

19-577-100

April 24, 2020

Rob Russell, MCIP, RPP Rob Russell Planning Consultants Inc. 32 Albert Street Georgetown, ON, L7G 2B3

Via email: rob.russell@russellplanning.com

Re: Water Balance Investigation Graham Property- Corner of Highway nine (9) and Mount Pleasant Road, Caledon, Ontario

1.0 INTRODUCTION

DS Consultants Ltd. (DS) was retained by Rob Russell Planning Consultants Inc. to complete a water balance study for the Property located at the southeast corner of Highway nine (9) and Mount Pleasant Road in Palgrave, Ontario (Site). The Site is currently used as agricultural land and includes one residential dwelling. The Site is proposed to be developed as a residential subdivision with twenty-two (22) estate-style lots occupying an area of about 30,174 m² (30.2 ha). A variety of Low Impact Development (LID) measures are also proposed at the Site to responsibly manage stormwater. To inform the design of LIDs, a Thornthwaite Monthly Water Balance Model was completed and used to evaluate pre-development and post-development hydrological conditions at the Site. The results can be used to design appropriate LID measures to compensate for any anticipated changes in site hydrology.

2.0 WATER BALANCE ASSESSMENT

2.1 Existing Conditions (Pre-Development)

The subject Site has a total area of 302,000 m² and includes one (1) existing residential dwelling with approximate impervious areas totalling 700 m² (building) and 1300 m²(asphalt/paved surface). The remainder of the Site is pervious area consisting of about 236,000 m² agricultural land, 30,500 m² forests, 10,500 m² landscape and 23,000 m² pasture and shrubs. Pre-development land use is summarised in **Table 2.1**. **Figure 1** shows the pre-development conceptual model considered for establishing current hydrologic conditions.

2.2 Proposed Development (Post-Development)

The proposed area for subdivision is 302,000 m² with Low Impact Development (LID) measures. For the water balance calculations in this report, it is estimated that the proposed subdivision will include residential dwellings with a combined roof area of about 14000 m² and a paved surface area of about 18,000 m² and the remaining area of 270,000 m² will be developed as a pervious area with LID measures. Out of the total pervious area, 149,000 m² will be an open space(forests). Post-

development land use is summarised in **Table 2.1**. **Figure 2** shows the post-development conceptual model considered for establishing post-hydrologic conditions.

Total Site Area(m ²)- 302,000 (30.2 ha)	Pre-Development	Post-Development									
Imp	ervious Area										
Buildings (m ²)	700	14,000									
Driveways/Roads (m ²)	1300	18,000									
Pe	Pervious Area										
Open Space-Agriculture Land (m ²)	236,000	0									
Open Space- Pasture/Shrubs (m ²)	23,000	0									
Open Space- Forests(m ²)	30,500	149,000									
Urban Lawn/Landscape (m ²)	10,500	121,000									
Total	302,000	302,000									

Table 2.1: Pre-Development and Post- Development Land Use

2.3 Water Balance Components (Thornthwaite Monthly Water Balance Model)

The Thornthwaite water balance (Thornthwaite, 1948; Mather, 1978; 1979) is an accounting type method used to analyze the allocation of water among various components of the hydrologic cycle. Inputs to the model are monthly temperature, Site latitude, precipitation, and stormwater run-on. Outputs include monthly potential and actual evapotranspiration, evaporation, water surplus, total infiltration, and total runoff. For ease of calculation, a spreadsheet model was used for the computation.

When precipitation (P) occurs, it can either runoff (R) through the surface water system, infiltrate (I) to the water table, or evaporate/evapotranspiration (ET) from the earth's surface and vegetation. The sum of R and I is termed as the water surplus (S). When long-term averages of P, R, I and ET are used, there is no net change in groundwater storage (ST). Annually, however, there is a potential for minor changes in ST. The annual water budget can be stated as P = ET + R + I + ST and the components are discussed below.

Precipitation (P)

Based on the 30-year average for Albion Field Centre Climate Station in Ontario, the average precipitation for the area is about 821.4 mm/year for the period between 1981 and 2010. Also, the average monthly temperature from this station has been used. The monthly distribution of precipitation is presented in **Table A1, Appendix A.**

Storage (ST)

Groundwater storage (ST) of native soils for the existing Site was estimated using values of Water Holding Capacity (mm) of respective land use and soil types identified in Table 3.1 of the Storm

2

Water Management (SWM) Planning & Design Manual (MOE, March 2003). The land uses, soil types and respective water holding capacities shown in **Table 2.2** were chosen to represent existing conditions and applied to March for monthly calculations.

Land Uses	Soil Types	Water Holding Capacity (mm/year)						
		Pre-Development	Post-Development					
Agriculture land- Moderately Rooted Crops	Fine Sandy Loam	150	-					
Pasture and Shrubs	Fine Sandy Loam	150	-					
Mature Forests	Fine Sandy Loam	300	300					
Landscape/Urban Lawn	Clay Loam	100	100					

Table 2.2: Water Holding Capacity of Native Soils in Pervious Areas

Using the procedures outlined in the SWM Planning & Design Manual for the above land use and soil type, the annual change in storage is zero (0).

Evapotranspiration (ET)

Monthly Potential Evapotranspiration (PET) is estimated using monthly temperature data and is defined as a water loss from a homogeneous vegetation-covered area that never lacks water (Thornthwaite,1948; Mather, 1978). In the Thornthwaite water balance model, PET is calculated using the Hamon equation (Hamon, 1061);

PET Hamon = 13.97 * d * D2 * Wt

Where:

d = the number of days in the month

D = the mean monthly hours of daylight in units of 12 hours

Wt = a saturated water vapour density term = 4.95 * e0.627/100

T = the monthly mean temperature in degrees Celsius

The calculated Actual Evapotranspiration (AET) is based on PET and changes in ST (Δ ST). Where there is not enough P to satisfy PET, a reduction in ST occurs. As a result, volumes of AET are less than PET. Also, it is assumed that evaporation will occur and will amount to 15% of the total precipitation for an impervious cover.

Precipitation Surplus (S)

Precipitation surplus is calculated as P–ET. For pervious areas, ET is considered AET and for impervious areas, ET is evaporation.

Infiltration (I) and Runoff (R)

For pervious areas, precipitation surplus has two components in the Thornthwaite model: a runoff component (overland flow that occurs when soil moisture capacity is exceeded) and an infiltration component. The accumulation of infiltration factors for topography, soil types and the cover as prescribed in Table 3.2 of the SWM Planning & Design Manual give infiltration factors for existing conditions on the Site as shown below in **Table 2.3**. The runoff component calculated in the predevelopment and post-development is the remaining volume of precipitation surplus following AET, ET and infiltration.

Land Uses	Topography	Soil	Cover	Total Infiltration	Total Runoff/Surplus Water								
Pre- Development Conditions													
Agriculture Land	0.1	0.3	0.1	0.5	0.5								
Pasture and Shrubs	0.2	0.3	0.1	0.6	0.4								
Landscaped Area	0.2	0.2	0.1	0.5	0.5								
Forests	0.1	0.3 0.2		0.6	0.4								
	Post- D	evelopment	Conditions										
Forests	0.1	0.3	0.2	0.6	0.4								
Landscaped Area	0.2	0.2	0.1	*0.45	0.55								
Note: *(includes	10 % reduction in	infiltration o	due to compa	ction from const	truction)								

Table 2.3: Pre-Develo	pment and Post-Develo	pment Conditions –	Infiltration Factors

2.4 Water Balance Analysis

To predict outputs of the pre-development and post-development water balance, various inputs were entered into the Thornthwaite model including monthly precipitation and temperature, Site latitude, water holding capacity values for native soils and factors of infiltration as discussed in section 4.3. The analysis is summarised below, and the detailed calculations are presented in **Table A 1-3**, **Appendix A**.

2.4.1 Water Balance- Pre-Development

The average precipitation for the area is about 821.4 mm/year. For the pervious area, the calculated PET is 581 mm/year or about 71% of the total precipitation. The monthly distribution of ST for the pervious area in silty sand soils produced a unit area annual AET of 533 mm/year for the impervious areas, it is assumed that evaporation will occur and will amount to 15% of total precipitation (698 mm/year). Given a total pervious area of 300,000 m² and an impervious area of 2,000 m², the existing development will produce an evapotranspiration/AET 160,655 m³/year, an

4

infiltration 44,475 m³/year and a runoff 42,932 m³/year. The analysis is summarised as below in **Table 2.4**. The detailed calculations are presented in **Table A-2**, Appendix A.

Characteristic	Area	Evaporation/AET m ³ /year	Infiltration m ³ /year	Runoff m ³ /year								
Total Proposed Development Area (m ²)- 302,000												
Pervious Area												
Open Space-Agriculture Land (m ²)	236,000	125,776	34,036	34,036								
Open Space-Forests(m ²)	30,500	12,258	4,836	3,224								
Open Space- Landscape(m ²)	10,500	5,382	1,622	1,622								
Open Space- Pasture/Shrubs(m ²)	23,000	16,993	3,981	2,654								
lı	mpervious A	Area										
Building/Driveway(m ²)	2,000	246	0	1,396								
Total Post- Development Area- (m ²)	302,000	160,655	44,475	42,932								

Table 2.4: Summary of Water Balance- Pre-Development Land Use

2.4.2 Water Balance- Post-Development

In the post-construction scenario, changes in land use will result in about 18,000 m² of paved surfaces, 14,000 m² of buildings and 270,000 m² of pervious areas (landscaped and open space /undeveloped area). The monthly distribution of ST for a landscaped area in silty clay soils and open space in silty sand soils produced a unit area annual AET of 533 mm/year and 513 mm/year, respectively. For the impervious areas, it is assumed that evaporation will occur and will amount to 15% of total precipitation (698 mm/year). Given a total pervious area of 270,000 m² and an impervious area of 32,000 m², the proposed development will produce an evapotranspiration/AET 148,974 m³/year, an infiltration 40,442 m³/year and a runoff 58,646 m³/year. The analysis is summarised as below in **Table 2.5.** The detailed calculations are presented in **Table A-3, Appendix A.**

Table 2.5: Summary of Water Balance- Post-Development Land Use

Characteristic	Area	Evaporation/AET m³/year	Infiltration m ³ /year	Runoff m ³ /year								
Pervious Area												
Open Space-Forests (m ²)	149,000	83,014	23,625	15,750								
Urban Lawn/Landscape (m ²)	121,000	62,017	16,817	20,554								
li li	mpervious A	lrea										
Buildings (Roofs) (m ²)	14,000	1,725	0	9,775								
Roads/ Driveways/Paved Surface (m ²)	18,000	2,218	0	12,567								
Total Post-Development Area (m ²)	302,000	148,974	40,442	58,646								

5

2.4.3 Water Balance Results - Pre-Development to Post- Development Changes

Based on the results of the pre-development and post-development water balance completed, the proposed development will produce a reduction in annual evapotranspiration/AET(11,681 m³/year), a reduction in annual infiltration (4033 m³/year) and an increase in annual runoff (15714 m³/year). The effects are the result of increased impervious area, replacing pervious areas of the Site. To maintain pre-development water balance, various LID measures will be considered during design. Infiltration galleries and SWM are proposed at the site to promote infiltration and minimize runoff. The analysis is summarised as below in Table 2.6. The detailed calculations are presented in Table A-1 to 3, Appendix A.

Characteristic	Pre- Development	Post- Development (no mitigation)	Change (Pre- to Post- Development)		
Total Area (m ²)	302,000	302,000	0		
Pervious Area (m ²)	300,000	270,000	-30,000		
Impervious Area (m ²)	2,000	32,000	30,000		
Precipitation (m ³ /year)	248,062	248,062	0		
Total Evaporation/AET (m ³ /year)	160,655	148,974	-11,681		
Total Infiltration (m ³ /year)	44,475	40,442	-4,033		
Total Runoff (m ³ /year)	42,932	58,646	15,714		

Table 2.6: Summary	y of Water Balance-	Pre-Development and	Post-Development Land Use
--------------------	---------------------	----------------------------	---------------------------

3.0 CONCLUSIONS AND RECOMMENDATIONS

A water balance analysis was completed for the Site to estimate pre-development and postdevelopment evaporation, infiltration and runoff for the proposed development. The following are our conclusions and recommendations based on water balance results.

- Based on the results of the pre-development and post-development water balance completed, the proposed development will produce a reduction in annual evapotranspiration (11,681 m³/year), a reduction in annual infiltration (4033 m³/year) and an increase in annual runoff (15,714 m³/year). The effects are mainly the result of increased impervious area, replacing pervious areas of the Site.
- Low impact development (LID) measures will be considered during detail design to manage stormwater and minimize surface runoff and to promote infiltration.
- Considering the roof area (impervious) of the proposed development (14,000 m²), the estimated annual runoff produced from the roof area is 9,775 m³/year. There is enough clean water supply available to eliminate the infiltration deficit.

We trust this report satisfies your needs. If there are questions or you need more information, please do not hesitate to contact our office.

DS CONSULTANTS LTD

Prepared By:

P.A.Patel

Pradeep Patel, M.Sc., P.Geo., Hydrogeologist **Reviewed By:**

Martin Ceder

Martin Gedeon, M.Sc. P.Geo., Senior Hydrogeologist

Attachments:

Figures:

Figure 1:Pre-Development Land UseFigure 2:Post-Development Land Use

Appendix:

Appendix A: Water Balance Tables A 1 through A3

Project: 18-577-100 – Water Balance Graham Property, Caledon, ON

Figures

TOWN OF CALEDON PLANNING RECI<mark>EIVED</mark>

TOWN OF CALEDON PLANNING RECI<mark>EIVED</mark>

Project: 18-577-100 – Water Balance Graham Property, Caledon, ON

Appendix A: Water Balance Tables(A1-A3)

TABLE A-1

CLIMATE NORMALS 1981-2010 (ALBIAN FIELD CENTRE CLIMATE STATION)

Water Balance -Graham Property

			Thornthy	waite (1948)				
Month	Mean Temperature (°C)	Heat Index	Unadjusted Potential Evapotranspiration (mm)	Daylight Correction Value	Adjusted Potential Evapotranspiration (mm)	Total Precipitation (mm)		
January	-7.0	0.0	0.0	0.81	0.0	60.4		
February	-5.9	0.0	0.0	0.82	0.0	50.2		
March	-1.4	0.0	0.0	1.02	0.0	50.3		
April	6.1	1.4	28.8	1.13	32.5	67.0		
May	12.4	4.0	60.6	1.27	76.9	76.1		
June	17.3	6.5	85.9	1.29	110.8	75.5		
July	19.9	8.1	99.4	1.30	129.3	81.8		
August	19.1	7.6	95.3	1.20	114.3	77.4		
September	14.3	4.9	70.3	1.04	73.1	75.0		
October	8.1	2.1	38.8	0.95	36.8	68.3		
November	2.1	0.3	9.4	0.8	7.5	81.7		
December	-3.9	0.0	0.0	0.76	0.0	57.7		
TOTALS		34.8	488.5		581.3	821.4		

Notes: Daylight Correction values obtained from Instruction and Tables For Computing Potential Evapotranspiration and The Water Balance (Thornthwaite & Mather, 1957)

TABLE A-2 Pre-development Water Balance

Water Balance Analysis - Graham Property

Catchments and Hydrologic Components								Month	ı						Total
	Catchments and	Hydrologic components	March	April	May	June	July	August	September	October	November	December	January	February	TOLAT
		PET - Adjusted Potential Evapotranspiration (mm)	0	33	77	111	129	114	73	37	8	0	0	0	581
		P - Total Precipitation (mm)	50	67	76	76	82	77	75	68	82	58	60	50	821
		P-PET (mm)	50	34	-1	-35	-47	-37	2	31	74	58	60	50	-
		Soil Moisture Deficit (mm)	0	0	-1	-36	-84	-120	-119	-87	-13	0	0	0	-
		Soil Moisture Storage (mm)	150	150	149	114	66	30	31	63	137	150	150	150	-
	-	Actual Potential Evapotranspiration (mm)	0	33	77	106	110	89	73	37	8	0	0	0	533
	-	P-AFT (mm)	50	34	.1	-31	-29	-12	2	31	74	58	60	50	
	-	Actual Soil Moisture Deficit (mm)	0	0	-1	-32	-60	-72	-70	-39	0	0	0	0	-
	-	Change in Soil Moisture Deficit (mm)	0	0	1	31	29	12	-2	-31	-39	0	0	0	-
	Pervious Area-	Procinitation Surplus (mm)	50	24	-	51	25	12	-2	-51	-35	50	60	50	-
	Agricultural Land-	MOECC Infiltration Easter	0.50	34	0.50	0.50	0.50	0.50	0 50	0.50	33	36	0.50	0.50	200
	Rooted Crops-	Bun Off Coefficient	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	
	Fine Sandy Loam	Infiltration (mm)	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.50	0.50	-
	-	Inflitration (mm)	25	17	0	U	0	U	U	U	18	29	30	25	144
	-	Run-Off (mm)	25	1/	0	0	0	0	0	0	18	29	30	25	144
	-	Catchment Area (m ⁺) = 236000.00					Subcato	nment Monthly	volumes						
	-	Infiltration (m ³)	5935	4066	0	0	0	U	0	U	41/6	6809	/12/	5924	34037
		Run-Off (m ³)	5935	4066	0	0	0	0	0	0	4176	6809	7127	5924	34037
		Soil Moisture Storage (mm)	150	150	149	114	66	30	31	63	137	150	150	150	-
		Actual Potential Evapotranspiration (mm)	0	33	77	106	110	89	73	37	8	0	0	0	533
		P-AET (mm)	50	34	-1	-31	-29	-12	2	31	74	58	60	50	-
	-	Actual Soil Moisture Deficit (mm)	0	0	-1	-32	-60	-72	-70	-39	0	0	0	0	-
	Penvious Area-	Change in Soil Moisture Deficit (mm)	0	0	1	31	29	12	-2	-31	-39	0	0	0	-
	Pervious Area-	Precipitation Surplus (mm)	50	34	0	0	0	0	0	0	35	58	60	50	288
	Shrubs-Fine	MOECC Infiltration Factor	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	
	Sandy Loam	Run-Off Coefficient	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	-
		Infiltration (mm)	30	21	Ö	0	0	0	0	0	21	35	36	30	173
		Run-Off (mm)	20	14	0	0	0	0	0	0	14	23	24	20	115
		Catchment Area (m ²) = 23000.00					Subcato	hment Monthly	/olumes						
		Infiltration (m ³)	694	475	0	0	0	0	0	0	488	796	834	693	3981
		Run-Off (m ³)	463	317	0	0	0	0	0	0	326	531	556	462	2654
		Soil Moisture Storage (mm)	100	100	99	64	16	0	2	33	100	100	100	100	-
		Actual Potential Evapotranspiration (mm)	0	33	77	104	101	80	73	37	8	0	0	0	513
		P-AET (mm)	50	34	-1	-29	-19	-3	2	31	74	58	60	50	-
		Actual Soil Moisture Deficit (mm)	0	0	-1	-30	-49	-52	-50	-18	0	0	0	0	-
		Change in Soil Moisture Deficit (mm)	0	0	1	29	19	3	-2	-31	-18	0	0	0	-
	Pervious Area-	Precipitation Surplus (mm)	50	34	0	0	0	0	0	0	56	58	60	50	309
Graham Property	Landscape/	MOECC Infiltration Factor	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	
	Loam	Run-Off Coefficient	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	-
	Coolin	Infiltration (mm)	25	17	0	0	0	0	0	0	28	29	30	25	154
		Bun-Off (mm)	25	17	0	0	0	0	0	0	28	29	30	25	154
	-	Catchmont Area $(m^2) = 10500.00$				-	Subcate	hment Monthly	/olumes	-					
		Infiltration (m ³)	264	181	0	0	0	0	0	0	293	303	317	264	1622
	-	Bun-Off (m ³)	264	181	0	0	0	0	0	0	293	303	317	264	1622
		Soil Moisture Storage (mm)	300	300	299	264	216	180	181	213	287	300	300	300	-
		Actual Potential Evapotranspiration (mm)	0	33	77	109	120	102	73	37	8	Ö	0	0	557
		P-AET (mm)	50	34	-1	-33	-38	-24	2	31	74	58	60	50	-
		Actual Soil Moisture Deficit (mm)	0	0	-1	-34	-72	-96	-94	-63	0	0	0	0	-
		Change in Soil Moisture Deficit (mm)	0	0	1	33	38	24	-2	-31	-63	0	0	0	-
	Depuisue Area	Precipitation Surplus (mm)	50	34	0	0	0	0	0	0	11	58	60	50	264
	Mature Forests	MOECC Infiltration Factor	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	204
	Fine Sandy Loam	Run-Off Coofficient	0.00	0.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.40	0.00	0.00	
	-	Infiltentian (mm)	20	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	150
	-	minicration (mm)	20	21	0	0	0	0		0	,	33	50	20	123
		Kun-Off (mm)	20	14	U	U	U	U	0	U	4	23	24	20	106
		Catchment Area (m ⁻) = 30500.00	020	624			Subcato	nment wonthly	oiumes		205	4055	4405	040	1025
		Infiltration (m [*])	920	631	0	0	0	0	0	0	205	1056	1105	919	4836
		Run-Off (m ³)	614	420	0	0	0	0	0	0	13/	/04	/3/	612	3224

TABLE A-2 Pre-development Water Balance

Pre-development Water Balance Water Balance Analysis - Graham Property

	Catchmonts and	Hydrologic Components							Montl	h						Total
	catchinents and	nyurologic components		March	April	May	June	July	August	September	October	November	December	January	February	Total
		PET - Adjusted Potential Evapotra	anspiration (mm)	0	33	77	111	129	114	73	37	8	0	0	0	581
		P - Total Pr	ecipitation (mm)	50	67	76	76	82	77	75	68	82	58	60	50	821
			P-PET (mm)	50	34	-1	-35	-47	-37	2	31	74	58	60	50	-
		Soil Moist	ture Deficit (mm)	0	0	-1	-36	-84	-120	-119	-87	-13	0	0	0	-
		Precipitati	ion Surplus (mm)	50	67	76	76	82	77	75	68	82	58	60	50	821
		Ev	aporation Factor	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	-
Impervious Area Driveway/	Ru	In-Off Coefficient	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	-	
	Driveway/	E	vaporation (mm)	8	10	11	11	12	12	11	10	12	9	9	8	123
	Road/ Paved		Run-Off (mm)	43	57	65	64	70	66	64	58	69	49	51	43	698
	Surface	Catchment Area (m ²) = 2	2000.00					Subcatchment Monthly Volumes								
		1	Evaporation (m ³)	15	20	23	23	25	23	23	20	25	17	18	15	246
			Run-Off (m ³)	86	114	129	128	139	132	128	116	139	98	103	85	1396
								Tota	al Catchment Vol	umes						
		Total AET (m ³)		0	9764	23078	31972	33290	27052	21944	11049	2261	0	0	0	160409
	Total Evaporation (m ³)		15	20	23	23	25	23	23	20	25	17	18	15	246	
		Total Infiltration (m ³)		7814	5353	0	0	0	0	0	0	5163	8964	9383	7799	44475
		Total Runoff (m ³)		6768	4691	129	128	139	132	128	116	4938	7764	8127	6754	42932

TABLE A-3

Post-development Water Balance Water Balance Analysis- Graham Property

	Catchments and Hydrologic Components							Month							Total
	Catchments and	Hydrologic Components	March	April	May	June	July	August	September	October	November	December	January	February	Total
		PET - Adjusted Potential Evapotranspiration (mm)	0	33	77	111	129	114	73	37	8	0	0	0	581
		P - Total Precipitation (mm)	50	67	76	76	82	77	75	68	82	58	60	50	821
		P-PET (mm)	50	34	-1	-35	-47	-37	2	31	74	58	60	50	- 1
		Soil Moisture Deficit (mm)	0	0	-1	-36	-84	-120	-119	-87	-13	0	0	0	ı -
		Soil Moisture Storage (mm)	300	300	299	264	216	180	181	213	287	300	300	300	ı -
		Actual Potential Evapotranspiration (mm)	0	33	77	109	120	102	73	37	8	0	0	0	557
		P-AET (mm)	50	34	-1	-33	-38	-24	2	31	74	58	60	50	ı -
		Actual Soil Moisture Deficit (mm)	0	0	-1	-34	-72	-96	-94	-63	0	0	0	0	
		Change in Soil Moisture Deficit (mm)	0	0	1	33	38	24	-2	-31	-63	0	0	0	1 -
	Pervious Area-	Precipitation Surplus (mm)	50	34	0	0	0	0	0	0	11	58	60	50	264
	Mature Forests-	MOECC Infiltration Factor	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	
	Fine Sandy Loam	Run-Off Coefficient	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	
		Infiltration (mm)	30	21	0	0	0	0	0	0	7	35	36	30	159
		Run-Off (mm)	20	14	0	0	0	0	0	0	4	23	24	20	106
		Catchment Area (m ²) = 149000.00					Subcate	hment Monthly	Volumes						í
		Infiltration (m ³)	4497	3080	0	0	0	0	0	0	1001	5158	5400	4488	23625
		Run-Off (m ³)	2998	2053	0	0	0	0	0	0	668	3439	3600	2992	15750
		Soil Moisture Storage (mm)	100	100	99	64	16	0	2	33	100	100	100	100	
		Actual Potential Evapotranspiration (mm)	0	33	77	104	101	80	73	37	8	0	0	0	513
		P-AET (mm)	50	34	-1	-29	-19	-3	2	31	74	58	60	50	
		Actual Soil Moisture Deficit (mm)	0	0	-1	-30	-49	-52	-50	-18	0	0	0	0	-
	Den deux Arres	Change in Soil Moisture Deficit (mm)	0	0	1	29	19	3	-2	-31	-18	0	0	0	-
	Pervious Area-	Precipitation Surplus (mm)	50	34	0	0	0	0	0	0	56	58	60	50	309
	Urban Lawn-Clay	MOECC Infiltration Factor	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	L
	Loam	Run-Off Coefficient	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	
		Infiltration (mm)	23	16	0	0	0	0	0	0	25	26	27	23	139
		Run-Off (mm)	28	19	0	0	0	0	0	0	31	32	33	28	170
Graham Property		Catchment Area (m ²) = 121000.00					Subcate	hment Monthly	Volumes			'			()
		Infiltration (m ³)	2739	1876	0	0	0	0	0	0	3039	3142	3289	2733	16817
		Run-Off (m ³)	3347	2293	0	0	0	0	0	0	3714	3840	4020	3341	20555
		Precipitation Surplus (mm)	50	67	76	76	82	77	75	68	82	58	60	50	821
		Evaporation Factor	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	-
		Run-Off Coefficient	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	-
	Impervious Area	Evaporation (mm)	8	10	11	11	12	12	11	10	12	9	9	8	123
	Buildings (Roofs)	Run-Off (mm)	43	57	65	64	70	66	64	58	69	49	51	43	698
	-	Catchment Area (m ²) = 14000.00					Subcato	hment Monthly	Volumes			'			
	-	Evaporation (m ³)	106	141	160	159	172	163	158	143	172	121	127	105	1725
		Run-Off (m ³)	599	797	906	898	973	921	893	813	972	687	719	597	9775

TABLE A-3

Post-development Water Balance Water Balance Analysis- Graham Property

Catchments and Hydrologic Components			Month												Total	
			March	April	May	June	July	August	September	October	November	December	January	February	Total	
PET - Adjusted Potential Evapotranspiration (mm)			0	33	77	111	129	114	73	37	8	0	0	0	581	
P - Total Precipitation (mm)			50	67	76	76	82	77	75	68	82	58	60	50	821	
P-PET (mm)				50	34	-1	-35	-47	-37	2	31	74	58	60	50	-
Soil Moisture Deficit (mm)				0	0	-1	-36	-84	-120	-119	-87	-13	0	0	0	-
	Impervious Area Driveway/ Road/ Paved Surface	Precipitatio	on Surplus (mm)	50	67	76	76	82	77	75	68	82	58	60	50	821
		Eva	poration Factor	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	-
		Rur	n-Off Coefficient	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	-
		Ev	aporation (mm)	8	10	11	11	12	12	11	10	12	9	9	8	123
			Run-Off (mm)	43	57	65	64	70	66	64	58	69	49	51	43	698
		Catchment Area (m ²) = 18000.00						Subcatchment Monthly Volumes								
		E	vaporation (m ³)	136	181	205	204	221	209	203	184	221	156	163	136	2218
			Run-Off (m ³)	770	1025	1164	1155	1252	1184	1148	1045	1250	883	924	768	12567
								Total Catchment Volumes								
	Total AET (m ³)			0	8787	20770	28797	30056	24894	19750	9944	2035	0	0	0	145032
	Total Evaporation (m ³)			241	322	365	362	393	372	360	328	392	277	290	241	3943
	Total Infiltration (m ³)			7236	4956	0	0	0	0	0	0	4040	8300	8689	7221	40442
	Total Runoff (m ³)			7714	6169	2070	2054	2225	2105	2040	1858	6604	8848	9262	7698	58646

