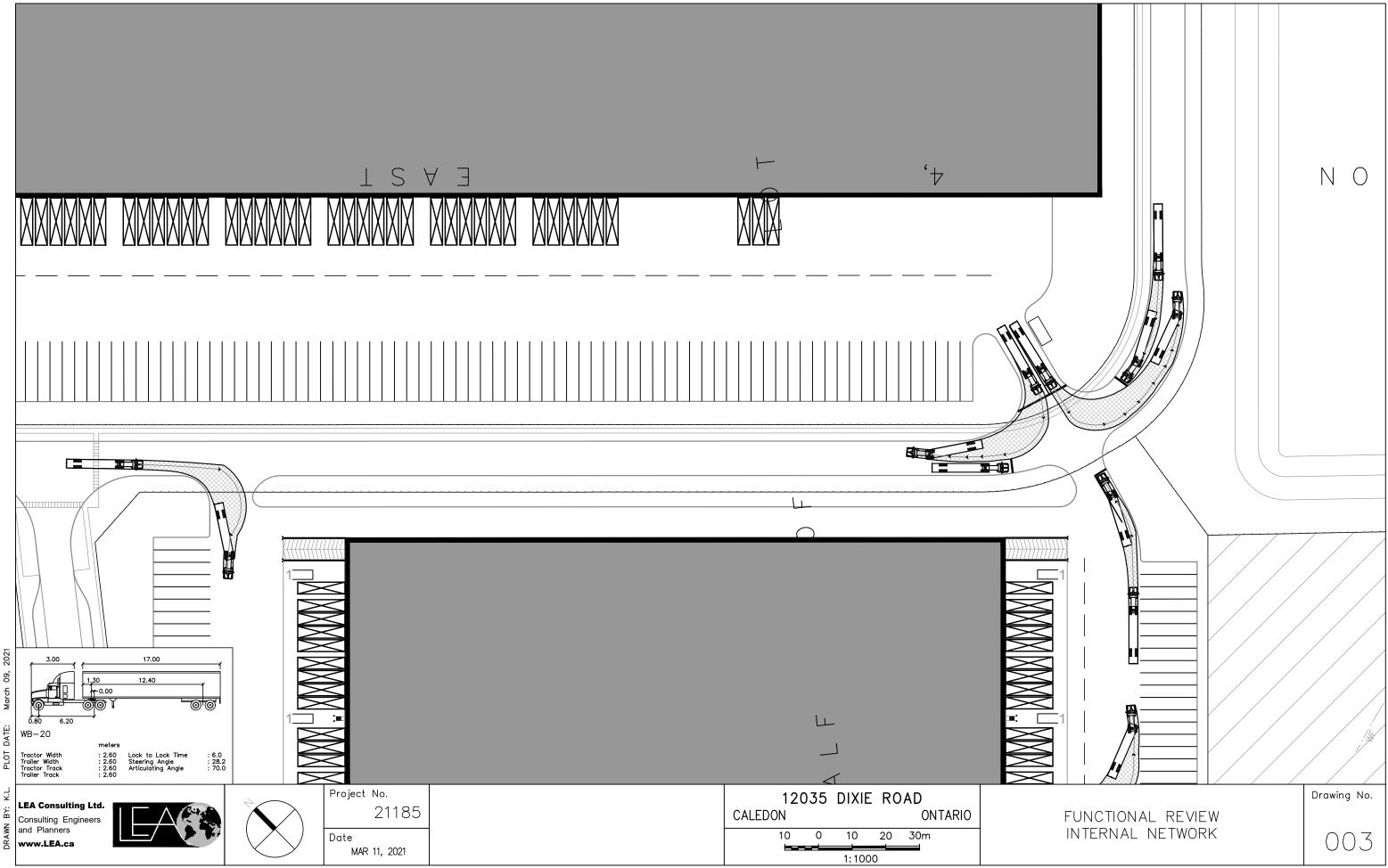
²AHV = (amPHV+pmPHV)/4

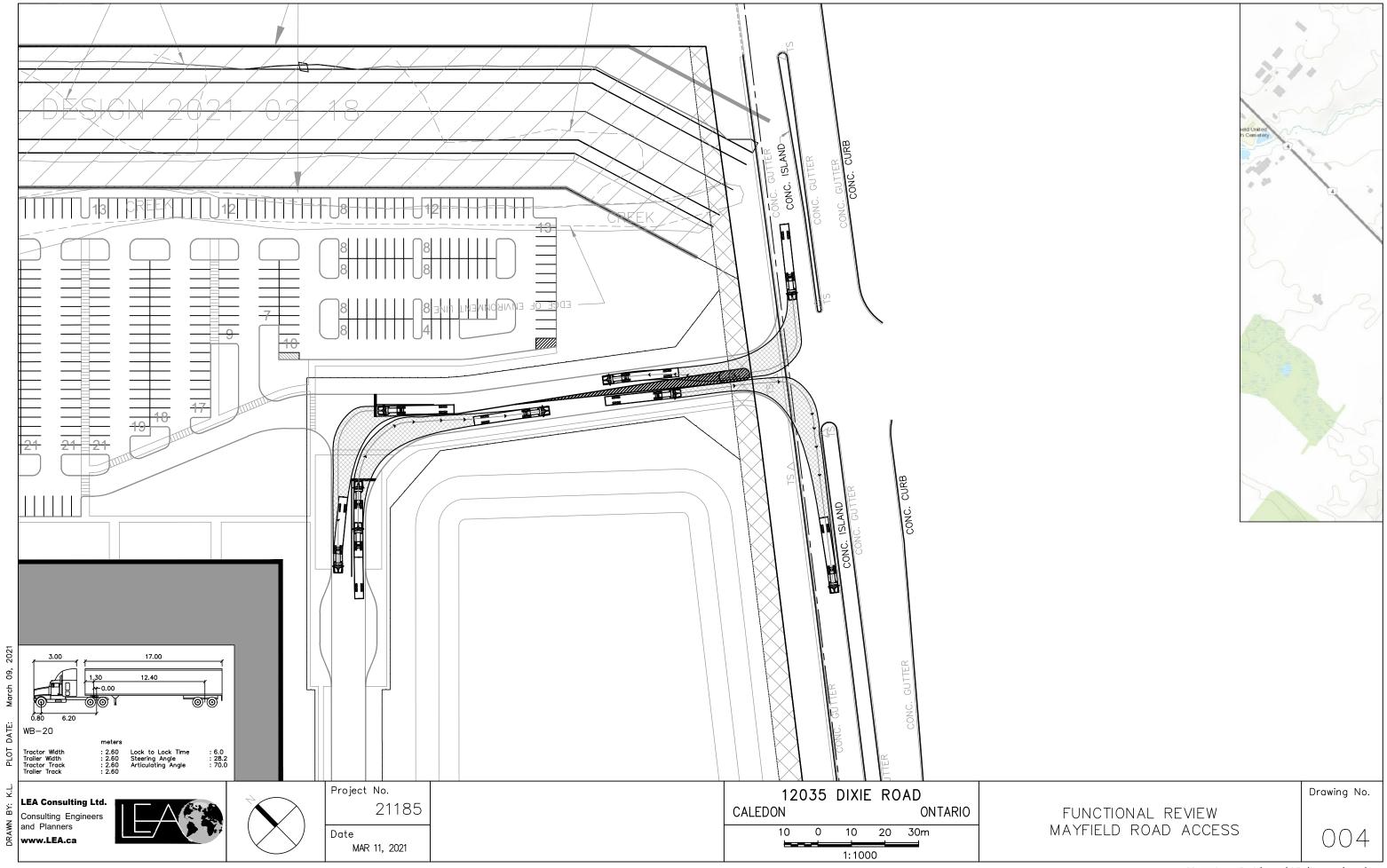
	Justification 7 (Projected Volumes)	Compliance	Signal Just	tified?
	dustification / (Frojected Volumes)	Compliance	YES	NO
 Minimum 	A Total Volume (Average Hour)	100%		٧
Vehicular	B Crossing Volume (Average Ho	our) 29%		^
2. Delay to	A Main Road (Average Hour)	100%		v
Cross	B Crossing Road (Average Hour) 12%		^

[&]quot;Note: For "T" intersections, these values should be increased by 50%.


** Note: For analysis using AHV, a 20% increase over the required volumes for an existing intersection.


^{*}Note: For *T* intersections, these values should be increased by 50%.


** Note: For analysis using AHV, a 20% increase over the required volumes for an existing intersection.


APPENDIX I

Functional Review Drawings

