Phase Two Environmental Site Assessment

Part of Lots 18 & 19, Concession 3 Caledon, Ontario

Prepared For:

12101 Creditview Developments Ltd. C/O Fieldgate Land Developments Ltd. 5400 Yonge Street Toronto, Ontario M2N 5R5

DS Project No: 23-267-100

Date: 2023-10-19

DS CONSULTANTS LTD. 6221 Highway 7, Unit 16 Vaughan, Ontario, L4H 0K8 Telephone: (905) 264-9393 www.dsconsultants.ca

Executive Summary

i

DS Consultants Ltd. (DS) was retained by 12101 Creditview Developments Ltd. (the "Client") to conduct a Phase Two Environmental Site Assessment (ESA) of the Property located at Part of Lots 18 & 19, Concession 3, Caledon, Ontario, herein referred to as the "Phase Two Property" or "Site". DS understands that this Phase One ESA was requested for due diligence purposes associated with the proposed redevelopment of the Site for residential purposes. It is further understood that the proposed development will consist of a low-rise subdivision.

It is understood that the intended future residential property use is not considered to be a more sensitive property use as defined under O.Reg. 153/04 (as amended); therefore the filing of a Record of Site Condition (RSC) with the Ontario Ministry of Environment, Conservation and Parks (MECP) is not mandated under O.Reg. 153/04.

The Phase Two ESA was completed to satisfy the intent of the requirements, methodology and practices for a Phase Two ESA as described in Ontario Regulation 153/04 (as amended). The objective of this Phase Two ESA is to confirm whether contaminants are present, and at what concentration are they present on the Phase Two Property, as related to the Areas of Potential Environmental Concern (APEC) identified in the Phase One ESA.

The Phase Two Property is a 59.97-hectare (148.19 acres) parcel of land situated within a rural neighbourhood in the Town of Caledon, Ontario. The Phase Two Property is located approximately 390 m northwest of the intersection of Creditview Road and Mayfield Road and was occupied by agricultural fields at the time of this investigation.

The Phase One ESA completed in September 2023 indicated that the Phase Two Property has not developed and has been used for agricultural purposes since the 1860s. Two (2) orchards were depicted on the central portion of the Property and another on the south corner of the Property in the 1880 County Atlas, however they appear to have been removed by 1946. It is possible that environmentally persistent pesticides were applied to the former orchards. The Phase One Property is currently occupied by agricultural fields, and is used for agricultural purposes. A total of nine (9) Potentially Contaminating Activities (PCAs) were identified in the Phase One ESA, which were considered to be contributing to four (4) APECs on the Phase Two Property. A summary of the APECs, associated PCAs, and contaminants of potential concern (copc) identified is presented in the table below:

Table E-1: Summary of APECs

Area of Potential Environment al Concern	Location of Area of Potential Environment al Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (on-site or off-site)	Contaminant s of Potential Concern	Media Potentially Impacted (Ground water, soil and/or sediment)
APEC-1	Central portion of the Site	#40 – Pesticides Manufacturing, Processing, Bulk Storage and Large-Scale Applications	On Site PCA-3	OCPs, Metals, As, Sb, Se, CN-	Soil
APEC-2	Entire Site	#40 – Pesticides Manufacturing, Processing, Bulk Storage and Large-Scale Applications	On Site PCA-6	OCPs, Metals, As, Sb, Se, CN-	Soil
APEC-3B APEC-3C	West portion of the Site Southwest portion of the Site Southeast portion of the	#N/S – Seasonal De-Icing Activities ¹	Off Site PCA-5 PCA-10 PCA-11	EC, SAR	Soil
APEC-4	South corner of the Site	#40 – Pesticides Manufacturing, Processing, Bulk Storage and Large-Scale Applications	On Site PCA-8	OCPs, Metals, As, Sb, Se, CN-	Soil

 $\overline{\text{N/S}}$ - not specified in Table 2, Schedule D, of O.Reg. 153/04

1 - The area is subject to application of de-icing salts for road safety purposes. Per Section 49.1 (1) of O.Reg. 407/19, published December 4, 2019 "If an applicable site condition standard is exceeded at a property solely because of one of the following reasons, the applicable site condition standard is deemed not to be exceeded for the purpose of Part XV.1 of the Act": "...that a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both". Any potential impacts associated with EC and/or SAR in soil, and sodium and/or chloride in groundwater will be deemed not to exceed the MECP Site Conditions Standards for the area identified in APEC-3B, and APEC-3C

Based on the findings of the Phase One ESA it was concluded that a Phase Two ESA is warranted in order to assess the soil and groundwater conditions on the Phase Two Property.

The Phase Two ESA involved the advancement of 13 boreholes, which were completed between August 9, 2023 and August 14, 2023 in conjunction with the geotechnical investigation. The boreholes were advanced to a maximum depth of 8.2 metres below ground surface (mbgs) under the supervision of DS personnel. Groundwater monitoring wells were installed in five (5) of the boreholes to assess the groundwater flow direction. The borehole locations were determined based on the findings of the Phase One ESA. Soil

samples were collected and submitted for analysis of all PCOCs, including: Metals, As, Sb, Se, CN-, pH, and OCPs.

The soil analytical results were compared to the "Table 8: Generic Site Condition Standards in a Potable Groundwater Condition for Use within 30 m of a Water Body for Residential/Parkland/Institutional use" provided in the MECP document entitled, "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" dated April 15, 2011 (Table 8 Standards) and residential/parkland/institutional property use.

Based on the findings of the Phase Two ESA, DS presents the following findings:

- A surficial layer of topsoil approximately 200 to 400 mm in thickness was encountered in all of the boreholes advanced. Reworked clayey silt material with trace amounts of organics and sand was encountered below the topsoil. The reworked material was generally heterogeneous and ranged in thickness from 0.5 to 1.9 metres. BH23-511 encountered silty sand below the reworked material with a thickness of 2.2 mbgs. The native overburden material encountered consisted of clayey silt till, with trace amounts of sand and gravel. The clayey silt till unit extended to a maximum depth of 6.7 mbgs and ranged in thickness from 2.3-5.9 m. Silty sand till was encountered below the clayey silt till in BH23-501, BH23-506 to BH23-513 to borehole termination at 6.7 to 8.2 mbgs;
- The depth to groundwater was measured in five (5) monitoring wells installed during the course of this investigation. The groundwater levels were found to range between 0.70 to 1.80 mbgs, with corresponding elevations of 255.49 to 161.78 metres above sea level (masl) on August 29, 2023. Based on the groundwater elevations recorded, the groundwater flow direction appears to be southeasterly towards Fletcher's Creek. It is possible that the groundwater levels may vary seasonally. The groundwater levels may also be impacted by other factors such as historical infilling activities, subsurface utility trenches, and similar subsurface anomalies. The groundwater flow direction can only be confirmed through long term monitoring.
- Soil samples were collected from the boreholes advanced on the Phase Two Property and submitted for analysis of Metals and OCPs. The results of the chemical analyses conducted indicated that all samples analyzed met the applicable Site Condition Standards.

Based on a review of the findings of this Phase Two ESA, DS presents the following conclusions and recommendations:

- ◆ The results of the chemical analyses conducted on soil samples indicate that the applicable Site Condition Standards have been met;
- Based on the findings of this Phase Two ESA, it is the opinion of DS that a Record of Site Condition may be filed for the Phase Two Property (if requested). No further investigation is recommended at this time.
- All monitoring wells should be decommissioned in accordance with O.Reg. 903 when no longer required.

Table of Contents

Table of	Contents	1
1.0	Introduction	4
1.1	Site Description	. 4
1.2	Property Ownership	
1.3	Current and Proposed Future Use	
1.4	Applicable Site Condition Standards	
2.0	Background Information	
2.1	Physical Setting	
	2.1.1 Water Bodies and Areas of Natural Significance	. 6
	2.1.2 Topography and Surface Water Draining Features	. 6
2.2	Past Investigations	
	2.2.1 Previous Report Summary	. 7
3.0	Scope of the Investigation	7
3.1	Overview of Site Investigation	
3.2	Media Investigated	. 8
	3.2.1 Rationale for Inclusion or Exclusion of Media	8
	3.2.2 Overview of Field Investigation of Media	9
3.3	Phase One Conceptual Site Model	. 9
3.4	Deviations from Sampling and Analysis Plan	
3.5	Impediments	
4.0	Investigation Method1	2
4.1	General	
4.2	Drilling and Excavating	
4.3	Soil Sampling	
4.4	Field Screening Measurements	
4.5 4.6	Groundwater Monitoring Well Installation	
4.7	Sediment Sampling	
4.8	Analytical Testing	
4.9	Residue Management Procedures	
	4.9.1 Soil Cuttings From Drilling and Excavations	
	4.9.2 Fluids from Equipment Cleaning	
4.10	Elevation Surveying	
4.11	Quality Assurance and Quality Control Measures	
	4.11.1 Sample containers, preservation, labelling, handling and custody f	
	samples submitted for laboratory analysis, including any deviations from the SA	
		16

	4.11.2 Description of equipment cleaning procedures followed during sampling	
	4.11.3 Description of how the field quality control measures referred	
	subsection 3 (3) were carried out	
	4.11.4 Description of, and rational for, any deviations from the procedures	
	in the quality assurance and quality control program set out in the SAP	
5.0	Review and Evaluation	
5.1 5.2	GeologyGround Water Elevations and Flow Direction	
3.4	5.2.1 Rationale for Monitoring Well Location and Well Screen Intervals	
	5.2.2 Results of Interface Probe Measurements	
	5.2.3 Product Thickness and Free Flowing Product	
	5.2.4 Groundwater Elevation	
	5.2.5 Groundwater Flow Direction	
	5.2.6 Assessment of Potential for Temporal Variability in Groundwater	
	Direction	18
	5.2.7 Evaluation of Potential Interaction Between Buried Utilities and the	Water
	Table	
5.3	Ground Water Hydraulic Gradients	
	5.3.1 Horizontal Hydraulic Gradient	19
	5.3.2 Vertical Hydraulic Gradient	
5.4	Fine-Medium Soil Texture	
5.5 5.6	Soil Field Screening	
5.0	Soil Quality5.6.1 Metals and ORPs	
	5.6.2 Organochlorinated Pesticides	
	5.6.3 Commentary on Soil Quality	
5.7 5.8	Ground Water QualitySediment Quality	
5.9	Quality Assurance and Quality Control Results	
5.10	Phase Two Conceptual Site Model	
6.0	Conclusions	22
6.1	Qualifications of the Assessors	
6.2	Signatures	
6.3	Limitations	
7.0	References	27

IABLES	
Table E-1: Summary of APECsi	i
Table 1-1: Phase Two Property Information	
Table 1-2: Phase Two Property Ownership	5
Table 3-1: Rationale of Sampling Media	8
Table 3-2: Field Investigation of Media	9
Table 3-3: Summary of PCAs Contributing to APECs	
Table 4-1: Summary of Drilling Activities1	
Table 4-2: Field Screening Equipment14	
Table 4-3: Summary of Sample Bottle Preservatives10	6
Table 5-1: Summary of Horizontal Hydraulic Gradient Calculations1	
Table 5-2: Summary of QA/QC Results2	1
Enclosures	

FIGURES

Figure 1 - Site Location Plan

Figure 2 - Phase One Property Site Plan

Figure 3 – Phase One Study Area

Figure 4 – PCA within Phase One Study Area

Figure 5 - Borehole/Monitoring Well Locations Plan with APECs

Figure 6 – Groundwater Contours and Flow Direction

Figure 7A - Soil Characterization - Metals and ORPs

Figure 7B - Soil Characterization - OCPs

Figure 8 – Contaminant Transportation Diagram

ENCLOSED TABLES

Table 1: Summary of Monitoring Well Installation and Groundwater Data

Table 2: Summary of Soil Samples Submitted for Chemical Analysis

Table 3: Summary of APECs Investigated

Table 4: Summary of Metals and ORPs in Soil

Table 5: Summary of OCPs in Soil

Table 6: Summary of Maximum Concentrations in Soil

Notes for Soil and Groundwater Summary Tables

APPENDICES

Appendix A – Plan of Survey

Appendix B – Sampling and Analysis Plan

Appendix C – Borehole Logs

Appendix D – Laboratory Certificates of Analysis

Appendix E – Phase Two Conceptual Site Model

1.0 Introduction

DS Consultants Ltd. (DS) was retained by 12101 Creditview Developments Ltd. to complete a Phase Two Environmental Site Assessment (ESA) of the Property located at Part of Lots 18 & 19, Concession 3, Caledon, Ontario, herein referred to as the "Phase Two Property" or "Site". It is DS's understanding that this Phase Two ESA has been requested for due diligence purposes in association with the proposed redevelopment of the Property. DS understands that this Phase Two ESA may be used to support the filing of a Record of Site Condition (RSC) as part of the proposed redevelopment of the Site for residential purposes. It is further understood that the proposed development will consist of low-rise buildings.

It is understood that the intended future property use (residential) is not considered to be a more sensitive property use as defined under O.Reg. 153/04 (as amended); therefore the filing of a Record of Site Condition (RSC) with the Ontario Ministry of Environment, Conservation and Parks (MECP) is not mandated under O.Reg. 153/04.

The Phase Two ESA was completed to satisfy the intent of the requirements, methodology and practices for a Phase One ESA as described in Ontario Regulation 153/04 (as amended). The objective of this Phase Two ESA is to confirm whether contaminants are present, and at what concentration are they present on the Phase Two Property, as related to the Areas of Potential Environmental Concern (APEC) identified in the Phase One ESA.

1.1 Site Description

The Phase Two Property is an irregular shaped 59.97-hectare (148.19 acres) parcel of land situated within a rural neighbourhood in the Town of Caledon, Ontario. The Phase Two Property is located approximately 390 m northwest of the intersection of Creditview Road and Mayfield Road and was occupied by agricultural fields at the time of this investigation. A Site Location Plan is provided in Figure 1.

For the purposes of this report, Creditview Road is assumed to be aligned in a southeast-northwest orientation, and Mayfield Road in a northeast-southwest orientation. A Plan of Survey for the Phase Two Property was not provided at this time.

The Property contains agricultural fields with no structures. A Site Plan depicting the Site is provided in Figure 2.

Additional details regarding the Phase Two Property are provided in the table below.

Table 1-1: Phase Two Property Information

Criteria	Information	Source
Legal Description	PT LT 19 CON 3 WHS CHING PTS 1&2, 43R37043; S/T CH27915; T/W ROW OVER PT LT 19 CON 3 WHS DES PT 1 PL 43R-28656, AS IN PR573970; PT LT 18 CON 3 WHS CHING AS IN CH23379; SAVE AND EXCEPT PTS 1 TO 6 PL 43R-12497, PTS 1 TO 4 PL 43R17369, CH15879, CH30500; SUBJECT TO AN EASEMENT IN GROSS OVER PART LOT 18 CON 3 PARTS 1 AND 2 43R38092 AS IN PR331264; TOWN OF CALEDON	Land Registry Office
Property Identification Number (PIN)	14252-0940	Land Registry Office
Current Site Occupants	Farming Tenant	Client
Site Area	59.97-hectare (148.19 acres)	Land Registry Office

1.2 Property Ownership

The ownership details for the Phase Two Property are provided in the table below.

Table 1-2: Phase Two Property Ownership

Property Owner	Address	Contact
12101 Creditview Developments Ltd.	5400 Yonge Street Toronto, ON, M2N 5R5	Maria Herrera Phone: 416-227-9005 x333 Email: mariah@fieldgatedevelopments.com

1.3 Current and Proposed Future Use

The Phase Two Property is currently occupied by agricultural fields which is considered to be Agricultural Property Use under O.Reg. 153/04 (as amended). It is DS's understanding that the Client intends to redevelop the Site for residential use.

1.4 Applicable Site Condition Standards

The applicable Site Condition Standards (SCS) for the Phase Two Property are considered by the Qualified Person (QP) to be the Table 8 SCS: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Ground Water Condition for Residential/Parkland/Institutional Use as contained in the April 15, 2011 Ontario Ministry of Environment, Conservation and Parks (MECP) document entitled "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", herein referred to as the "Table 8 SCS".

The selection of the Table 8 SCS is considered appropriate based on the following rationale:

- The Town of Caledon relies on groundwater as a potable water source;
- ♦ The Site is not considered to be environmentally sensitive, as defined under O.Reg. 153/04 (as amended);
- The proposed future use of the Phase Two Property will be residential;
- The Site is located within 30 m of a water body as a creek traverses the west boundary and north corner of the Site;
- The pH of the soils analyzed during this Phase Two ESA are within the accepted range specified under 0.Reg. 153/04 (as amended); and
- Bedrock was not encountered within 2 metres of the ground surface.

2.0 Background Information

2.1 Physical Setting

2.1.1 Water Bodies and Areas of Natural Significance

A creek traverses the west boundary of the Phase Two Property.

The Natural Heritage Areas database published by the Ministry of Natural Resources (MNR) was reviewed in order to identify the presence/absence of areas of natural significance including provincial parks, conservation reserves, areas of natural and scientific interest, wetlands, environmentally significant areas, habitats of threatened or endangered species, and wilderness areas. The regional and municipal Official Plans (Town of Caledon and Region of Peel Official Plans) were also reviewed as part of this assessment.

According to the NHIC records and review of these records, the Bobolink bird species is listed as threatened within 1km of the Phase One Property.

According to the MNRF, Bobolink is medium sized songbird commonly found in grasslands and hayfields. As the agricultural field at the Phase One Property is located within an agricultural area with small stands of trees, there is potential for viable habitat for these species.

If required, an environmental specialist could be retained to undertake a Site-specific ecological assessment, however at this time further assessment is not warranted.

2.1.2 Topography and Surface Water Draining Features

The Phase Two Property is located in a rural setting, at an elevation of 263 metres above sea level (masl) in the central portion of the Site, and 259 masl at the east and west boundaries

of the Site. The topography of the Phase Two Property is generally flat, with a slope to the southeast. The neighbouring property are generally at similar elevations, and the topography in the vicinity of the Phase Two Property generally slopes to the southeast. There are drainage features (e.g. ditches, swales, etc.) present on-Site. Surface water flow associated with precipitation events is anticipated to run overland and drain into the ditches along the roadways and to the creek traversing the west portion of the Site.

2.2 Past Investigations

2.2.1 Previous Report Summary

The following environmental and geotechnical reports were provided for DS to review:

"Phase One Environmental Site Assessment, 12101 Creditview Road, Caledon, Ontario", dated September 26, 2023, prepared for 12101 Creditview Developments Ltd., prepared by DS Consultants (DS 2023 Phase One ESA).

A summary of the details pertinent to this investigation is provided below.

DS 2023 Phase One ESA

The DS 2023 Phase One ESA report was completed in accordance with O.Reg 153/04 (as amended). The purpose of the Phase One ESA was to identify contaminating activities on or around the Phase One Property. The investigation included a compilation and review of records available, interviews, and site reconnaissance. The following information was noted by DS from the Phase One ESA:

- The Site is used for agricultural purposes and has been since the 1860s;
- Two (2) historical orchards on the central portion of the Site;
- The site may be subject to pesticide applications on the agricultural fields;
- The Site may be subject to de-icing activities on the adjacent roadways; and
- A creek traverses the west boundary of the Site.

The report recommended a Phase Two ESA be completed to investigate the PCA's identified.

3.0 Scope of the Investigation

The scope of the Phase Two ESA was designed to investigate the portions of the Site determined in the Phase One ESA to be Areas of Potential Environmental Concern. This Phase Two ESA was conducted in general accordance with O.Reg. 153/04 (as amended). The

scope of the investigation including the subsurface investigation, sampling, and laboratory analysis was based on the findings of the Phase One ESA and was limited to the portions of the Site which were accessible.

3.1 Overview of Site Investigation

The following tasks were completed as part of the Phase Two ESA:

- Preparation of a Health and Safety Plan to ensure that all work was executed safely;
- Clearance of public private underground utility services prior to commencement of subsurface investigative operations;
- Preparation of a Sampling and Analysis Plan (SAP);
- Retained a MECP licenced driller to advance a total of 13 boreholes on the Phase Two Property, to depths ranging between 6.2 to 8.2 mbgs. Five (5) of the boreholes were instrumented with groundwater monitoring wells upon completion. The soil lithology was logged during drilling, and representative soil samples were collected at regular intervals. The soil samples were screened for organic vapours using a RKI Eagle 2 MultiGas Detector, and examined for visual and olfactory indications of soil impacts;
- Submitted "worst case" soil samples collected from the boreholes for laboratory analysis of relevant contaminants of potential concern (COPCs) as identified in the Phase One ESA;
- Conducted groundwater level measurements in the monitoring wells in order to determine the groundwater elevation, and to establish the local groundwater flow direction;
- Surveyed all monitoring wells to a geodetic benchmark;
- Compared all soil analytical data to the applicable MECP SCS; and
- Prepared a Phase Two ESA Report in general accordance with O.Reg. 153/04 (as amended).

3.2 Media Investigated

3.2.1 Rationale for Inclusion or Exclusion of Media

Table 3-1: Rationale of Sampling Media

Media	Included or Excluded	Rationale
Soil	Included	Soil was identified as a media of potential impact in the Phase One ESA, based on the historical operations conducted on-Site.

Media	Included or Excluded	Rationale
Groundwater	Excluded	Groundwater was not identified as a media of potential impact in the
		Phase One ESA at this time.
Sediment	Excluded	Sediment is not present on the Phase Two Property.
Surface Water	Excluded	Surface water is not present on the Phase Two Property.

3.2.2 Overview of Field Investigation of Media

Table 3-2: Field Investigation of Media

Media	Methodology of Investigation	
Soil	A total of 13 boreholes were advanced on the Phase Two Property, to a maximum depth	
	of 8.2 mbgs. Soil samples were collected and submitted for analysis of all relevant PCOCs.	

3.3 Phase One Conceptual Site Model

A Conceptual Site Model was developed for the Phase One Property, located at Part of Lots 18 & 19, Concession 3, Caledon, Ontario. The Phase One Conceptual Site Model is presented in Figures 2, 3, 4, and 5 and visually depict the following:

- Any existing buildings and structures
- Water bodies located in whole, or in part, on the Phase One Study Area
- Areas of natural significance located in whole, or in part, on the Phase One Study Area
- Water wells at the Phase One Property or within the Phase One Study Area
- Roads, including names, within the Phase One Study Area
- Uses of properties adjacent to the Phase One Property
- Areas where any PCAs have occurred, including location of any tanks
- Areas of Potential Environmental Concern

3.3.1 Potentially Contaminating Activity Affecting the Phase One Property

All PCAs identified within the Phase One Study Area are presented on Figure 4. The PCAs which are considered to contribute to APECs on, in or under the Phase One Property are summarized in the table below:

Table 3-3: Summary of PCAs Contributing to APECs

PCA Item.	PCA Description (Per. Table 2, Schedule D of O.Reg. 153/04)	Description	Rationale
PCA-3	#40 – Pesticides Manufacturing, Processing, Bulk Storage and Large-Scale Applications	The Peel County Atlas shows two (2) orchards on the central portion of the Site.	Yes – APEC-1

PCA Item.	PCA Description (Per. Table 2, Schedule D of O.Reg. 153/04)	Description	Rationale
PCA-6	#40 – Pesticides Manufacturing, Processing, Bulk Storage and Large-Scale Applications	Pesticides may be used on the agricultural fields on Site.	Yes – APEC-2
PCA-5	#N/S – Seasonal De-Icing Activities	The west portion of the adjacent roadway (Creditview Road) may be subject to de-icing activities.	Yes – APEC-3A
PCA-8	#40 – Pesticides Manufacturing, Processing, Bulk Storage and Large-Scale Applications	The Peel County Atlas shows an orchard on the south corner of the Site.	Yes – APEC-4
PCA-10	#N/S – Seasonal De-Icing Activities	The southeast portion of the adjacent roadway (Creditview Road) may be subject to de-icing activities.	Yes – APEC-3B
PCA-11	#N/S – Seasonal De-Icing Activities	The east adjacent roadway (Mayfield Road) may be subject to de-icing activities.	Yes – APEC-3C

N/S - not specified in Table 2, Schedule D, of O.Reg. 153/04

3.3.2 Contaminants of Potential Concern

A summary of the contaminants of potential concern identified for each respective APEC is presented in the Phase One ESA. The following contaminants of potential concern were identified for the Phase One Property: metals, As, Sb, Se, CN-, pH, electrical conductivity, SAR, and OCPs.

3.3.3 Underground Utilities and Contaminant Distribution and Transport

Underground utilities can affect contaminant distribution and transport. Trenches excavated to install utility services, and the associated granular backfill may provide preferential pathways for horizontal contaminant migration in the shallow subsurface.

The Site has not been developed, therefore it is unlikely that utility corridors may act as preferential pathways for contaminant distribution and transport in the event that shallow subsurface contaminants exist at the Phase One Property.

3.3.4 Geological and Hydrogeological Information

The topography of the Phase One Property is generally rolling, with a surface elevation of 263 metres above sea level (masl) in the central portion of the Site, and 259 masl at the east and west boundaries of the Site. The topography within the Phase One Study Area generally slopes to the southeast. The groundwater flow direction within the Phase One Study Area is inferred to the south towards Fletcher's Creek, located approximately 130 m from the Site.

Based on a review of the MECP well records, the depth to groundwater is approximately 0.6 – 1.5 mbgs.

The Site is situated within a drumlinized till plains physiographic region. The surficial geology within the majority of the Phase One Property is described as "clay to silt-textured till derived from glaciolacustrine deposits or shale" and as "Fine-textured glaciolacustrine deposits consisting of silt and clay, minor sand and gravel Interbedded silt and clay and gritty, pebbly flow till and rainout deposit" along the water bodies intersecting across the Property. The bedrock is described as "Shale, limestone, dolostone, siltstone and Queenston Formation". Based on a review of "Bedrock Topography and Overburden Thickness Mapping, Southern Ontario, prepared by Ontario Geological Survey, published 2006," the bedrock in the vicinity of the Site is anticipated to be encountered at a depth of approximately 20 to 25 metres below ground surface (mbgs).

3.3.5 Uncertainty and Absence of Information

DS has relied upon information obtained from federal, provincial, municipal, and private databases, in addition to records and summaries provided by ERIS. All information obtained was reviewed and assessed for consistency, however the conclusions drawn by DS are subject to the nature and accuracy of the records reviewed.

All reasonable inquiries were made to obtain reasonably accessible information, as mandated by O.Reg.153/04 (as amended). All responses to database requests were received prior to completion of this report. This report reflects the best judgement of DS based on the information available at the time of the investigation.

Information used in this report was evaluated based on proximity to the Phase One Property, anticipated direction of local groundwater flow, and the potential environmental impact on the Phase One Property as a result of potentially contaminating activities.

The QP has determined that the uncertainty does not affect the validity of the Phase One ESA Conceptual Site Model or the conclusions of this report.

3.4 Deviations from Sampling and Analysis Plan

The Phase Two ESA was completed in accordance with the SAP.

3.5 Impediments

DS was granted complete access to the Phase Two Property throughout the course of the investigation. No impediments were encountered.

4.0 Investigation Method

4.1 General

The Phase Two ESA followed the methodology outlined in the following documents:

- Ontario Ministry of the Environment "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario" (December 1996);
- Ontario Ministry of the Environment "Guide for Completing Phase Two Environmental Site Assessments under Ontario regulation 153/04" (June 2011);
- Ontario Ministry of the Environment "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" (July 2011) (Analytical Protocol);

The methods used in the Phase Two ESA investigation did not differ from the associated standard operating procedures.

4.2 Drilling and Excavating

A Site visit was conducted prior to drilling in order to identify the borehole locations based on the APECs identified in the Phase One ESA. The selected borehole locations are presented on Figure 5. The borehole locations were cleared of underground public and private utility services prior to commencement of drilling. A summary of the drilling activities is provided in the table below.

Table 4-1: Summary of Drilling Activities

Parameter	Details	
Drilling Contractor	Young Drilling	
Drilling Dates	August 9 – 14, 2023	
Deilling Continue and Hand	The downward CME FF	
Drilling Equipment Used	Track-mounted CME 55	
Measures taken to minimize the	 Soil sampling was conducted using a 50 mm stainless steel 	
potential for cross contamination	split spoon sampler. The split spoon sampler was brushed	
	clean of soil, washed in municipal water containing	
	phosphate free detergent, rinsed in municipal water, and	
	then rinsed with distilled water for each sampling interval	
	in order to reduce the potential for cross contamination;	

Parameter	Details		
	Soil samples were extracted from the interior of the		
	sampler rather than from areas in contact with the		
	sampler sidewalls;		
	Use of dedicated and disposable nitrile gloves for the		
	handling of soil samples. A new set of gloves was used for		
	each sample.		
Sample collection frequency	Samples were collected at a frequency of every 0.6 m per 0.8 m		
	from the ground surface to 3.1 mbgs, followed by one sample per		
	1.5 m to borehole termination depth.		

4.3 Soil Sampling

Soil samples were collected using solid stem augers and split spoon samplers. Discrete soil samples were collected from the split-spoon samplers by DS personnel using dedicated nitrile gloves.

A portion of each sample was placed in a resealable plastic bag for field screening, and the remaining portion was placed into laboratory supplied glass sampling jars. Samples intended for VOC and the F1 fraction of petroleum hydrocarbons analysis were collected using a laboratory-supplied soil core sampler, placed into the vials containing methanol for preservation purposes and sealed using Teflon lined septa lids. All sample jars were stored in dedicated coolers with ice for storage, pending transport to the analytical laboratory. A formal chain of custody was maintained for all samples submitted to the laboratory.

The subsurface soil conditions were logged by DS personnel at the time of drilling, and recorded on field borehole logs. The borehole logs are presented under Appendix C. Additional detail regarding the lithology encountered in the boreholes is presented under Section 6.1.

4.4 Field Screening Measurements

All retrieved soil samples were screened in the field for visual and olfactory observations. No obvious visual or olfactory evidence of potential contamination were noted. No aesthetic impacts (e.g. cinders, slag, hydrocarbon odours) were encountered during this investigation. The soil sample headspace vapour concentrations for all soil samples recovered during the investigation were screened using portable organic vapour testing equipment in accordance with the procedure outlined in the MECP's 'Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario'.

The soil samples were inspected and examined to assess soil type, ground water conditions, and possible chemical contamination by visual and olfactory observations or by organic vapour screening. Samples submitted for chemical analysis were collected from locations judged by the assessor to be most likely to exhibit the highest concentrations of contaminants based on several factors including (i) visual or olfactory observations, (ii) sample location, depth, and soil type (iii) ground water conditions and headspace reading. A summary of the equipment used for field screening is provided below:

Table 4-2: Field Screening Equipment

Parameter	Details		
Make and Model of Field Screening	RKI Eagle 2, Model 5101-P2		
Instrument	Serial Number: E2G721		
Chemicals the equipment can detect	VOCs with dynamic range of 0 parts per million (ppm) to		
and associated detection limits	2,000 ppm PHCs with range of 0 to 50, 000 ppm		
Precision of the measurements	3 significant figures		
Accuracy of the measurements	VOCs: ± 10% display reading + one digit Hydrocarbons: ± 5% display reading + one digit		
Calibration reference standards	PID: Isobutylene		
	CGD: Hexane		
Procedures for checking calibration	In-field re-calibration of the CGI was conducted (using the gas		
of equipment	standard in accordance with the operator's manual instructions) if		
	the calibration check indicated that the calibration had drifted by		
	more than +/- 10%.		

A summary of the soil headspace measurements are provided in the borehole logs, provided under Appendix C.

4.5 Groundwater Monitoring Well Installation

Monitoring wells were installed upon completion of five (5) the boreholes advanced on the Phase Two Property. The monitoring wells were constructed of 51-millimetre (2-inch) inner diameter (ID) flush-threaded schedule 40 polyvinyl chloride (PVC) risers, equipped with a 3.1 m length of No. 10 slot PVC screen. The well screens were sealed at the bottom using a threaded cap and at the top with a lockable J-plug.

Silica sand was placed around and up to 0.6m above the well screen to act as a filter pack. Bentonite was placed from the ground surface to the top of the sand pack. The wells were completed with protective aboveground monument casings.

Details regarding the monitoring well construction can be found in Table 1, and on the borehole logs provided in Appendix C.

Disposable nitrile gloves were used to minimize the potential for cross-contamination during well installation. Dedicated equipment was used for well development and sampling for further minimize the risk of cross contamination.

4.6 Groundwater Sampling

Groundwater sampling was not conducted as groundwater was not identified as a media of concern at the time of this investigation.

4.7 Sediment Sampling

No sediment as defined under O.Reg. 153/04 (as amended) was present on the Phase Two Property at the time of this investigation. Sediment sampling was not conducted as a result.

4.8 Analytical Testing

The soil and groundwater samples collected were submitted to Bureau Veritas (BV) under chain of custody protocols. BV is an independent laboratory accredited by the Canadian Association for Laboratory Accreditation. BV conducted the analyses in accordance with the MECP document "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" dated March 9, 2004 (revised on July 1, 2011).

4.9 Residue Management Procedures

4.9.1 Soil Cuttings From Drilling and Excavations

The soil cuttings generated by the borehole drilling program were stored in 205 L drums, and left on-Site for disposal by a MECP approved waste-hauler for disposal at a MECP-approved waste management facility.

4.9.2 Fluids from Equipment Cleaning

Excess equipment cleaning fluids were stored in 20-L sealed plastic pails and temporarily stored on Site for disposal by a MECP approved waste-hauler for disposal at a MECP-approved waste management facility.

4.10 Elevation Surveying

The ground surface elevations of the boreholes/monitoring wells were surveyed using a Sokkia GCX-2 GNSS RTK receiver, based on global positioning systems satellites.

The ground surface elevations can be found on the borehole logs presented in Appendix C.

4.11 Quality Assurance and Quality Control Measures

4.11.1 Sample containers, preservation, labelling, handling and custody for samples submitted for laboratory analysis, including any deviations from the SAP

All soil and groundwater samples were stored in laboratory-supplied sample containers in accordance with the MECP Analytical Protocol. A summary of the preservatives supplied by the laboratory is provided in the table below.

Table 4-3: Summary of Sample Bottle Preservatives

Media	Parameter	Sample Container		
	PHCs F1	40 mL methanol preserved glass vial with septum lid.		
	VOCs			
Soil	PHCs F2-F4	120 mL or 250 mL unpreserved glass jar with Teflon™-lined lid.		
	metals and ORPs			
	PAHs			

Groundwater samples were collected using dedicated equipment for each well. Groundwater samples collected for analysis of dissolved metals, mercury and hexavalent chromium were filtered in the field using a dedicated 0.45-micron in-line filter. Each sample container was labelled with a unique sample identification, the project number, and the sampling date. All samples were placed in an ice-filled cooler upon completion of sampling, and kept under refrigerated conditions until the time of delivery to the analytical laboratory. A formal chain of custody was maintained for all samples submitted to the laboratory.

4.11.2 Description of equipment cleaning procedures followed during all sampling

Dedicated, disposable nitrile gloves were used for each sampling event to reduce the potential for cross-contamination.

The split spoon sampler was brushed clean of soil, washed in municipal water containing phosphate free detergent, rinsed in municipal water, and then rinsed with distilled water for each sampling interval in order to reduce the potential for cross contamination.

Dedicated equipment was used for well development and sampling for further minimize the risk of cross contamination. Non-dedicated equipment (i.e. interface probe) was cleaned before initial use and between all measurement points with a solution of AlconoxTM and distilled water. The AlconoxTM solution was rinsed off using distilled water.

4.11.3 Description of how the field quality control measures referred to in subsection 3 (3) were carried out

Field duplicate samples were collected at the time of sampling. In accordance with O.Reg. 153/04, one duplicate sample was analyzed per ten samples submitted for analysis. A laboratory prepared trip blank accompanied the groundwater samples during each sampling event and was submitted for laboratory analysis of VOCs.

All field screening devices (i.e. RKI Eagle 2) were calibrated prior to use by the supplier. Calibration checks were completed, and re-calibrations were conducted as required.

4.11.4 Description of, and rational for, any deviations from the procedures set out in the quality assurance and quality control program set out in the SAP

There were no deviations from the QA/QC program described in the SAP.

5.0 Review and Evaluation

5.1 Geology

A summary of the subsurface conditions is presented below. Additional details may be found in the borehole logs appended in Appendix C. The boundaries of soil indicated on the borehole logs and described below are intended to reflect transition zones for the purpose of environmental assessment and should not be interpreted as exact planes of geological change.

A surficial layer of topsoil approximately 200 to 400 mm in thickness was encountered in all of the boreholes advanced. Reworked clayey silt material with trace amounts of organics and sand was encountered below the topsoil. The reworked material was generally heterogeneous and ranged in thickness from 0.5 to 1.9 metres. BH23-511 encountered silty sand below the reworked material with a thickness of 2.2 mbgs. The native overburden material encountered consisted of clayey silt till, with trace amounts of sand and gravel. The clayey silt till unit extended to a maximum depth of 6.7 mbgs and ranged in thickness from 2.3-5.9 m. Silty sand till was encountered below the clayey silt till in BH23-501, BH23-506 to BH23-513 to borehole termination at 6.7 to 8.2 mbgs.

5.2 Ground Water Elevations and Flow Direction

5.2.1 Rationale for Monitoring Well Location and Well Screen Intervals

A total of five (5) monitoring wells were installed on the Phase Two Property in order to assess the groundwater flow direction. The monitoring wells were screened to intersect the

first water bearing formation encountered. The monitoring wells were screened within the clayey silt till unit encountered at an approximate depth of 0.2 to 6.7 mbgs. This unit is inferred to be a semi-confined aquifer.

5.2.2 Results of Interface Probe Measurements

A summary of the groundwater level measurements is provided in Table 1. The groundwater level measurements were collected using a Solinst interface probe (model 122). The depth to groundwater was found to range between 0.70 to 1.80 mbgs on August 29, 2023. There was no indication of DNAPL or LNAPL in the monitoring wells at this time.

5.2.3 Product Thickness and Free Flowing Product

No evidence of product was observed in the monitoring wells at the time of the investigation.

5.2.4 Groundwater Elevation

The groundwater elevation was calculated by subtracting the depth to groundwater from the surface elevation determined by the surface elevation survey conducted as part of this investigation. A summary of the groundwater elevations calculated is presented in Table 1. Generally the groundwater elevation was found to range from 255.49 to 261.78 masl on August 29, 2023 in the upper aquifer investigated.

5.2.5 Groundwater Flow Direction

The groundwater flow direction was interpreted using the groundwater elevations calculated for the monitoring wells installed on the Phase Two Property. Based on the groundwater elevations calculated, the groundwater flow direction is interpreted to be southeasterly towards Fletcher's Creek. The groundwater elevation contours and flow direction are presented on Figure 6.

5.2.6 Assessment of Potential for Temporal Variability in Groundwater Flow Direction

The shallow aquifer investigated is inferred to be an unconfined aquifer, based on the soil stratigraphy observed in the boreholes advanced on the Phase Two Property. It is possible that temporal variations in groundwater elevations may occur on the Phase Two Property in response to seasonal weather patterns.

Temporal variability in groundwater level has the ability to influence the groundwater flow direction. The degree of variation in groundwater levels on the Phase Two Property can only be confirmed with long-term monitoring.

5.2.7 Evaluation of Potential Interaction Between Buried Utilities and the Water Table

The Phase Two Property is currently undeveloped, no buried services are present.

5.3 Ground Water Hydraulic Gradients

5.3.1 Horizontal Hydraulic Gradient

The horizontal hydraulic gradient was calculated based on the groundwater levels recorded on August 29. 2023.

Table 5-1: Summary of Horizontal Hydraulic Gradient Calculations

Hydrogeological Unit	Calculated Horizontal Hydraulic Gradient	
Overburden – clayey silt till	Minimum: 0.00582	
	Average: 0.00064	
	Maximum: 0.00847	

5.3.2 Vertical Hydraulic Gradient

The vertical hydraulic gradient was not calculated, as no groundwater impacts were identified on the Phase Two Property.

5.4 Fine-Medium Soil Texture

Not Applicable – the MECP Table 8 SCS applies to medium-fine and coarse textured soils.

5.5 Soil Field Screening

Soil vapour headspace readings were collected at the time of sample collection, the results of which are presented on the borehole logs (Appendix C). The soil vapour headspace readings were collected using a PID and CGD in methane elimination mode. The PID readings ranged between 0 and 1 ppm. The CGD readings ranged between 0 and 60 ppm.

The soil samples were also screened for visual and olfactory indicators of impacts (e.g. staining, odours). No visual or olfactory impacts were observed.

5.6 Soil Quality

The results of the chemical analyses conducted are presented in Tables 4 and 5. A visual summary of the location of the sample locations is provided in Figures 7A and 7B. The laboratory certificates of analysis have been provided under Appendix D.

5.6.1 Metals and ORPs

A total of 10 samples, including one (1) field duplicate for QA/QC purposes were submitted for analysis of metals. An additional two (2) samples were submitted for pH. The results of the analyses are tabulated in Table 4, and presented on Figure 7A. The results of the chemical analyses conducted indicated that all samples analyzed met the MECP Table 8 SCS.

5.6.2 Organochlorinated Pesticides

A total of 10 samples, including one (1) field duplicate for QA/QC purposes were submitted for analysis of OCPs. The results of the analyses are tabulated in Table 5, and presented on Figure 7B. The results of the chemical analyses conducted indicated that all samples analyzed met the MECP Table 8 SCS.

5.6.3 Commentary on Soil Quality

The soil samples were found to satisfy the applicable site condition standards.

5.7 Ground Water Quality

Groundwater was not identified as a media of concern at the time of this investigation.

5.8 Sediment Quality

No sediment was present on the Phase Two Property at the time of the investigation.

5.9 Quality Assurance and Quality Control Results

Collection of soil and groundwater samples was conducted in general accordance with the MECP *Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario*. As described in Section 5.12, dedicated equipment was used where possible, and all non-dedicated equipment was decontaminated before and between sampling events. All soil and groundwater samples were transferred directly into laboratory-supplied containers. The laboratory containers were prepared by the laboratory with suitable preservative, as required. All samples were stored and transported under refrigerated conditions. Chain of custody protocols were maintained from the time of sampling to delivery to the analytical laboratory.

The field QA/QC program involved the collection of field duplicate soil and groundwater samples, and the use of a trip blank for each groundwater sampling event (when suitable). In addition to the controls listed above, the analytical laboratory employed method blanks, internal laboratory duplicates, surrogate spike samples, matrix spike samples, and standard reference materials.

A summary of the field duplicate samples analyzed and an interpretation of the efficacy of the QA/QC program is provided in the table below.

Table 5-2: Summary of QA/QC Results

Sample ID	QA/QC duplicate	Medium	Parameter Analyzed	QA/QC Result
DUP-1	S5	Soil	Metals, OCPs	All results were within the analytical protocol criteria for RPD.

Based on the interpretation of the laboratory results and the QA/QC program, it is the opinion of the QP that the laboratory analytical data can be relied upon.

All samples were handled in accordance with the MECP Analytical Protocol regarding sample holding time, preservation methods, storage requirements, and type of container.

BV routinely conducts internal QA/QC analyses in order to satisfy regulatory QA/QC requirements. The results of the BV QA/QC analyses for the submitted soil samples are summarized in the laboratory Certificates of Analyses provided in Appendix D.

The following comments were provided by BV on the laboratory Certificates of Analysis. Commentary on the comments has been provided below:

- ◆ Laboratory Certificate C3P2467 The matrix spike for lead exceeded acceptance limits for the metals analysis. Sample inhomogeneity is suspected. The overall QA/QC analysis met acceptable laboratory criteria. As such, DS does not consider this to be an issue of significant concern and it has no impact on the overall interpretation of the analytical data;
- ◆ Laboratory Certificate C3P2467 The recovery or RPD for lead is outside of control limits. BV noted that the overall QA/QC analysis met acceptable laboratory criteria. As such, DS does not consider this to be an issue of significant concern and it has no impact on the overall interpretation of the analytical data;
- ▶ Laboratory Certificate C3P2467 Aroclor 1254 was detected in the method blank at a level marginally above the detection limit. BV noted that this may represent a high bias in some results, however this has no impact on results that were non-detect. The overall QA/QC analysis met acceptable laboratory criteria. As such, DS does not consider this to be an issue of significant concern and it has no impact on the overall interpretation of the analytical data;
- ◆ Laboratory Certificate C3P2467 The recovery for DDT was above the upper control limit. BV noted that this may represent a high bias in some results, however this has

no impact on results that were non-detect. The overall QA/QC analysis met acceptable laboratory criteria. As such, DS does not consider this to be an issue of significant concern and it has no impact on the overall interpretation of the analytical data;

With respect to subsection 47(3) of O.Reg 153/04 (as amended), all certificates of analysis or analytical reports pursuant to clause 47(2) (b) of the regulation comply with subsection 47(3). A certificate of analysis has been received for each sample submitted for analysis and have been provided (in full) in Appendix D.

A review of the QA/QC sample results indicated that no issues were identified with respect to both the field collection methodology and the laboratory reporting. It is the opinion of the QP that the analytical data obtained are representative of the soil and groundwater conditions at the Phase Two Property for the purpose of assessing whether the soil and groundwater at the Phase Property meets the applicable MECP SCS.

5.10 Phase Two Conceptual Site Model

The Phase Two Conceptual Site Model is presented under Appendix E.

6.0 Conclusions

This Phase Two ESA involved that advancement of 13 boreholes, the installation of five (5) monitoring wells on the Phase Two Property, and the collection of soil samples for analysis of the potential contaminants of concern, including: Metals, As, Sb, Se, CN-, pH and OCPs.

Based on the results of the information gathered through the course of the investigation, DS presents the following conclusions:

A surficial layer of topsoil approximately 200 to 400 mm in thickness was encountered in all of the boreholes advanced. Reworked clayey silt material with trace amounts of organics and sand was encountered below the topsoil. The reworked material was generally heterogeneous and ranged in thickness from 0.5 to 1.9 metres. BH23-511 encountered silty sand below the reworked material with a thickness of 2.2 mbgs. The native overburden material encountered consisted of clayey silt till, with trace amounts of sand and gravel. The clayey silt till unit extended to a maximum depth of 6.7 mbgs and ranged in thickness from 2.3-5.9 m. Silty sand till was encountered below the clayey silt till in BH23-501, BH23-506 to BH23-513 to borehole termination at 6.7 to 8.2 mbgs. The wells were screened in the clayey silt till unit encountered.

- The groundwater flow direction was interpreted to be southeasterly towards Fletchers Creek.
- All soil samples analyzed met the MECP Table 8 Site Condition Standards.
- All monitoring wells should be decommissioned in accordance with O.Reg. 903 when no longer required.

It is the opinion of the QP_{ESA} that the applicable SCS for the soil and groundwater at the Phase Two Property have been met as of the Certification Date of August 30, 2023. No further subsurface investigation is recommended at this time regarding the environmental quality of the soil and groundwater at the Phase Two Property.

6.1 Qualifications of the Assessors

Megan Bender, B.E.S, EPt

Ms. Bender is an Environmental Specialist with DS Consultants Ltd. Megan holds a Bachelor's degree in Environmental Studies, specializing in environmental assessments, a minor in geography from the University of Waterloo and a Post Graduate Certificate in Environmental Engineering Applications from Conestoga College. Megan is registered as an Environmental Professional in training (EPt) with ECO Canada. Megan has been involved with Phase One and Phase Two Environmental Site Assessments, data interpretation and reporting, and geotechnical projects.

Efuange Khumbah, M.Sc., P.Eng, QP_{ESA}

Efuange is a Senior Project Manager, providing environmental services at DS Consultants Ltd. He is the line of communication between clients, customers, and businesses to get projects done. With over 12 years working for the public and private sectors, Efuange has experience serving clients in constructional, financial institutions, insurance companies, legal firms, manufacturing industries, oil/gas/petrochemical as well as municipal, provincial and federal agencies. In Canada he has managed projects in British Columbia, Alberta, Ontario, Quebec, New Brunswick, Nova Scotia, Prince Edward Island, and Newfound land. His area of expertise includes, environmental site assessment, soil and groundwater remediation, litigation support, excess soil management, senior review of environmental reports, and air quality monitoring. Reports prepared by Efuange have been published by the Town of Newmarket, City of Mississauga, and the Ontario Ministry of Environment Conservation and Parks. Efuange hold a M.Sc. degree in Environmental Science and Resource management.

Mr. Patrick (Rick) Fioravanti, B.Sc., P.Geo., QPESA

Mr. Patrick (Rick) Fioravanti is an Environmental Geoscientist specializing in Environmental Site Assessments, Brownfields Remediation Projects and Excess Soil Management. He holds an Honours Bachelor of Science with distinction in Toxicology from the University of Guelph and is a practicing member of the Association of Professional Geoscientists of Ontario (APGO). Rick is the Manager of Environmental Services with DS, responsible for the supervision and management of Phase One and Two Environmental Site Assessments, assessment of soil/fill management for import/export of soils, soil vapour and indoor air quality assessments, and remediation.

Rick has over ten years of environmental consulting experience and has conducted and/or managed hundreds of projects in his professional experience. Rick has extensive experience conducting Phase One and Phase Two Environmental Site Assessments in support of brownfields redevelopment in urban settings, and been involved in numerous remediation and risk assessments projects. Rick specializes in utilizing emerging technologies such as high-resolution site characterization and contaminant forensics to help Clients achieve their development objectives. Rick is a Qualified Person (QP) to conduct Environmental Site Assessments as defined by Ontario Regulation 153/04 (as amended) and Ontario Regulation 406/19 and has successfully filed numerous Records of Site Condition with the Ministry of Environment, Conservation and Parks.

6.2 Signatures

This Phase Two ESA was conducted under the supervision of Patrick Fioravanti, B.Sc., P.Geo., QP_{ESA}, in accordance with the requirements of O.Reg. 153/04 (as amended). The findings and conclusions presented have been determined based on the information obtained at the time of the investigation, and on an assessment of the conditions of the Site at this time.

We trust this report meets with your requirements. Should you have any questions regarding the information presented, please do not hesitate to contact our office.

Yours truly,

DS Consultants Ltd

Prepared By:

Megan Bender, B.E.S., EPt **Environmental Specialist**

Reviewed By:

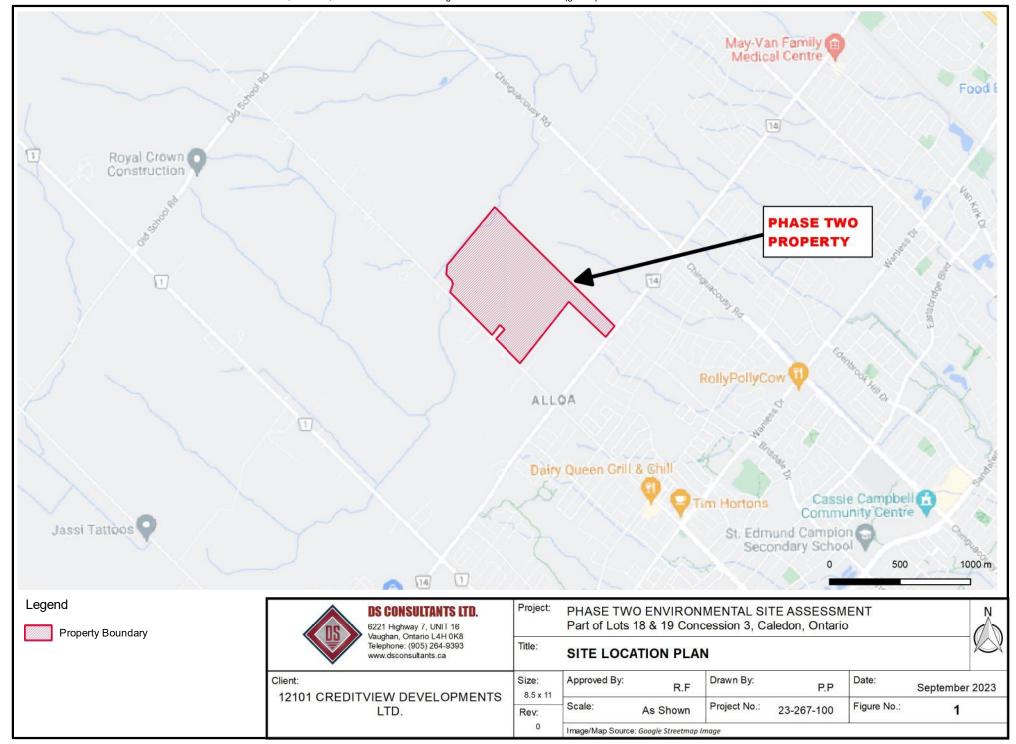
Efuange Khumbah, M.Sc., P.Eng., QPESA

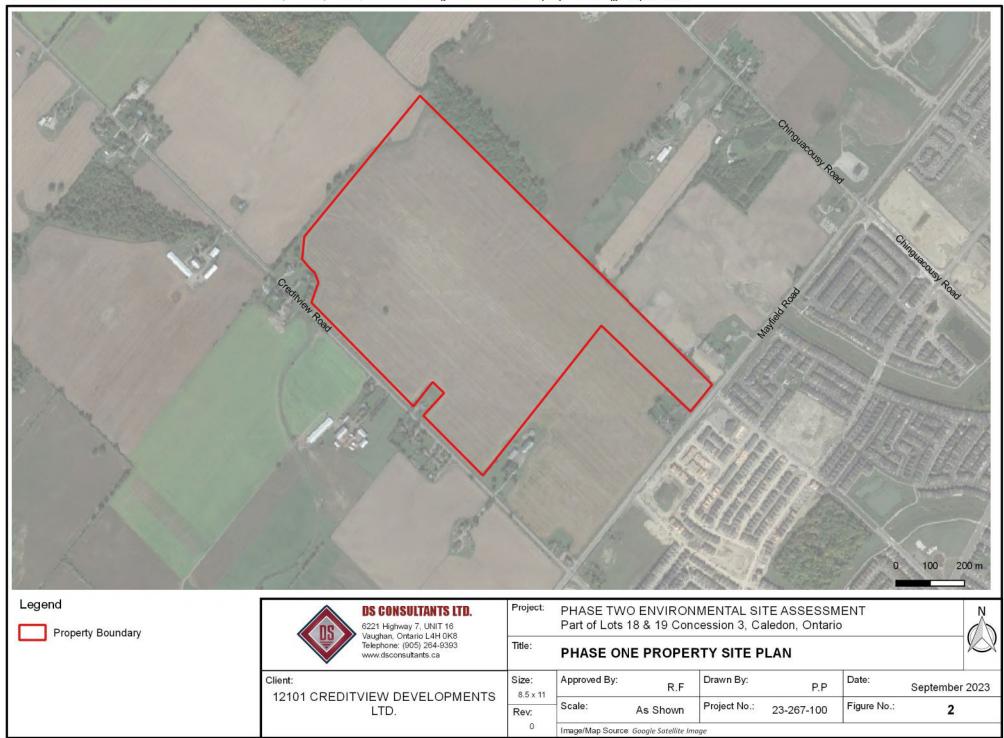
Senior Project Manager-Environmental Services Manager – Environmental Services

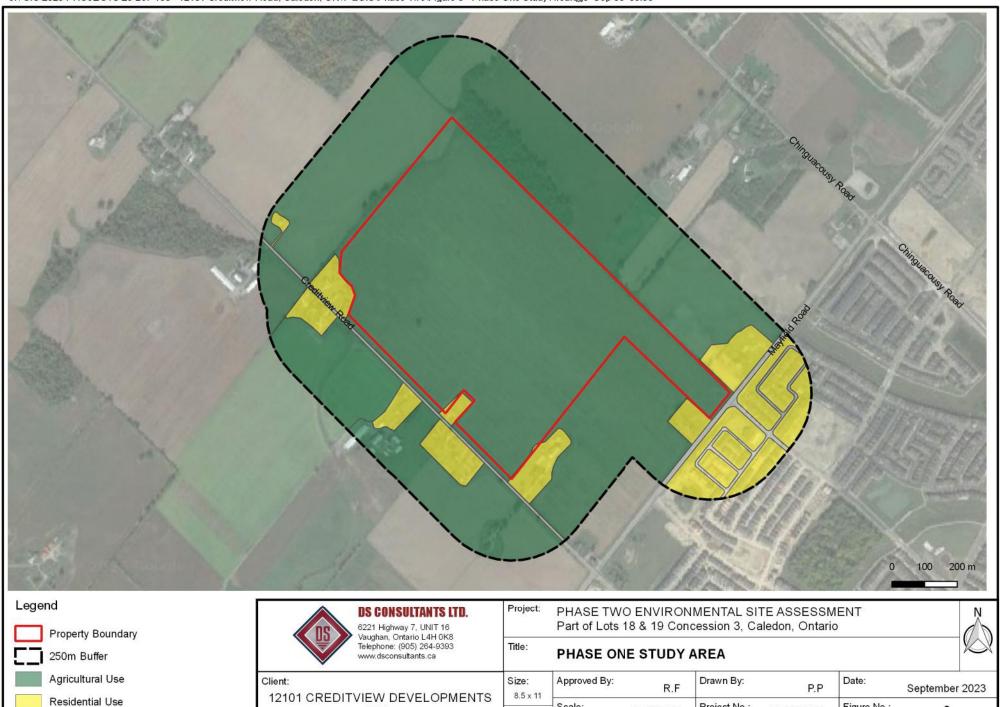
Patrick Fioravanti, B.Sc., P.Geo., QPESA

6.3 Limitations

This report was prepared for the sole use of 12101 Creditview Developments Ltd. and is intended to provide an assessment of the environmental condition on the property located at Part of Lots 18 & 19, Concession 3, Caledon, Ontario. The information presented in this report is based on information collected during the completion of the Phase Two Environmental Site Assessment by DS Consultants Ltd. The material in this report reflects DS' judgment in light of the information available at the time of report preparation. This report may not be relied upon by any other person or entity without the written authorization of DS Consultants Ltd. The scope of services performed in the execution of this investigation may not be appropriate to satisfy the needs of other users, and any use or reuse of this documents or findings, conclusions and recommendations represented herein, is at the sole risk of said users.


The conclusions drawn from the Phase Two ESA were based on information at selected observation and sampling locations. Conditions between and beyond these locations may become apparent during future investigations or on-Site work, which could not be detected or anticipated at the time of this investigation. The sampling locations were chosen based upon a cursory historical search, visual observations and limited information provided by persons knowledgeable about past and current activities on this Site during the Phase Two ESA activities. As such, DS Consultants Ltd. cannot be held responsible for environmental conditions at the Site that was not apparent from the available information.


7.0 References


- Armstrong, D.K. and Dodge, J.E.P. *Paleozoic Geology Map of Southern Ontario*. Ontario Geological Survey, Miscellaneous Release--Data 219.
- Chapman, L.J. and Putnam, D.F. 2007. The Physiography of Southern Ontario. Ontario Geological Survey, Miscellaneous Release--Data 228.
- Freeze, R. Allen and Cherry, John A., 1979. *Ground water*. Page 29.
- Ontario Ministry of the Environment, December 1996. *Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario.*
- Ontario Ministry of Environment, 15 April 2011. Soil, Ground Water and Sediment Standards for use under part XV.10f the Environmental Protection Act.
- Ontario Ministry of the Environment, June 2011. Guide for Completing Phase Two Environmental Site Assessments under Ontario regulation 153/04.
- Ontario Ministry of the Environment, July 2011. Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act.
- The Ontario Geological Survey. 2003. Surficial Geology of Southern Ontario.
- "Phase One Environmental Site Assessment, 12101 Creditview Road, Caledon, Ontario", dated September 26, 2023, prepared for 12101 Creditview Developments Ltd., prepared by DS Consultants (DS 2023 Phase One ESA).

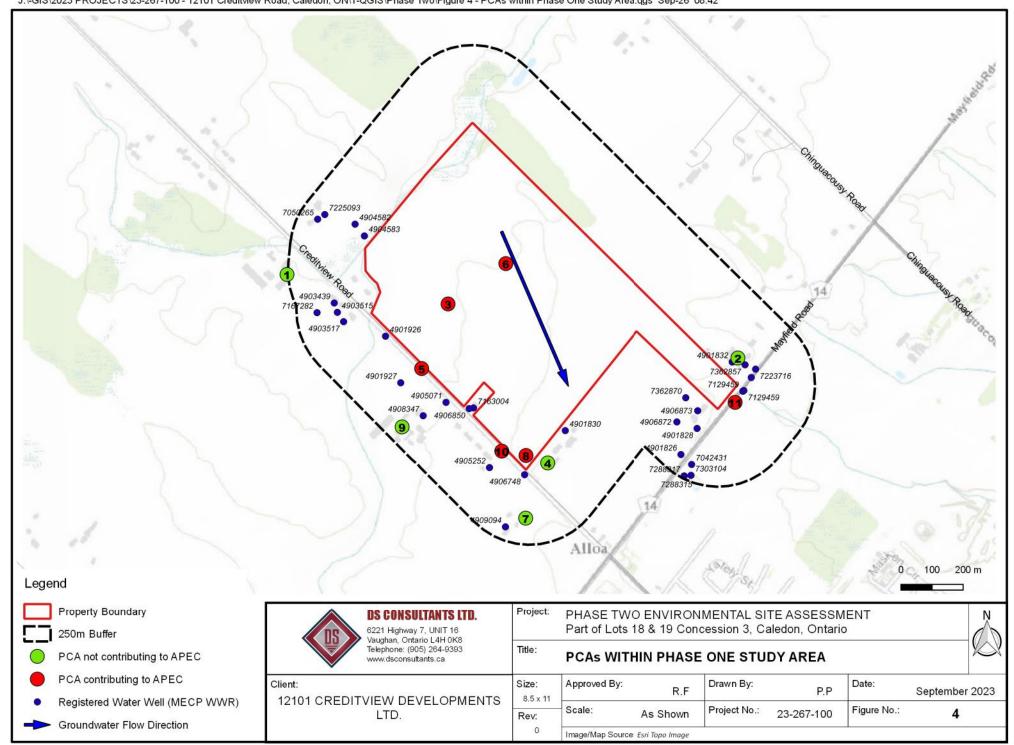
Figures

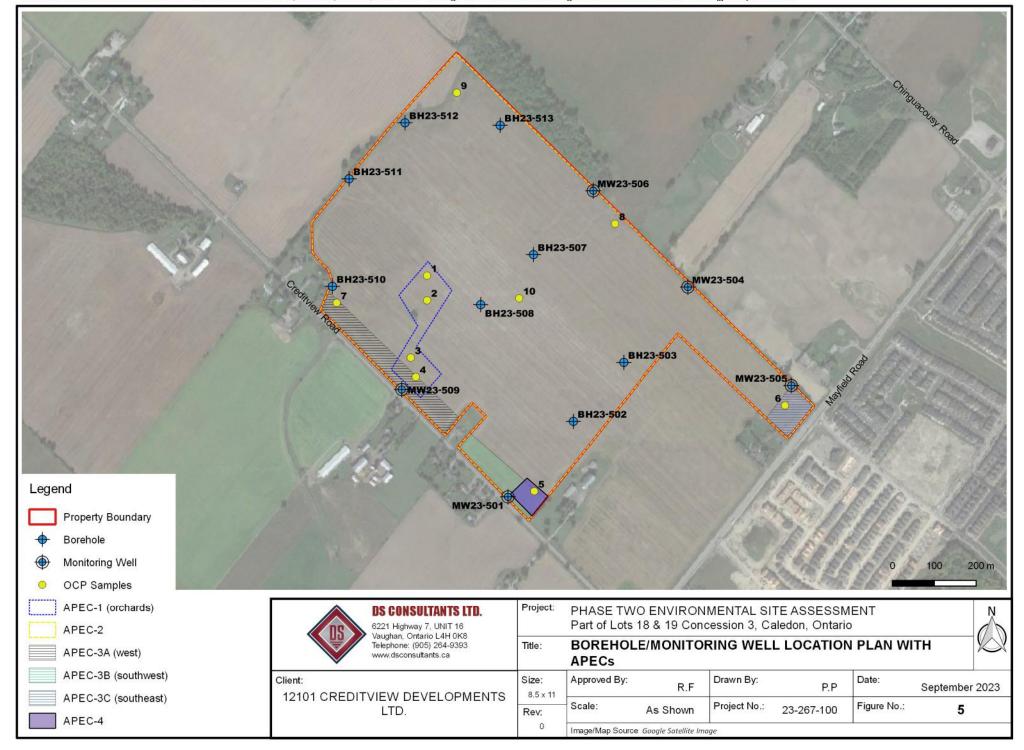
Scale:

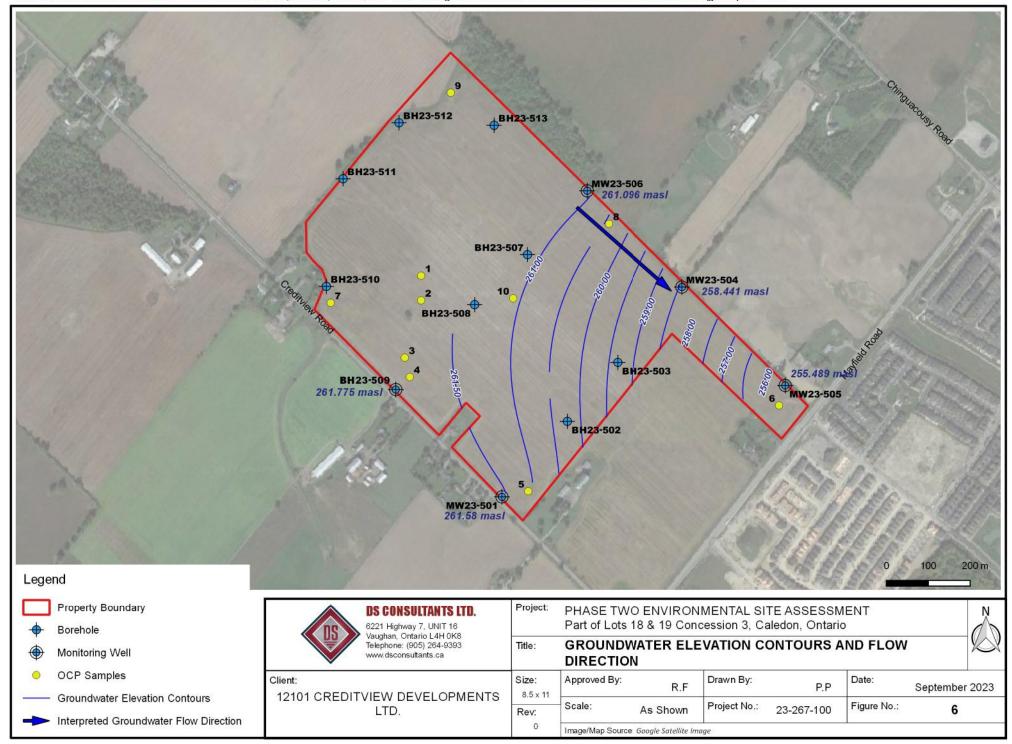
Rev:

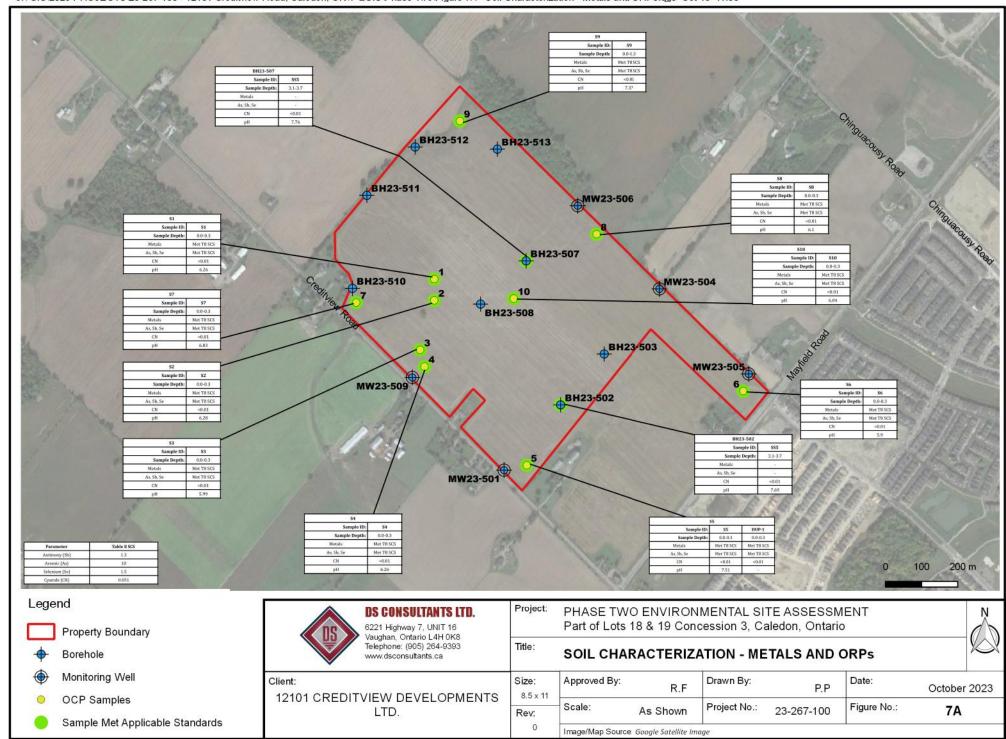
LTD.

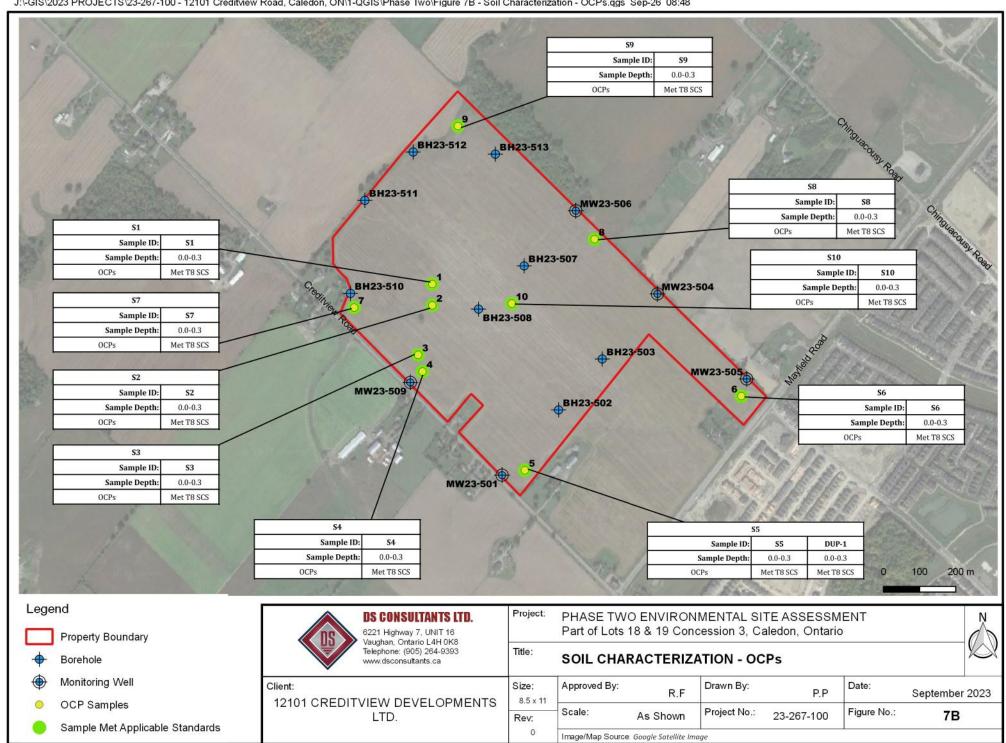
Project No.:

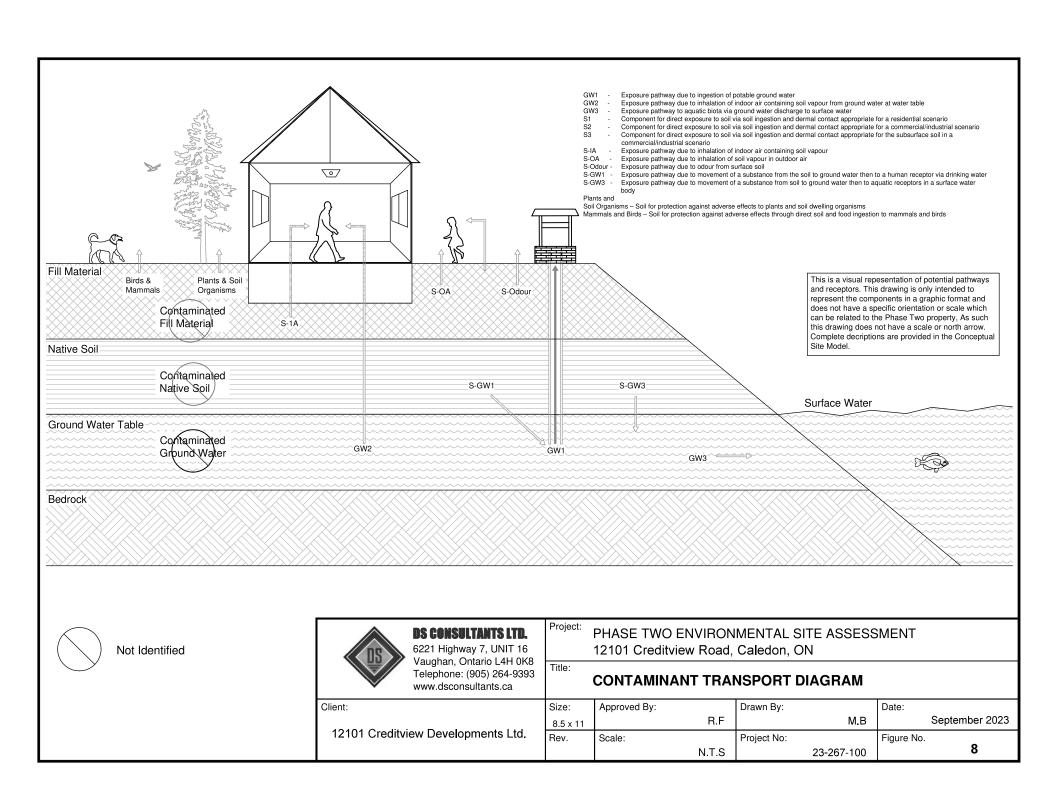

23-267-100


As Shown


Image/Map Source: Google Satellite Image


Figure No.:


3



Tables

Table 1: Summary of Monitoring Well Installation and Groundwater Data

	Well ID		BH/MW23-501	BH/MW23-504	BH/MW23-505	BH/MW23-506	BH/MW23-509
	Installed By:		DS	DS	DS	DS	DS
Iı	nstallation Date:		11-Aug-23	10-Aug-23	10-Aug-23	10-Aug-23	11-Aug-23
	Well Status:		Active	Active	Active	Active	Active
	EastUTM17		591782.141	592213.156	592459.861	591985.985	591528.513
	NorthUTM17		4840022.555	4840523.816	4840288.718	4840753.781	4840278.95
Inner Diameter		(mm)	50	50	50	50	50
Surface Elevatio	on	(masl)	263.21	259.81	257.29	262.34	262.48
Bottom of Conc	rete Seal/Top	mbgs	0.30	0.30	0.30	0.30	0.30
of Bentonite Sea	al	masl	262.91	259.51	256.99	262.04	262.18
Bottom of Bentonite Seal/Top		mbgs	2.50	2.50	2.50	0.91	2.50
of Sand Pack		masl	260.71	257.31	254.79	261.43	259.98
Top of Well Scr	oon	mbgs	3.10	3.10	3.10	1.55	3.10
Top of Well Scre	een	masl	260.11	256.71	254.19	260.79	259.38
Well Screen Ler	ngth	m	3.00	3.00	3.00	1.50	3.00
Bottom of Well	Canaan	mbgs	6.10	6.10	6.10	3.05	6.10
bottoili oi weii	screen	masl	257.11	253.71	251.19	259.29	256.38
			GV	W Monitoring			
10 Aug 22	Depth to GW	mbgs	1.35	NM	NM	0.79	0.67
18-Aug-23	GW Elevation	masl	261.86	14 141	INIVI	261.55	261.81
_	Depth to GW	mbgs	1.63	1.37	1.80	1.24	0.70
29-Aug-23	GW Elevation	masl	261.58	258.44	255.49	261.10	261.78

For Table Notes see **Notes for Soil and Groundwater Summary Tables,** included at the end of this Section.

Table 2: Summary of Soil Samples Submitted for Chemical Analysis

Borehole ID	Sample No.	Sample Depth (mbgs)	Soil Description	Parameter Analyzed	APEC Investigated
BH23-502	SS5	3.1-3.7	Clayey Silt Till	рН	APEC-2
BH23-507	SS5	3.1-3.7	Clayey Silt Till	рН	APEC-Z
S1	S1	0.0-0.3	Topsoil	Metals, OCPs	
S2	S2	0.0-0.3	Topsoil	Metals, OCPs	APEC-1, APEC-2
S3	S3	0.0-0.3	Topsoil	Metals, OCPs	APEC-1, APEC-2
S4	S4	0.0-0.3	Topsoil	Metals, OCPs	
S5	S5	0.0-0.3	Tongoil	Metals, OCPs	APEC-2, APEC-4
35	DUP-1	0.0-0.3	Topsoil	Metals, OCPS	
S6	S6	0.0-0.3	Topsoil	Metals, OCPs	
S7	S7	0.0-0.3	Topsoil	Metals, OCPs	APEC-2
S8	S8	0.0-0.3	Topsoil	Metals, OCPs	AFEC-2
S9	S9	0.0-0.3	Topsoil	Metals, OCPs	
S10	S10	0.0-0.3	Topsoil	Metals, OCPs	

For Table Notes see **Notes for Soil and Groundwater Summary Tables**, included at the end of this Section.

Table 3: Summary of APECs Investigated

	Imary of Air Les investigated					I .
APEC	Description	PCOCs	Media	Boreholes Within APEC	Samples Analysed	Parameter Analyzed
	TI 4000 C All			S1	S1	Metals, OCPs
APEC-1	The 1880 County Atlas indicated two	I MATAIC AC SA I	Soil	S2	S2	Metals, OCPs
APEC-1	(2) historical orchards on the central portion of the Site.		3011	S3	S3	Metals, OCPs
	portion of the site.			S4	S4	Metals, OCPs
				BH23-502	SS5	рН
				BH23-507	SS5	рН
				S1	S1	Metals, OCPs
				S2	S2	Metals, OCPs
				S3	S3	Metals, OCPs
	Pesticides may be used on the	M + 1 A Cl		S4	S4	Metals, OCPs
APEC-2	agricultural fields across the entire	Metals, As, Sb, Se, CN-, OCPs	Soil	S5	S5	Metals, OCPs
	Site.	Se, CIN-, OCFS		35	DUP-1	
				S6	S6	Metals, OCPs
				S7	S7	Metals, OCPs
				S8	S8	Metals, OCPs
				S9	S9	Metals, OCPs
				S10	S10	Metals, OCPs
APEC-4	The 1880 County Atlas indicated a historical orchard on the south	Metals, As, Sb,	Soil	S5 -	S5	Metals, OCPs
Ar EC-4	corner of the Site.	Se, CN-, OCPs	3011	. JJ	DUP-1	Mictals, OGFS

For Table Notes see **Notes for Soil and Groundwater Summary Tables,** included at the end of this Section

Table 4: Summary of Metals and ORPs in Soil

Parameter		BH23-502 SS5	BH23-507 SS5	S1	S2	S 3	S4	S 5
Date of Collection	1	11-Aug-23	11-Aug-23	18-Aug-23	18-Aug-23	18-Aug-23	18-Aug-23	18-Aug-23
Date Reported	MECP Table	23-Aug-23	23-Aug-23	30-Aug-23	30-Aug-23	30-Aug-23	30-Aug-23	30-Aug-23
Sampling Depth (mbgs)	8 SCS	3.1-3.7	3.1-3.7	0.0-0.3	0.0-0.3	0.0-0.3	0.0-0.3	0.0-0.3
Analytical Report Reference No.		C3P0415	C3P0415	C3P2467	C3P2467	C3P2467	C3P2467	C3P2467
Antimony	1.3	-	-	<0.20	<0.20	<0.20	<0.20	<0.20
Arsenic	18	-	-	3.5	4.1	4.4	4.2	3.5
Barium	220	-	-	73	84	100	97	65
Beryllium	2.5	-	-	0.76	0.8	0.99	0.91	0.67
Boron	36	-	-	<5.0	<5.0	5.6	5.1	5.1
Boron (Hot Water Soluble)	1.5	-	-	-	-	-	-	-
Cadmium	1.2	-	-	0.24	0.21	0.28	0.18	0.2
Chromium	70	-	-	22	23	29	27	21
Chromium VI	0.66	-	-	-	-	-	-	-
Cobalt	22	-	-	11	12	14	13	8.8
Copper	92	-	-	17	17	19	17	19
Cyanide	0.051	-	-	< 0.01	< 0.01	<0.01	<0.01	< 0.01
Lead	120	-	-	14	16	17	17	16
Mercury	0.27	-	-	-	-	-	-	-
Molybdenum	2	-	-	<0.50	<0.50	0.63	<0.50	<0.50
Nickel	82	-	-	19	21	24	23	18
Selenium	1.5	-	-	<0.50	<0.50	<0.50	<0.50	<0.50
Silver	0.5	-	-	<0.20	<0.20	<0.20	<0.20	<0.20
Thallium	1	-	-	0.12	0.14	0.17	0.16	0.13
Uranium	2.5	-	-	0.75	0.78	1	0.83	0.57
Vanadium	86	-	-	32	35	43	39	29
Zinc	290	-	-	79	74	84	71	81
Electrical Conductivity (2:1)	0.7	-	-	-	-	-	-	-
Sodium Adsorption Ratio	5	-	-	-	-	-	-	-
pH, 2:1 CaCl2 Extraction	NV	7.69	7.76	6.26	6.28	5.99	6.26	7.51

For Table Notes see Notes for Soil and Groundwater Summary Tables, included at the end of this Section

Table 4: Summary of Metals and ORPs in Soil

Parameter		DUP-1 (S5)	S6	S7	S8	S9	S10
Date of Collection		18-Aug-23	18-Aug-23	18-Aug-23	18-Aug-23	18-Aug-23	18-Aug-23
Date Reported	MECP Table	30-Aug-23	30-Aug-23	30-Aug-23	30-Aug-23	30-Aug-23	30-Aug-23
Sampling Depth (mbgs)	8 SCS	0.0-0.3	0.0-0.3	0.0-0.3	0.0-0.3	0.0-0.3	0.0-0.3
Analytical Report Reference No.		C3P2467	C3P2467	C3P2467	C3P2467	C3P2467	C3P2467
Antimony	1.3	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Arsenic	18	3.6	3.4	3.4	3.9	4.7	3.5
Barium	220	68	59	96	68	78	63
Beryllium	2.5	0.7	0.6	0.77	0.66	0.67	0.64
Boron	36	5	<5.0	7	<5.0	5.5	<5.0
Boron (Hot Water Soluble)	1.5	-	-	-	-	-	-
Cadmium	1.2	0.22	0.21	0.33	0.2	0.27	0.16
Chromium	70	22	17	23	21	20	21
Chromium VI	0.66	-	-	-	-	-	-
Cobalt	22	9.1	8.9	9.4	8.7	9.1	8.9
Copper	92	20	12	27	14	20	12
Cyanide	0.051	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Lead	120	16	15	17	16	13	14
Mercury	0.27	-	-	ı	ı	-	ı
Molybdenum	2	<0.50	<0.50	<0.50	<0.50	<0.50	0.51
Nickel	82	19	14	22	17	18	16
Selenium	1.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Silver	0.5	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Thallium	1	0.13	0.11	0.14	0.13	0.12	0.13
Uranium	2.5	0.57	0.72	1.5	0.73	0.75	0.73
Vanadium	86	30	27	32	32	29	32
Zinc	290	83	62	92	68	79	60
Electrical Conductivity (2:1)	0.7	-	-	-	-	-	1
Sodium Adsorption Ratio	5	-	-	-	-	-	-
pH, 2:1 CaCl2 Extraction	NV	-	5.9	6.83	6.1	7.37	6.04

For Table Notes see **Notes for Soil and Groundwate**

Table 5: Summary of OCPs in Soil

Parameter		S1	S2	S 3	S4	S 5	DUP-1 (S5)	S 6	S7
Date of Collection	MECP	18-Aug-23	18-Aug-23	18-Aug-23	18-Aug-23	18-Aug-23	18-Aug-23	18-Aug-23	18-Aug-23
Date Reported	Table 8	30-Aug-23	30-Aug-23	30-Aug-23	30-Aug-23	30-Aug-23	30-Aug-23	30-Aug-23	30-Aug-23
Screen Interval (mbgs)	SCS	0.0-0.3	0.0-0.3	0.0-0.3	0.0-0.3	0.0-0.3	0.0-0.3	0.0-0.3	0.0-0.3
Analytical Report Reference No.		C3P2467	C3P2467	C3P2467	C3P2467	C3P2467	C3P2467	C3P2467	C3P2467
Aldrin	0.05	<0.0020	<0.0020	< 0.0020	<0.0020	< 0.0020	< 0.0020	<0.0020	<0.0020
Chlordane	0.05	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	< 0.0020	<0.0020	<0.0020
DDD	0.05	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	< 0.0020	<0.0020	<0.0020
DDE	0.05	<0.0020	<0.0020	< 0.0020	< 0.0020	<0.0020	< 0.0020	<0.0020	<0.0020
DDT	1.4	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	< 0.0020	<0.0020	<0.0020
Dieldrin	0.05	<0.0020	<0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	<0.0020	<0.0020
Endosulfan	0.04	<0.0020	<0.0020	< 0.0020	<0.0020	<0.0020	< 0.0020	< 0.0020	< 0.0020
Endrin	0.04	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	< 0.0020	<0.0020	<0.0020
Hexachlorocyclohexane Gamma-	0.01	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	< 0.0020	<0.0020	<0.0020
Heptachlor	0.05	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	< 0.0020	<0.0020	<0.0020
Heptachlor Epoxide	0.05	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	< 0.0020	<0.0020	<0.0020
Hexachlorobenzene	0.02	<0.0020	<0.0020	< 0.0020	<0.0020	<0.0020	< 0.0020	< 0.0020	< 0.0020
Hexachlorobutadiene	0.01	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	< 0.0020	<0.0020	<0.0020
Hexachloroethane	0.01	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	< 0.0020
Methoxychlor	0.05	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
PCBs	0.3	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015

For Table Notes see **Notes for Soil and Groundwater Summary Tables,** included at the end of this Section.

16

Table 5: Summary of OCPs in Soil

Parameter		S8	S 9	S10
Date of Collection	MECP	18-Aug-23	18-Aug-23	18-Aug-23
Date Reported	Table 8	30-Aug-23	30-Aug-23	30-Aug-23
Screen Interval (mbgs)	SCS	0.0-0.3	0.0-0.3	0.0-0.3
Analytical Report Reference No.		C3P2467	C3P2467	C3P2467
Aldrin	0.05	<0.0020	<0.0020	<0.0020
Chlordane	0.05	<0.0020	<0.0020	<0.0020
DDD	0.05	<0.0020	<0.0020	<0.0020
DDE	0.05	<0.0020	<0.0020	<0.0020
DDT	1.4	<0.0020	< 0.0020	<0.0020
Dieldrin	0.05	<0.0020	<0.0020	< 0.0020
Endosulfan	0.04	<0.0020	<0.0020	<0.0020
Endrin	0.04	<0.0020	< 0.0020	< 0.0020
Hexachlorocyclohexane Gamma-	0.01	<0.0020	<0.0020	<0.0020
Heptachlor	0.05	<0.0020	< 0.0020	< 0.0020
Heptachlor Epoxide	0.05	<0.0020	<0.0020	<0.0020
Hexachlorobenzene	0.02	<0.0020	<0.0020	< 0.0020
Hexachlorobutadiene	0.01	<0.0020	<0.0020	<0.0020
Hexachloroethane	0.01	<0.0020	<0.0020	<0.0020
Methoxychlor	0.05	<0.0050	<0.0050	<0.0050
PCBs	0.3	<0.015	<0.015	<0.015

For Table Notes see **Notes for Soil and Groundwat**(

Table 6: Summary of Maximum Concentrations in Soil

	Parameter	Standard	Maximum Concentration	Location	
	Antimony	1.3	-	All Samples	
	Arsenic	18	4.7	S9	
	Barium	220	100	S3	
	Beryllium	2.5	0.99	S3	
	Boron	36	7	S7	
	Boron (Hot Water Soluble)	1.5	-	All Samples	
	Cadmium	1.2	0.33	S7	
	Chromium	70	29	S3	
	Chromium VI	0.66	-	All Samples	
	Cobalt	22	14	S3	
{Ps	Copper	92	27	S7	
Metals and ORPs	Cyanide	0.051	-	All Samples	
anc	Lead	120	17	S3	
als	Mercury	0.27	-	All Samples	
Met	Molybdenum	2	0.63	S3	
	Nickel	82	24	S3	
	Selenium	1.5	-	All Samples	
	Silver	0.5	-	All Samples	
	Thallium	1	0.17	S3	
	Uranium	2.5	1.5	S7	
	Vanadium	86	43	S3	
	Zinc	290	92	S7	
	Electrical Conductivity (2:1)	0.7	-	All Samples	
	Sodium Adsorption Ratio	5	-	All Samples	
	pH, 2:1 CaCl2 Extraction	NV	7.76	BH23-507 SS5	
	Aldrin	0.05	<0.0020	All Samples	
	Chlordane	0.05	<0.0020	All Samples	
	DDD	0.05	<0.0020	All Samples	
	DDE	0.05	<0.0020	All Samples	
	DDT	1.4	<0.0020	All Samples	
	Dieldrin	0.05	<0.0020	All Samples	
	Endosulfan	0.04	<0.0020	All Samples	
0CPs	Endrin	0.04	<0.0020	All Samples	
00	Hexachlorocyclohexane Gamma-	0.01	<0.0020	All Samples	
	Heptachlor	0.05	<0.0020	All Samples	
	Heptachlor Epoxide	0.05	<0.0020	All Samples	
	Hexachlorobenzene	0.02	<0.0020	All Samples	
	Hexachlorobutadiene	0.01	<0.0020	All Samples	
	Hexachloroethane	0.01	<0.0020	All Samples	
	Methoxychlor	0.05	<0.0050	All Samples	
	PCBs	0.3	<0.015	All Samples	

 $For Table\ Notes\ see\ \textbf{Notes}\ for\ \textbf{Soil}\ and\ \textbf{Groundwater}\ \textbf{Summary}\ \textbf{Tables}\ , \ included\ at\ the\ end\ of\ this\ Section.$

Notes for Soil and Groundwater Summary Tables

	For soil and groundwater analytical results, concentration exceeds the applicable Standards.
	For soil and groundwater analytical results, laboratory detection limits exceed the applicable Standards.
BTEX	Benzene, Toluene, Ethylbenzene, Xylene
masl	Meters above sea level
MECP	Generic Condition Standards in a Potable Groundwater Condition for Use within 30 m of a Water Body as
Table 8	contained in Table 8 of the "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the
SCS	Environmental Protection Act", published by the MECP on April 15, 2011.
mbgs	Meters below ground surface
NM	Not Monitored
NA	Not Available
OCPs	Organochlorine Pesticides
ORPs	Other Regulated Parameters
Units	Units for all soil analyses are in μg/g (ppm) unless otherwise indicated

Appendix A

A Survey Plan was not provided during the investigation.

LAND
REGISTRY
OFFICE #43

14252-0940 (LT)

PAGE 1 OF 2
PREPARED FOR DS
ON 2023/07/13 AT 11:23:19

ONLAND

* CERTIFIED IN ACCORDANCE WITH THE LAND TITLES ACT * SUBJECT TO RESERVATIONS IN CROWN GRANT *

PROPERTY DESCRIPTION:

PT LT 19 CON 3 WHS CHING PTS 1 & 2, 43R37043; S/T CH27915; T/W ROW OVER PT LT 19 CON 3 WHS DES PT 1 PL 43R-28656, AS IN PR573970; PT LT 18 CON 3 WHS CHING AS IN CH23379; SAVE AND EXCEPT PTS 1 TO 6 PL 43R-12497, PTS 1 TO4 PL 43R-17369, CH15879, CH30500; SUBJECT TO AN EASEMENT IN GROSS OVER PART LOT 18 CON 3 PARTS 1 AND 2 43R38092 AS IN PR3331264; TOWN OF CALEDON

PROPERTY REMARKS:

ESTATE/QUALIFIER:

FEE SIMPLE LT CONVERSION QUALIFIED RECENTLY:
DIVISION FROM 14252-0938

PIN CREATION DATE:

2005/11/10

OWNERS' NAMES

CAPACITY SHARE

12101 CREDITVIEW DEVELOPMENTS LIMITED

						CERT/
REG. NUM.	DATE	INSTRUMENT TYPE	AMOUNT	PARTIES FROM	PARTIES TO	CHKD
** PRINTOUT	INCLUDES ALI	DOCUMENT TYPES (DE	ETED INSTRUMENTS NO	OT INCLUDED) **		
**SUBJECT,	ON FIRST REGI	STRATION UNDER THE	LAND TITLES ACT, TO			
**	SUBSECTION 44	(1) OF THE LAND TITE	LES ACT, EXCEPT PARA	AGRAPH 11, PARAGRAPH 14, PROVINCIAL SUCCESSION DUTIES *		
**	AND ESCHEATS	OR FORFEITURE TO THE	E CROWN.			
**	THE RIGHTS OF	F ANY PERSON WHO WOUL	LD, BUT FOR THE LAND	TITLES ACT, BE ENTITLED TO THE LAND OR ANY PART OF		
**	IT THROUGH L	ENGTH OF ADVERSE POS	SESSION, PRESCRIPTION	N, MISDESCRIPTION OR BOUNDARIES SETTLED BY		
**	CONVENTION.					
**	ANY LEASE TO	WHICH THE SUBSECTION	N 70(2) OF THE REGIS	STRY ACT APPLIES.		
**DATE OF C	ONVERSION TO	LAND TITLES: 1999/0	3/26 **			
СН27915	1960/08/30	TRANSFER EASEMENT			THE BELL TELEPHONE COMPANY OF CANADA	С
43R28656	2003/11/04	PLAN REFERENCE				С
43R37043	2016/03/08	PLAN REFERENCE				С
PR2926536	2016/06/07	TRANS PARTNERSHIP	\$22,168,500	DOLSON, MARY JEAN DOLSON, STEPHEN JAMES DOLSON, THOMAS EDWARD FRADOL FAMILY FARM GP. FRADOL FARMS LIMITED	2278339 ONTARIO INC.	С
REI	MARKS: PLANNI	NG ACT STATEMENTS.				
43R38092	2018/03/07	PLAN REFERENCE				С
PR3331264	2018/06/04	TRANSFER EASEMENT	\$2	2278339 ONTARIO INC.	THE REGIONAL MUNICIPALITY OF PEEL	С

REGISTRY
OFFICE #43

14252-0940 (LT)

PAGE 2 OF 2
PREPARED FOR DS
ON 2023/07/13 AT 11:23:19

ONLAND

* CERTIFIED IN ACCORDANCE WITH THE LAND TITLES ACT * SUBJECT TO RESERVATIONS IN CROWN GRANT *

REG. NUM.	DATE	INSTRUMENT TYPE	AMOUNT	PARTIES FROM	PARTIES TO	CERT/ CHKD
PR3331265	2018/06/04	POSTPONEMENT	DOLSON, STE	PHEN JAMES	THE REGIONAL MUNICIPALITY OF PEEL	С
			DOLSON, THO	MAS EDWARD		
			DOLSON, MAR	Y JEAN		
			FRADOL FARM	S LIMITED		
			FRADOL FAMI	LY FARM GP		
RE	MARKS: PR2926	537 TO PR3331264 - P	TS 1 & 2 43R38092			
PR3490753	2019/06/11	APL CH NAME OWNER	2278339 ONT	ARIO INC.	12101 CREDITVIEW DEVELOPMENTS LIMITED	С
43R40787	2023/03/20	PLAN REFERENCE				С

Appendix B

23-267-100 July 25, 2023

12101 Creditview Developments Ltd. c/o Fieldgate Land Development Ltd.

5400 Yonge Street

Toronto, Ontario M2N 5R5

via email: justin@argoland.com

Attention: Justin Marr

Re: Sampling and Analysis Plan - Phase Two Environmental Site Assessment Part of Lots 18 & 19 Concession 3, Caledon, Ontario

1. Introduction

DS Consultants Limited (DS) is pleased to present the Sampling and Analysis Plan (SAP) for the proposed Phase Two Environmental Site Assessment of Part of Lots 18 & 19 Concession 3, Caledon, Ontario, (the Site). The purpose of the proposed Phase Two ESA program is to assess the current subsurface environmental conditions in support of the proposed redevelopment of the Site.

The Phase Two ESA will involve intrusive investigation in the areas determined in the Site visit to be Areas of Potential Environmental Concern (APECs), and will be completed in general accordance with O.Reg 153/04. Based on the findings of the field and laboratory analyses, a Phase Two ESA report will be prepared.

2. Background

Based on the Phase One Environmental Site Assessment completed by DS in September 2023, it is DS's understanding that the Site is a 59.97-hectare (148.19 acres) parcel of land which is currently used for agricultural purposes. The first developed use of the Site is interpreted to be Agricultural based on the findings of the Phase One ESA. A total of four (4) potentially contaminating activities were identified on the Phase One Property or on neighbouring properties within the Phase One Study Area which are considered to be contributing to Areas of Potential Environmental Concern (APECs) on the Phase Two Property. A summary of the APECs identified, the potential contaminants of concern, and the media potentially impacted is presented in Table 1 below:

Table 1: Areas of Potential Environmental Concern

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (on-site or off-site)	Contaminants of Potential Concern	Media Potentially Impacted (Ground water, soil and/or sediment)
APEC-1	Central portion of the Site	#40 – Pesticides Manufacturing, Processing, Bulk Storage and Large-Scale Applications	On Site PCA-3	OCPs, Metals, As, Sb, Se, CN-	Soil
APEC-2	Southeast portion of the Site	#40 – Pesticides Manufacturing, Processing, Bulk Storage and Large-Scale Applications	On Site PCA-6	OCPs, Metals, As, Sb, Se, CN-	Soil
APEC-3	South and east portions of the Site	#N/S – Seasonal De-Icing Activities ¹	Off Site PCA-5	EC, SAR	Soil
APEC-4	South corner of the Site	#40 – Pesticides Manufacturing, Processing, Bulk Storage and Large-Scale Applications	On Site PCA-8	OCPs, Metals, As, Sb, Se, CN-	Soil

Notes:

- 1. N/S not specified in Table 2, Schedule D, of O.Reg. 153/04
- 2. PHC (F1-F4) = Petroleum Hydrocarbons in the F1-F4 fraction ranges
- 3. VOCs = Volatile Organic Compounds
- 4. PAHs = Polycyclic Aromatic Hydrocarbons
- 5. PCBs = Polychlorinated Biphenyls

3. Site Investigation Program

The proposed field investigation will involve the advancement of boreholes, the installation of monitoring wells, and periodic monitoring of the installed wells. A total of 13 borehole locations have been identified. Details regarding the proposed boreholes/monitoring wells are provided in the following table:

Table 3-1: Summary of Proposed Investigation Program

ID	Proposed Depth	Well Installation (Y/N)	Well Install Depth	Purpose
MW23-501	6 m	Y	6m	Groundwater flow
MW23-502	6 m	N	N/A	Near barns
BH23-503	6 m	N	N/A	Geotechnical
MW23-504	6 m	Y	6m	Groundwater flow
BH23-505	6 m	Y	6m	Groundwater flow
BH23-506	6 m	Y	6m	Groundwater flow
BH23-507	6 m	N	N/A	Geotechnical
BH23-508	6 m	N	N/A	Geotechnical
BH23-509	6 m	Y	6m	Groundwater flow
BH23-510	6 m	N	N/A	Geotechnical
MW23-511	6 m	N	N/A	Geotechnical
BH23-512	6 m	N	N/A	Geotechnical

ID	Proposed Depth	Well Installation (Y/N)	Well Install Depth	Purpose
BH23-513	6 m	N	N/A	Geotechnical

Prior to mobilizing a drilling rig, we will lay out the proposed borehole and clear the buried utilities and services by using Ontario One Call System in addition to private utility locates.

The borings will be advanced to the indicated depths using a track mounted continuous flight auger machine. Samples will be retrieved by means of a 50 mm O.D. split-spoon barrel sampler at 0.75 metre intervals in the upper 3 metres and at 1.5 metres intervals below this level. The monitoring wells will be constructed using 50 mm I.D. PVC pipe, equipped with 3.1 m slotted screens and finished at the ground surface with monument well casings. A geodetic benchmark will be used to establish the elevation of each borehole. Drilling and sampling will conform to standard practice.

The Phase Two ESA involves the following principal tasks:

- Retain the services of public and private utility locaters to identify the locations of buried and overhead utility services prior to any excavation or demolition activities;
 - Certain underground utilities (such as those constructed or encased in plastic, fibreglass, clay, concrete pipe, untraceable cast iron, steel, and/or repaired services) cannot be traced by standard locating practices. DS will review all available Site Plans and/or "As Built" figures in an attempt to identify the locations of potential untraceable services. DS will not be held responsible for any damages to utility services that are not on the figures provided or cannot be located by standard utility locating practices;
- Advancement of boreholes as specified in Table 3-1. The proposed boreholes will be used
 to facilitate the collection of representative soil and groundwater samples, and to provide
 information regarding the Site-specific geological and hydrogeological conditions;
- All soil samples recovered during the proposed drilling activities will be field screened for visual and olfactory evidence of deleterious impacts and for the presence of petroleum hydrocarbon (PHC) and volatile organic compound (VOC) derived vapours using either a combustible gas detector (CGD) calibrated to hexane or a photo-ionization detector (PID) calibrated to isobutylene or equivalent;
- Measure the depth to groundwater levels in the monitoring wells installed, and monitor the wells for the presence/absence of non-aqueous phase liquid using an interface probe;
- Survey each of the monitoring wells to a geodetic datum;
- Submit soil samples from the newly advanced boreholes as follows:

Table 3-2: Summary of proposed soil chemical analyses

Borehole	Sample No	Sample Depth (mbgs)	Lab Analysis	Purpose
MW23-502	SS5	3.1-3.7	рН	pH analysis
MW23-507	SS5	3.1-3.7	рН	pH analysis
S1	S1	0.0-0.3	Metals, OCPs	Assess soil conditions (APEC-1, APEC-2)
S2	S2	0.0-0.3	Metals, OCPs	Assess soil conditions (APEC-1, APEC-2)
S3	S3	0.0-0.3	Metals, OCPs	Assess soil conditions (APEC-1, APEC-2)
S4	S4	0.0-0.3	Metals, OCPs	Assess soil conditions (APEC-1, APEC-2)
S5	S5	0.0-0.3	Metals, OCPs	Assess soil conditions (APEC-1, APEC-2, APEC-4)
S6	S6	0.0-0.3	Metals, OCPs	Assess soil conditions (APEC-1, APEC-2)
S7	S7	0.0-0.3	Metals, OCPs	Assess soil conditions (APEC-1, APEC-2)
S8	S8	0.0-0.3	Metals, OCPs	Assess soil conditions (APEC-1, APEC-2)
S9	S9	0.0-0.3	Metals, OCPs	Assess soil conditions (APEC-1, APEC-2)
S10	S10	0.0-0.3	Metals, OCPs	Assess soil conditions (APEC-1, APEC-2)

A summary of the proposed soil and groundwater analytical program is presented in the following table:

Table 3-3: Summary of Soil and Groundwater Analytical Program

Soil

- 10 Samples for analysis of metals and inorganics
- 10 Samples for analysis of OC Pesticides
- 2 Subsurface soil samples for pH analysis
- 4 Duplicate samples
- A Quality Assurance and Quality Control (QAQC) program will be implemented, involving the collection and analysis of duplicate soil and groundwater samples and trip blanks at the frequency specified under O.Reg. 153/04 (as amended);
- A Phase Two ESA Report will be prepared upon receipt of all analytical results and groundwater monitoring data. The Phase Two ESA Report will be completed in general accordance with O.Reg. 153/04 (as amended).

It should be noted that drilling activities may result in some disturbance to the ground surface at the site. Precautions will be taken by the drilling contractor to minimize any damage. The Client will be notified should there be cause to extend the borehole termination depth based on field observations. It is assumed that the site can be accessed at our convenience, during regular business hours. Prior notice will be sent to the client and site representative

It is noted that if the Phase Two ESA reveals parameter concentrations greater than the applicable standards set out in *Ontario Regulation 153/04*, then additional work (i.e., supplemental delineation, additional drilling, sampling, analysis, and/or site remediation activities) will be deemed necessary prior to RSC filing, should an RSC be required. The costs for any additional work, if necessary, are beyond the current scope of work.

The SAP was created based on the request to complete a Phase Two ESA in support of the proposed redevelopment of the Site. The SAP was compiled to collect data to provide information on soil and/or groundwater quality in each APEC.

Additional delineation may be required following the implementation of this SAP to meet the requirements of O.Reg. 153/04 which requires delineation of all areas where concentrations are above the applicable SCS such as in the following conditions:

- Unexpected contamination not previously discovered, or not related to identified APECs, is discovered which will require further delineation to identify source(s); and
- If the sampling results indicate that the soil and/or groundwater impacts are deeper than initially expected.

4. Closure

We trust that this Sampling and Analysis Plan meets the objectives of the Client. If further assistance is required on this matter please do not hesitate to contact the undersigned.

Yours Very Truly,

DS Consultants Ltd.

Patrick Fioravanti, B.Sc., P.Geo., QP_{ESA}

Manager - Environmental Services

647-234-5131

rfioravanti@dsconsultants.ca

Appendix C

PROJECT: Phase Two Environmental Site Assessment

CLIENT: 12101 Creditview Developments Limited

PROJECT LOCATION: Part of Lots 18 & 19 Concession 3, Caledon, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 23-267-100

Date: Aug-11-2023 ENCL NO.: 2

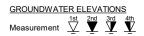
	SOIL PROFILE		s	AMPL	.ES	·	Soi	Head S	Space	Vap	ors		PLAST	IC NAT	URAL	LIQUID		5	RE	MARKS
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	≣R		BLOWS 0.3 m	GROUND WATER CONDITIONS ELEVATION	PII (ppi	n)		(p	GD om) >⊕		LIMIT W _P	CON	TURE ITENT W	LIMIT	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GR/	AND AIN SIZ RIBUTIO
		TRAI	NUMBER	TYPE	N	ROU OND					•	•			ONTEN		8	¥		(%)
263.2 263:0	TOPSOIL: 200mm	7/1/V	z	Ĺ	-	0 O III	10 20	30 40	1	20	30 4	0	1	0 2	20 3	30			GR S	A SI
0.2	FILL: clayey silt, trace organics, brown, moist, soft	X	1	SS	3	263 1	1 1			•		_60 -	,		0					
0.8	CLAYEY SILT TO SILTY CLAY TILL: some sand to sandy, trace gravel, brown, moist, stiff to hard		2	ss	16	262								0						
			3	ss	21	▼ Aug 18 W. L.	261.9 masl 3, 2023 261.6 masl 9, 2023							0						
			4	ss	35	261	- - - 1			•				0						
	grey below 3.1m					260	-													
	grey sciew o. iiii		5	SS	27	260	- 4 - -							∘ ⊢					6 1	7 46
						259	-			<u> </u>										
			6	SS	12		- - - - - - -							0						
1						258	-													
6.1	SANDY SILT TILL: some clay to clayey, trace gravel, grey, moist, dense		7	SS	32	257	- - - 4						0						8 3	3 41
6.7	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings: Date: Water Level(mbgs): Aug 18, 2023 1.35 Aug. 29, 2023 1.63						-													

PROJECT: Phase Two Environmental Site Assessment

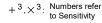
CLIENT: 12101 Creditview Developments Limited

PROJECT LOCATION: Part of Lots 18 & 19 Concession 3, Caledon, ON

DATUM: Geodetic


DRILLING DATA

Method: Solid Stem Auger


Diameter: 150mm REF. NO.: 23-267-100

Date: Aug-11-2023 ENCL NO.: 3

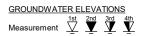
	SOIL PROFILE		S	AMPL	ES	m m			So	oil F	leac	Sp.	ace					ој дет	C. NAT	URAL STURE	LIQUIE		Þ	REMARKS
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION		(p)		-			(t	CGD opm ≥) -•	\	W _P WA	CON TER CO	NTENT W O	W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (KN/m³)	AND GRAIN SIZE DISTRIBUTIO (%)
262.4	TORON - 200		ž	F	ž	ਹ ਹ	ш	10	20	30	40	'	10	20	30	40	4	1	0 2	20	30			GR SA SI
0.2	TOPSOIL: 200mm REWORKED: clayey silt, trace organics, dark brown to brown, moist, firm (weathered/disturbed)		1	SS	7		262	1				4	,						C	0		-		
0.7	CLAYEY SILT TO SILTY CLAY TILL: some sand to sandy, trace gravel, brown, moist, stiff to hard		2	SS	22		261	- 3				4							0					
			3	SS	17		201	L											0					
			4	SS	33		260	· •					•						0					
								· -					/											ml I
			5	SS	22		259					4	,						0					рН
							258															_		
	grey below 4.6m		6	SS	9			Г				¢	,						0					
							257															-		
255.8	silty sand layer at 6.1m		7	SS	50/ 130mn	1	256						•					•	•			_		
6.6	END OF BOREHOLE: Notes: 1) Water encountered at 6.1m during drilling.																							

PROJECT: Phase Two Environmental Site Assessment

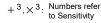
CLIENT: 12101 Creditview Developments Limited

PROJECT LOCATION: Part of Lots 18 & 19 Concession 3, Caledon, ON

DATUM: Geodetic


DRILLING DATA

Method: Solid Stem Auger


Diameter: 150mm REF. NO.: 23-267-100

Date: Aug-11-2023 ENCL NO.: 4

	SOIL PROFILE		S	AMPL	ES.				S	oil I	lead	l Sp	ace	Vap	ors			I ASTI	_ NAT	URAL	LIQUIE		F	REMAR	RKS
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	10	F (p) 		10	(p	GD opm)	•	w	V _P	CON N ER CO	ITENT W O O O O O O O O O O O O	W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	ANE GRAIN : DISTRIBU (%) GR SA :	SIZ UTK)
0.0	TOPSOIL: 250mm	7/1/						-				1	\top		\top									0.1 0.1	
0.3	REWORKED: clayey silt, trace organics, dark brown to brown, moist, firm (weathered/disturbed)		1	SS	8	-		- 10 10 -				•	\downarrow	•						0					
0.8	CLAYEY SILT TO SILTY CLAY TILL: some sand to sandy, trace gravel, brown, moist, stiff to hard		2	SS	24		260	- - 4						\					0			_			
			3	SS	25		259	- - - -											0			-			
								-						<i>!</i>											
			4	SS	31		250	- 1 - -											0						
	grey below 3.1m						258	-																	
	grey below 3.1111		5	SS	20			- - - -											0						
							257	- - - -														-			
			6	SS	10	_	256	- - - - -												0					
								-																	
							255	-				-	+	+			+								
254.2			7	SS	19	-		- - - - -										c)						
6.7	END OF BOREHOLE: Notes: 1) Borehole wet at the bottom upon completion.																								

PROJECT: Phase Two Environmental Site Assessment

CLIENT: 12101 Creditview Developments Limited

PROJECT LOCATION: Part of Lots 18 & 19 Concession 3, Caledon, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 23-267-100

Date: Aug-10-2023 ENCL NO.: 5

	SOIL PROFILE		s	SAMPL	ES	r	[Soil	Head	Spa					صلحه اد	NATURA	L LIQUI		₽	REMARKS
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	II	PIE (ppn	n)		•	CGE (ppm	0 40	W H	v _P WATE	NATURA MOISTUR CONTEN W ——O— R CONTI	W ENT (%)	¶₩ _æ	NATURAL UNIT WT (KN/m³)	AND GRAIN SIZI DISTRIBUTIO (%) GR SA SI
259:8	TOPSOIL: 200mm	7/1/	_		-		-								t						OIT OIT
0.2	REWORKED: clayey silt, trace organics, brown, moist, firm (weathered/disturbed)		1	SS	6		250	 									o	0			
0.9	CLAYEY SILT TO SILTY CLAY TILL: some sand to sandy, trace gravel, brown, moist, stiff to very stiff		2	SS	18	¥	259 W. L. 2	58.4 m	iasl								0				
			3	SS	17		Aug 29 258	2023				_					0		-		
			4	SS	27		257	- !								(>				
	grey below 3.1m		5	SS	18						•						0				
							256														
			6	SS	11		255				•						0				
							254	-													
253.1			7	SS	12			- - - - -			•						lo				2 13 44
6.7	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings:																				
	Date: Water Level(mbgs): Aug. 29, 2023 1.37																				

PROJECT: Phase Two Environmental Site Assessment

CLIENT: 12101 Creditview Developments Limited

PROJECT LOCATION: Part of Lots 18 & 19 Concession 3, Caledon, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 23-267-100

Date: Aug-10-2023 ENCL NO.: 6

	SOIL PROFILE			AMPL	.ES	쏦					lead	Sp	ace		apors		_	PLAST	IC NAT	URAL STURE	LIQUIE		™	REMARKS
m) LEV PTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER	ELEVATION	10	P (pr 20	ID om)	-		1	(ppm)) — • 0 40	ľ	W _P	CON TER C	NTENT W O ONTEN	LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (KN/m³)	AND GRAIN SIZE DISTRIBUTIO (%) GR SA SI (
0.0	TOPSOIL: 280mm	7/ 1/N			=		, ш	-			10					10								GR SA SI
0.3	FILL: clayey silt, trace organics,		1	SS	9		257	1				4	7											
56.5	brown, moist, stiff						1	-												1				
0.8	CLAYEY SILT TO SILTY CLAY TILL: some sand to sandy, trace gravel, brown, moist, stiff to very stiff		2	SS	21		256	- - - 1							•				0			-		
			3	SS	24	Ā	W. L. 2 Aug 29	- - 255.5 , 202	mas	ı				1					0					
			4	SS	30		255	-											0			-		
	greyish brown to brown below 3.1m		5	SS	19		254	- - - - -							*				0			-		
							∴ ∴ 253	- - - - - -																
			6	SS	8			- - - - - - -					•						o					4 20 45
							252	- - - - - - - -														-		
50.6	wet silty sand layer at 6.1m		7	SS	20		251	- - - 1					4	•					0					
6.7	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings:																							
	Date: Water Level(mbgs): Aug. 29, 2023 1.8																							

PROJECT: Phase Two Environmental Site Assessment

CLIENT: 12101 Creditview Developments Limited

PROJECT LOCATION: Part of Lots 18 & 19 Concession 3, Caledon, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 23-267-100

Date: Aug-10-2023 ENCL NO.: 7

	SOIL PROFILE		s	AMPL	.ES	,	Soil Head S	Space Vapors	PLASTIC NATURAL LIQUI	n	REMARKS
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	Е	BLOWS 0.3 m	GROUND WATER CONDITIONS ELEVATION	PID (ppm)	CGD (ppm)	LIMIT CONTENT WP W W WATER CONTENT (%)	E E	AND GRAIN SIZE DISTRIBUTION (%)
262.3		STR	Š	TYPE	ż		10 20 30 40	10 20 30 40	10 20 30		GR SA SI (
262:9	TOPSOIL: 200mm	<u> </u>									
261.6	REWORKED: clayey silt, trace organics, dark brown to brown, moist, firm (weathered/disturbed)		1	SS	4	262			0		
0.7	CLAYEY SILT TO SILTY CLAY TILL: some sand to sandy, trace gravel, brown, moist, stiff to very stiff		2	SS	20	Aug 18	≦	,	0		
			3	SS	21	Aug 29	1, 2023 1 1 1 -		o l 		2 16 46
			4	SS	29	260	- - - - - -	•	0	-	
			5	SS	17	259	- - - 5		0	-	
						258	-			_	
	grey, firm at 4.6m		6	SS	8		- - - - - -		0		
						257				-	
256.2 6.1	SANDY SILT TILL: some clay to clayey, trace gravel, grey, wet, compact to dense		7	SS	10	256			0		1 31 56
<u>.</u>		. 0				255	-				
3		φ.	8	SS	30	0	- - - - - -	•	0		
254.1 8.2	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings:										
	Date: Water Level(mbgs): Aug 18, 2023 0.79 Aug. 29, 2023 1.24										

PROJECT: Phase Two Environmental Site Assessment

CLIENT: 12101 Creditview Developments Limited

PROJECT LOCATION: Part of Lots 18 & 19 Concession 3, Caledon, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 23-267-100

Date: Aug-14-2023 ENCL NO.: 8

	SOIL PROFILE		s	AMPL	.ES	<u>_</u> ر	[Soi	l He	ad S	pace	e Va	pors		PI AS	STIC NA	TURAL	LIQUIE]	5	REMARKS
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION		PI (pp	m)	1	1		CGD opm)	→	W _P	' CC	ONTENT W O O O O O O O O O O O O O O O O O O	WL	a EN	NATURAL UNIT WT (KN/m³)	AND GRAIN SIZE DISTRIBUTIO (%)
263.7 263:5	TOPSOIL: 200mm	3/1/2	_		-	0 0	"	.	-	1	+-	H		1	-	+	+	1	1			GR SA SI
0.2	REWORKED: clayey silt, trace organics, dark brown to brown, moist, firm (weathered/disturbed)		1	SS	6		263	- ! !					-	,	•		0					
262.8	CLAYEY SILT TO SILTY CLAY TILL: some sand to sandy, trace gravel, brown, moist, stiff to hard		2	SS	22		X	<u> </u>										o				
<u> </u>			3	SS	22		262 •	!									C	>		=		
			4	SS	32		261	- - - - -						•			0			=		
!	grey at 3.1m		5	SS	25		 	- !					9				C					рН
:							260	-					1							-		
į			6	SS	8		259	!					,					0		_		
							258													_		
257.5 6.2 257.0	SANDY SILT TO SILTY SAND TILL: some clay, trace gravel, greyish brown, moist to wet, compact		7	SS	16		257	-				*					o	0				
6.7	END OF BOREHOLE: Notes: 1) Ground water encountered at 6.2m during drilling.																					

PROJECT: Phase Two Environmental Site Assessment

CLIENT: 12101 Creditview Developments Limited

PROJECT LOCATION: Part of Lots 18 & 19 Concession 3, Caledon, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 23-267-100

Date: Aug-11-2023 ENCL NO.: 9

	SOIL PROFILE		S	AMPL	ES] _~ []		Soil	Hea	ad S	pace	· Vap	ors		DI	TIC NAT	TURAL]	۲	REMARKS
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	ER		BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION		PII (ppr	n)			C (p	GD pm) ≫		PLAS LIMIT W _P	COI	TURAL STURE NTENT W	LIQUIE LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZ DISTRIBUTI (%)
264.4	TOPSOIL: 200mm		NUMBER	TYPE	ž	GROU	ELEV	10	20	30 4	1 10	10	20	30	40			ONTEN 20 3	T (%) 30 		¥	GR SA SI
0.2	REWORKED: clayey silt, trace organics, dark brown to brown, moist, firm (weathered/disturbed)		1	SS	6		264	- 1				4	,				0	1		-		
0.8	CLAYEY SILT TO SILTY CLAY TILL: some sand to sandy, trace gravel, brown, moist, very stiff		2	SS	17		263	- - - 1							•		0					
	greyish brown to grey at 1.5m		3	SS	24		1	- - - 1 -						4	•		٥					
			4	SS	26		262 I	- - 1 1 -							•		d	1		_		
			5	SS	23	<u>.</u>	261 <mark>.</mark>	- - - - - - -							•		0			-		
259.8							260	- - - - -						<u> </u>						-		
4.6	SANDY SILT TO SILTY SAND TILL: trace to some clay, some gravel, brown, moist, very dense		6	SS	50/ 75mm		259	- - - - - -				*				0						
258.2			7	SS	50/		259	- - - - -								0						
6.2	END OF BOREHOLE: Notes: 1) Water encountered at 4.6m during drilling.				75mm																	

PROJECT: Phase Two Environmental Site Assessment

CLIENT: 12101 Creditview Developments Limited

PROJECT LOCATION: Part of Lots 18 & 19 Concession 3, Caledon, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 23-267-100

Date: Aug-11-2023 ENCL NO.: 10

	SOIL PROFILE		S	AMPL	.ES	<u>~</u>				Head	d Sp	oace				PL AS	STIC	TURAL	LIQUII		₽	RE	MARKS
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION		PIE (ppn	n)		10	(p)	GD pm) >**	•	W _P	ATER	ATURAL DISTURE DISTURE DISTURE WO CONTEI	W _L	a EN	NATURAL UNIT WT (KN/m³)	ı	AND AIN SIZE RIBUTIO (%)
262.5 262:3	TOPSOIL: 200mm	3/1/y.	_		-	0 0	ш	.	-	1	<u> </u>	10	1	1	+0		+	1	1	<u> </u>		GR 3	SA SI
0.2	FILL: clayey silt, trace organics, dark brown to brown, moist, firm		1	SS	3	¥	262	1					•					c)				
261.7 0.8	CLAYEY SILT TO SILTY CLAY TILL: some sand to sandy, trace gravel, brown, moist, stiff to hard		2	SS	18		W. L. 2 Aug 18	61.8 m , 2023	nasl								0						
2			3	SS	34		261	1 1						/			0			-			
			4	SS	25		260	1					1	/			0			-			
3	grey at 3.1m		5	SS	14		259	1										o					
4							258	-															
4.6	SANDY SILT TILL: some clay to clayey, trace gravel, brown, moist, very dense		6	SS	50/ 130mn		230	i i									0					6 3	38 44
<u>6</u>							257	- -												-			
255.8			7	SS	42	!: I—!:	256	- - - 1									0			-			
6.7	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings: Date: Water Level(mbgs): Aug 18, 2023 0.67 Aug. 29, 2023 0.7																						

PROJECT: Phase Two Environmental Site Assessment

CLIENT: 12101 Creditview Developments Limited

PROJECT LOCATION: Part of Lots 18 & 19 Concession 3, Caledon, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 23-267-100

Date: Aug-09-2023 ENCL NO.: 11

	SOIL PROFILE		S	AMPL	.ES	<u> </u>					Head	d S	pace				PLAS1	IC NA	TURAL ISTURE NTENT	LIQUI	D .	W	RE	MAF	
(m) ELEV DEPTH 259.6	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	1	(2 -	PID ppm	1))	1	•	CGI (ppn 20 3	O n) 30 4	W _P ► WA	TER C	W O-O-CONTE	W	a E	NATURAL UNIT WT (KN/m³)	GR DIST	(%)	SIZE
0.0	TOPSOIL: 380mm	17.3		ss	3							-								0					
0.4	FILL: clayey silt, trace organics, dark brown to brown, moist, soft to firm						259	-					\setminus												
258.1			2	SS	4														0						
1.5	CLAYEY SILT TO SILTY CLAY TILL: some sand to sandy, trace gravel, brown to grey, moist, hard		3	SS	40		258 I	- - - -						\$				0							
	grey below 2.3m		4	SS	50/ 100mn	 	257	- - - -						•			_ 0	<u> </u>	1				4	19 5	i8
			5	SS	66			-										0							
							256																		
								-																	
			6	SS	41		255	1										0	,						
							254	-																	
253.5 6.1	SANDY SILT TO SILTY SAND TILL: trace clay, trace gravel,		7	SS	72																				
252.9	brown, very moist, very dense			33	12		253										0								
6.7	END OF BOREHOLE: Notes: 1) Groundwater encountered at 2.1m during drilling.																								

PROJECT: Phase Two Environmental Site Assessment

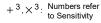
CLIENT: 12101 Creditview Developments Limited

PROJECT LOCATION: Part of Lots 18 & 19 Concession 3, Caledon, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger


Diameter: 150mm REF. NO.: 23-267-100

Date: Aug-09-2023 ENCL NO.: 12

,	SOIL PROFILE		s	AMPL	ES	<u>~</u>					Head	d Sp	pace				PLAST	FIC NAT	TURAL STUDE	LIQUIE		¥	RE	MAR	
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	1,	(F	PID opm)	11	(CGI (ppn	O n) 	W _P	COI	NTENT W O	WL		NATURAL UNIT WT (kN/m³)	l .	AND AIN S RIBU (%)	SIZI
0.0 259.7	TOPSOIL: 250mm	<u>11/1/</u>	Ė		-													Ė					OIV V	,	<u>''</u>
0.3	REWORKED: clayey silt, trace organics, dark brown to brown, moist, firm (weathered/disturbed)		1	SS	4		D						3					0	0						
0.9	SANDY SILT: trace to some clay, trace gravel, grey, wet, compact		2	SS	16		259	1						1				0			-				
			3	SS	17		258	- - 1						•				0							
	clayey silt layer at 2.6m		4	ss	13		Þ	-						*				,	o o						
							257							\perp											
3.1	CLAYEY SILT TO SILTY CLAY TILL: some sand to sandy, trace gravel, grey, moist to very moist, stiff to very stiff		5	SS	13		10.	- - - 1					<i>\</i>						•						
							256														-				
			6	SS	20		255	- - - -						}				0			-				
253.8							254							+											
6.1	SANDY SILT TO SILTY SAND TILL: trace to some clay, trace gravel, brown, moist to wet, dense		7	SS	46		Ω	- - 1 -									(>							
6.7	END OF BOREHOLE: Notes: 1) Water encountered at 0.8m during drilling.																								

PROJECT: Phase Two Environmental Site Assessment

CLIENT: 12101 Creditview Developments Limited

PROJECT LOCATION: Part of Lots 18 & 19 Concession 3, Caledon, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 23-267-100

Date: Aug-10-2023 ENCL NO.: 13

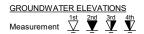
	SOIL PROFILE		S	AMPL	ES	<u>K</u>						d Sp	oace		_			PLAST	IC NA	ATURA DISTUR	L L LIQI	סונ	¥	R	EMA	
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	10		PID pm) -		11	(CGE ppm	0 1) 	,	W _P	TER (W —O—	Т "	OCKET PEN.	NATURAL UNIT WT		AN RAIN TRIE (%	N SIZ BUTI 6)
0.0	TOPSOIL: 400mm	3/1/2	_		-	00		- 1	7 20		1	,	H	, ,			Ĭ		<u> </u>	1	-	+		GR	SA	51
258.8		1/ 3	1	SS	4		259	1						-						+	\downarrow	-				
0.4	FILL: clayey silt, sandy, trace to some organics, dark brown to brown, moist to wet, firm				-			-																		
			2	SS	5		258	Ī						1						0						
	grey at 1.5m		3	SS	5			- -						•						0						
		\bowtie				1								1												
256.9	OLAVEVOUETTO OUTY OF AN		Ш			-	257		-					\vdash						+	+	\dashv				
2.3	CLAYEY SILT TO SILTY CLAY TILL: sandy, trace to some gravel, brown, moist, hard		4	SS	41								4	<u> </u>				0								
		HH												\												
			ا ا	00	0.4		256							\dagger							+	1				
			5	SS	34	_		-																		
								-																		
							255		\dashv					+							+	+				
254.6								-																		
4.6	SANDY SILT TO SILT: trace clay, brown to grey, wet, compact to very dense		6	SS	17			- - 1						•						0						
							254	-																		
6.0	SANDY SILT TO SILTY SAND							-																		
	TILL: trace to some clay, trace gravel, brown to grey, moist, very dense		7	SS	62		253 1	Ī					1						0							
252.5 6.7	END OF BOREHOLE:	111	Н					\vdash					\vdash							+	+	+	+	T		
	Notes: 1) Water encountered at 1.2m during drilling.																									

PROJECT: Phase Two Environmental Site Assessment

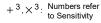
CLIENT: 12101 Creditview Developments Limited

PROJECT LOCATION: Part of Lots 18 & 19 Concession 3, Caledon, ON

DATUM: Geodetic


DRILLING DATA

Method: Solid Stem Auger


Diameter: 150mm REF. NO.: 23-267-100

Date: Aug-10-2023 ENCL NO.: 14

	SOIL PROFILE		S	AMPL	ES	<u>س</u>					d S	pace		_		PLAST	IC.NAT	URAL	LIQUIE		۲	RE	EMAF	
(m) ELEV EPTH 262.0	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	1	PID ppm	n) — =		11	(CGE ppm	0 1) 	W _P 	'	TENT W O	WL	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GR DIS1	AND AIN S TRIBL (%)	SIZ
269:8	TOPSOIL: 200mm	7/ 1/V						-																_
0.2	FILL: clayey silt, trace organics, dark brown to brown, moist, firm to very stiff		1	SS	6		Σ	-			4						٥							
1.0	CLAYEY SILT TO SILTY CLAY TILL: some sand to sandy, trace gravel, brown, moist, very stiff to hard		2	SS	18		261	- 1				7	\				0							
	nard		3	SS	20		260	- - - - -)		0							
			4	ss	31		D	- - -					•				0							
			_				259	-																
	grey at 3.1m		5	SS	17		259	- - - - -					4	,			0							
							258	- - - - -					$\frac{1}{2}$											
<u> </u>			6	SS	26		257	- - - - -								c								
								- - - - -																
256.0 6.0	SANDY SILT TO SILTY SAND TILL: trace to some clay, trace gravel, grey, very moist, very dense						256	-																
255	g. a. si, groj, torj moloc, vorj dense		7	SS	73			<u>-</u>					•				0							
6.7	END OF BOREHOLE: Notes: 1) Water at depth of 6.1m during drilling.	111																						

Appendix D

Your Project #: 23-267-100

Site Location: 12101 CERDITVIEW RD.

Your C.O.C. #: n/a

Attention: Megan Bender
DS Consultants Limited

6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

Report Date: 2023/08/23

Report #: R7778073 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3P0415 Received: 2023/08/17, 15:14

Sample Matrix: Soil # Samples Received: 2

Date Date

Analyses Quantity Extracted Analyzed Laboratory Method Analytical Method

pH CaCl2 EXTRACT 2 2023/08/22 2023/08/22 CAM SOP-00413 EPA 9045 D m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your Project #: 23-267-100

Site Location: 12101 CERDITVIEW RD.

Your C.O.C. #: n/a

Attention: Megan Bender

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

Report Date: 2023/08/23

Report #: R7778073

Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3P0415 Received: 2023/08/17, 15:14

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Ashton Gibson, Project Manager Email: Ashton.Gibson@bureauveritas.com Phone# (905)817-5765

_____ This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Site Location: 12101 CERDITVIEW RD.

Sampler Initials: MB

RESULTS OF ANALYSES OF SOIL

Bureau Veritas ID		WSM826	WSM826	WSM827	
Sampling Date		2023/08/11	2023/08/11	2023/08/14	
COC Number		n/a	n/a	n/a	
	UNITS	BH23-502 SS5	BH23-502 SS5 Lab-Dup	BH23-507 SS5	QC Batch
Inorganics					
Inorganics Available (CaCl2) pH	рН	7.69	7.69	7.76	8868526

Site Location: 12101 CERDITVIEW RD.

Sampler Initials: MB

TEST SUMMARY

Bureau Veritas ID: WSM826

Sample ID: BH23-502 SS5

Matrix: Soil

Collected: 2023/08/11

Shipped:

Received: 2023/08/17

Test Description Instrumentation Batch Extracted **Date Analyzed** Analyst pH CaCl2 EXTRACT 8868526 2023/08/22 2023/08/22 Gurparteek KAUR ΑТ

Bureau Veritas ID: WSM826 Dup

Sample ID: BH23-502 SS5

Matrix: Soil

2023/08/11 Collected:

Shipped:

Received: 2023/08/17

Test Description Extracted **Date Analyzed** Instrumentation Batch Analyst pH CaCl2 EXTRACT 8868526 2023/08/22 2023/08/22 Gurparteek KAUR ΑТ

Bureau Veritas ID: WSM827

Sample ID: BH23-507 SS5

Matrix: Soil Collected: 2023/08/14

Shipped:

Received: 2023/08/17

Test Description Instrumentation Batch **Extracted Date Analyzed** Analyst pH CaCl2 EXTRACT ΑT 8868526 2023/08/22 2023/08/22 Gurparteek KAUR

Site Location: 12101 CERDITVIEW RD.

Sampler Initials: MB

GENERAL COMMENTS

Each te	emperature is the	average of up to t	three cooler temperatures taken at receipt
	Package 1	7.0°C	
Result	s relate only to the	e items tested.	

QUALITY ASSURANCE REPORT

DS Consultants Limited Client Project #: 23-267-100

Site Location: 12101 CERDITVIEW RD.

Sampler Initials: MB

			SPIKED I	BLANK	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	Value (%)	QC Limits
8868526	Available (CaCl2) pH	2023/08/22	100	97 - 103	0.018	N/A

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Site Location: 12101 CERDITVIEW RD.

Sampler Initials: MB

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Cuistin	Camiene	
Cristina Carrie	ere, Senior Scientific Specialist	

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

6740 Campobello Road, Mississauga, Ontario L5N 2L8 Phone: 905-817-5700 Fax: 905-817-5779 Toll Free: 800-563-6266 CHAIN OF CUSTODY RECORD

ENV COC - 00014v2

Page 1 of

nvolc	e Inform	nation	Inve	oice to (require	es report)	0	T		Re	port In	format	ion (if di	ffers from invo	ce)			П					P	oject I	nforn	nation					Τ			1	7-A	119-2	3 1	5:14		
Comp				DS Consultant	ts Ltd.		Comp					DS Cor	sultants Ltd					Quotal	tion #	8											Α	shi	On	Cil					
Conta Name				Bindu Go	el		Conta			~	1000	an .	Beno	le	~		-	P.O. #/	AFE	t] [1111				son				
Street Addre				6221 Hwy 7, U	Jnit 16		Stree				J		wy 7, Unit 16				7	rojec	t#:	1	2"	5 -	26	,7		10	0					C	31	P04	15	••••	10		
City:	T	Vaughan	Pro	wt ON	Postal Code:	L4H0K8	_		Vaug	ghan		Prov:	ON	Posta Code:		L4H0	K8 5	ite#:		T	12	io	26	ire	dit	INC	u	Rd		٦,	ון זכ				-	F 10		100	15
Phone				905-264-9	393	•	Phon	e:				905	-264-9393					ilte Lo	cation	12						7				Ľ	21 14			Rush	U.Z1	5.45			
Email:			acco	ounting@dscor	nsultants.ca	E	Email	1:										rovin		1					Ontari	lo				Г									\neg
Cople	E						Copie	es:			mi	bender@	dsconsultants.					Sample 5	1				ar		Omer				17 1	1									
REG 153	Table Table Table Table	3 8	□ Res	/Comm i/other	☐ Med/Fi ☐ Course ☐ For RSC	5	CCMI Reg 5 *min 3 MISA	58* 3 day TA 0	T [Storn	ary Sev n Sewe Munic	ver Bylav	•		2		1	3		nics		HWS-8)	J 11	12	13	14	13	10	., .		20		22	W S	to 7 Day	Turnarou Surchar	ound Time and Time ges apply	Day (IAI)	
																UIRED				norga	20	tals, H		rides								TIMBI	LYZE						
	3,	AMPLES MI	UST BE KE	PT COOL (<10	·C) FROM T	TIME OF SAM	PLING U		Sample			(24hr)		ERED	SERVED	LAB FILTRATION REQUIRED				etals and i	PMS meta	ICPMS me		SPLP Metals and Hydrides								II OF CONTAINERS SUBMITTED	DO NOT ANALYZE	□ 2 □ 4		YY	□ 3t		
			Sampl	le Identificatio	n			YY	мм	DD	нн	мм	Matrix	FIELD FILTERED	FIELD PRESERVED	LAB FILTR	BTEX/F1	F2 - F4	VOCs	Reg 153 metals	Reg 153 ICPMS	(Hg. Cr VI, ICPMS	OCPs	SPLP Meta	PCBs	Hd						# OF COM	HOLD - DC	Date Require	ed:		ments	MM D	<u> </u>
1		BH	23-	- 502	2 5	55	ď	23	80	11	A	M	S													1						1	*						
2		BH	177	-502 -507	C<		_	23	80	14	A	M	S	7	П	U	T	7		T	T	1		T	T	~		T		T		ī							
3		471	100	001	0.		\dashv	الدسها	-	11	_	_					7	7	1	\forall	1	+	+	t	+	_	П	1		1	+	1							\dashv
4							+	-	_	_		\dashv					\dashv	+	\dashv	+	+	+	+	+	+	\vdash	Н	\dashv	+	+	+	\vdash		\vdash					\dashv
-	_						+	-	_	_	\vdash	\dashv					\dashv	\dashv	\dashv	+	+	+	+	╀	+	\vdash	Н	\dashv	+	+	+	-		\vdash		_	_	_	_
5	_						4				\vdash						4	4	4	4	4	+	+	\perp	\perp	L	Н	4	-	+	+	L		_					_
6				-																_	_		\perp	\perp			Ц	_			\perp								
7																																							
8																																							
9																					П	T	Т		Т				П	T	Т								٦
10							\neg												\neg	\neg	\dashv		\top	T	T	Γ		\neg	\top	\top	Т								7
11							\dashv											\forall	\forall	\dashv	7	T	\top	\dagger	t		П	7	\top	\dagger	T								1
12							\dashv												\forall	7	7	\forall	†	\dagger	t				\dagger	\dagger	†		10						1
*UNL	ESS OTH	ERWISE AC	GREED TO	IN WRITING, V	WORK SUBI	MITTED ON T	HIS CHAI	N OF C	USTODY	IS SUBJ	ECT TO	BUREAU	VERITAS STAN	DARD	TERM	SANE	CON	DITIO	NS. 51	GNIN	G OF T	HIS CH	IAIN O	F CUST	ODY D	OCUN	ENTE	ACKN	OWLE	OGME	NT AND	ACCE	PTAN	CE OF O	UR TERM	AS AND	CONDITIO	NS WHICH	ARE
								AVAIL					SVNA.COM/TER	MS-A	ND-CO	NDITI	ONS C	OR BY	CALLI	NG TH	E LAB	ORATO	RY LIST				AIN A	COPY							-				
_	resent	ISE ONLY		es No	·c	>	4	0	Seal pro		E ONLY		Yes	No		c							eal pre	sent	B USE	ONLY			Yes		No	1	'c					reading by	
200710	ntact ng medi	a present	-	/		1 2	3	8	Seal int	TITE	presen	t			1		1		2		3		eal into	200	prese	nt				+		+		1	2	3			
	1000		by: (Sign	nature/ Print)		97	Date	I D			Time	/M		Rec	elved	by: (5	ignat	ure/P	rint)				Y			ate MM		Di			Time	мм	F		Spe	cial inst	ructions		=
1			Omer	A-									1-		-	_	-	_	_	_	_	7			H	12	Vzi	,5	40	4	4	_	-						B
2	72	-you	K	und		23	08	F	7				$ \swarrow $			_	N	4	10	M	1	1	וטר	N		Š	-	17		15	1	4						C	

Your Project #: 23-267-100

Site Location: 12101 CREDITVIEW RD.

Your C.O.C. #: n/a

Attention: Megan Bender

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

Report Date: 2023/08/30

Report #: R7789772 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3P2467 Received: 2023/08/18, 16:26

Sample Matrix: Soil # Samples Received: 11

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Free (WAD) Cyanide	4	2023/08/22	2023/08/23	CAM SOP-00457	OMOE E3015 m
Free (WAD) Cyanide	7	2023/08/23	2023/08/23	CAM SOP-00457	OMOE E3015 m
Acid Extractable Metals by ICPMS	11	2023/08/23	2023/08/28	CAM SOP-00447	EPA 6020B m
Moisture	11	N/A	2023/08/23	CAM SOP-00445	Carter 2nd ed 51.2 m
OC Pesticides (Selected) & PCB (1)	9	2023/08/25	2023/08/26	CAM SOP-00307	EPA 8081B/ 8082A
OC Pesticides (Selected) & PCB (1)	2	2023/08/27	2023/08/29	CAM SOP-00307	EPA 8081B/ 8082A
OC Pesticides Summed Parameters	11	N/A	2023/08/24	CAM SOP-00307	EPA 8081B/ 8082A
pH CaCl2 EXTRACT	10	2023/08/24	2023/08/24	CAM SOP-00413	EPA 9045 D m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Chlordane (Total) = Alpha Chlordane + Gamma Chlordane

Your Project #: 23-267-100

Site Location: 12101 CREDITVIEW RD.

Your C.O.C. #: n/a

Attention: Megan Bender

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

Report Date: 2023/08/30

Report #: R7789772 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3P2467 Received: 2023/08/18, 16:26

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Ashton Gibson, Project Manager Email: Ashton.Gibson@bureauveritas.com Phone# (905)817-5765

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Bureau Veritas Job #: C3P2467 Report Date: 2023/08/30 DS Consultants Limited Client Project #: 23-267-100

Site Location: 12101 CREDITVIEW RD.

Sampler Initials: MEG

O.REG 153 ICPMS METALS (SOIL)

Bureau Veritas ID			WSX059		WSX060		WSX061	WSX062		
Sampling Date			2023/08/18		2023/08/18		2023/08/18	2023/08/18		
COC Number			n/a		n/a		n/a	n/a		
	UNITS	Criteria	S1	QC Batch	S2	QC Batch	S3	S4	RDL	QC Batch
Metals										
Acid Extractable Antimony (Sb)	ug/g	1.3	<0.20	8871067	<0.20	8871255	<0.20	<0.20	0.20	8871067
Acid Extractable Arsenic (As)	ug/g	18	3.5	8871067	4.1	8871255	4.4	4.2	1.0	8871067
Acid Extractable Barium (Ba)	ug/g	220	73	8871067	84	8871255	100	97	0.50	8871067
Acid Extractable Beryllium (Be)	ug/g	2.5	0.76	8871067	0.80	8871255	0.99	0.91	0.20	8871067
Acid Extractable Boron (B)	ug/g	36	<5.0	8871067	<5.0	8871255	5.6	5.1	5.0	8871067
Acid Extractable Cadmium (Cd)	ug/g	1.2	0.24	8871067	0.21	8871255	0.28	0.18	0.10	8871067
Acid Extractable Chromium (Cr)	ug/g	70	22	8871067	23	8871255	29	27	1.0	8871067
Acid Extractable Cobalt (Co)	ug/g	22	11	8871067	12	8871255	14	13	0.10	8871067
Acid Extractable Copper (Cu)	ug/g	92	17	8871067	17	8871255	19	17	0.50	8871067
Acid Extractable Lead (Pb)	ug/g	120	14	8871067	16	8871255	17	17	1.0	8871067
Acid Extractable Molybdenum (Mo)	ug/g	2	<0.50	8871067	<0.50	8871255	0.63	<0.50	0.50	8871067
Acid Extractable Nickel (Ni)	ug/g	82	19	8871067	21	8871255	24	23	0.50	8871067
Acid Extractable Selenium (Se)	ug/g	1.5	<0.50	8871067	<0.50	8871255	<0.50	<0.50	0.50	8871067
Acid Extractable Silver (Ag)	ug/g	0.5	<0.20	8871067	<0.20	8871255	<0.20	<0.20	0.20	8871067
Acid Extractable Thallium (TI)	ug/g	1	0.12	8871067	0.14	8871255	0.17	0.16	0.050	8871067
Acid Extractable Uranium (U)	ug/g	2.5	0.75	8871067	0.78	8871255	1.0	0.83	0.050	8871067
Acid Extractable Vanadium (V)	ug/g	86	32	8871067	35	8871255	43	39	5.0	8871067
Acid Extractable Zinc (Zn)	ug/g	290	79	8871067	74	8871255	84	71	5.0	8871067

No Fill Grey Black No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Groundwater Condition

Site Location: 12101 CREDITVIEW RD.

Sampler Initials: MEG

O.REG 153 ICPMS METALS (SOIL)

Bureau Veritas ID			WSX063		WSX064	WSX065	WSX066		
Sampling Date			2023/08/18		2023/08/18	2023/08/18	2023/08/18		
COC Number			n/a		n/a	n/a	n/a		
	UNITS	Criteria	S5	QC Batch	S6	S7	S8	RDL	QC Batch
Metals									
Acid Extractable Antimony (Sb)	ug/g	1.3	<0.20	8871255	<0.20	<0.20	<0.20	0.20	8871067
Acid Extractable Arsenic (As)	ug/g	18	3.5	8871255	3.4	3.4	3.9	1.0	8871067
Acid Extractable Barium (Ba)	ug/g	220	65	8871255	59	96	68	0.50	8871067
Acid Extractable Beryllium (Be)	ug/g	2.5	0.67	8871255	0.60	0.77	0.66	0.20	8871067
Acid Extractable Boron (B)	ug/g	36	5.1	8871255	<5.0	7.0	<5.0	5.0	8871067
Acid Extractable Cadmium (Cd)	ug/g	1.2	0.20	8871255	0.21	0.33	0.20	0.10	8871067
Acid Extractable Chromium (Cr)	ug/g	70	21	8871255	17	23	21	1.0	8871067
Acid Extractable Cobalt (Co)	ug/g	22	8.8	8871255	8.9	9.4	8.7	0.10	8871067
Acid Extractable Copper (Cu)	ug/g	92	19	8871255	12	27	14	0.50	8871067
Acid Extractable Lead (Pb)	ug/g	120	16	8871255	15	17	16	1.0	8871067
Acid Extractable Molybdenum (Mo)	ug/g	2	<0.50	8871255	<0.50	<0.50	<0.50	0.50	8871067
Acid Extractable Nickel (Ni)	ug/g	82	18	8871255	14	22	17	0.50	8871067
Acid Extractable Selenium (Se)	ug/g	1.5	<0.50	8871255	<0.50	<0.50	<0.50	0.50	8871067
Acid Extractable Silver (Ag)	ug/g	0.5	<0.20	8871255	<0.20	<0.20	<0.20	0.20	8871067
Acid Extractable Thallium (Tl)	ug/g	1	0.13	8871255	0.11	0.14	0.13	0.050	8871067
Acid Extractable Uranium (U)	ug/g	2.5	0.57	8871255	0.72	1.5	0.73	0.050	8871067
Acid Extractable Vanadium (V)	ug/g	86	29	8871255	27	32	32	5.0	8871067
Acid Extractable Zinc (Zn)	ug/g	290	81	8871255	62	92	68	5.0	8871067

No Fill
Grey
Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Groundwater Condition

Site Location: 12101 CREDITVIEW RD.

Sampler Initials: MEG

O.REG 153 ICPMS METALS (SOIL)

Bureau Veritas ID			WSX067	WSX067		WSX068	WSX069		
Sampling Date			2023/08/18	2023/08/18		2023/08/18	2023/08/18		
COC Number			n/a	n/a		n/a	n/a		
	UNITS	Criteria	S9	S9 Lab-Dup	QC Batch	S10	DUP-1	RDL	QC Batch
Metals									
Acid Extractable Antimony (Sb)	ug/g	1.3	<0.20	<0.20	8871255	<0.20	<0.20	0.20	8871067
Acid Extractable Arsenic (As)	ug/g	18	4.7	4.6	8871255	3.5	3.6	1.0	8871067
Acid Extractable Barium (Ba)	ug/g	220	78	76	8871255	63	68	0.50	8871067
Acid Extractable Beryllium (Be)	ug/g	2.5	0.67	0.63	8871255	0.64	0.70	0.20	8871067
Acid Extractable Boron (B)	ug/g	36	5.5	5.3	8871255	<5.0	5.0	5.0	8871067
Acid Extractable Cadmium (Cd)	ug/g	1.2	0.27	0.25	8871255	0.16	0.22	0.10	8871067
Acid Extractable Chromium (Cr)	ug/g	70	20	20	8871255	21	22	1.0	8871067
Acid Extractable Cobalt (Co)	ug/g	22	9.1	8.9	8871255	8.9	9.1	0.10	8871067
Acid Extractable Copper (Cu)	ug/g	92	20	20	8871255	12	20	0.50	8871067
Acid Extractable Lead (Pb)	ug/g	120	13	13	8871255	14	16	1.0	8871067
Acid Extractable Molybdenum (Mo)	ug/g	2	<0.50	<0.50	8871255	0.51	<0.50	0.50	8871067
Acid Extractable Nickel (Ni)	ug/g	82	18	18	8871255	16	19	0.50	8871067
Acid Extractable Selenium (Se)	ug/g	1.5	<0.50	<0.50	8871255	<0.50	<0.50	0.50	8871067
Acid Extractable Silver (Ag)	ug/g	0.5	<0.20	<0.20	8871255	<0.20	<0.20	0.20	8871067
Acid Extractable Thallium (TI)	ug/g	1	0.12	0.12	8871255	0.13	0.13	0.050	8871067
Acid Extractable Uranium (U)	ug/g	2.5	0.75	0.74	8871255	0.73	0.57	0.050	8871067
Acid Extractable Vanadium (V)	ug/g	86	29	29	8871255	32	30	5.0	8871067
Acid Extractable Zinc (Zn)	ug/g	290	79	76	8871255	60	83	5.0	8871067

No Fill Grey Black

No Exceedance

Exceeds 1 criteria policy/level Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Groundwater Condition

Report Date: 2023/08/30

DS Consultants Limited Client Project #: 23-267-100

Site Location: 12101 CREDITVIEW RD.

Sampler Initials: MEG

O.REG 153 OC PESTICIDES (SOIL)

Bureau Veritas ID			WSX059	WSX060			WSX060		
Sampling Date			2023/08/18	2023/08/18			2023/08/18		
COC Number			n/a	n/a			n/a		
	UNITS	Criteria	S1	S2	RDL	QC Batch	S2 Lab-Dup	RDL	QC Batch
Calculated Parameters	5								
Chlordane (Total)	ug/g	0.05	<0.0020	<0.0020	0.0020	8865584			
o,p-DDD + p,p-DDD	ug/g	0.05	<0.0020	<0.0020	0.0020	8865584			
o,p-DDE + p,p-DDE	ug/g	0.05	<0.0020	<0.0020	0.0020	8865584			
o,p-DDT + p,p-DDT	ug/g	1.4	<0.0020	<0.0020	0.0020	8865584			
Total Endosulfan	ug/g	0.04	<0.0020	<0.0020	0.0020	8865584			
Total PCB	ug/g	0.3	<0.015	<0.015	0.015	8865584			
Pesticides & Herbicide	es .								
Aldrin	ug/g	0.05	<0.0020	<0.0020	0.0020	8877937	<0.0020	0.0020	8877937
a-Chlordane	ug/g	0.05	<0.0020	<0.0020	0.0020	8877937	<0.0020	0.0020	8877937
g-Chlordane	ug/g	0.05	<0.0020	<0.0020	0.0020	8877937	<0.0020	0.0020	8877937
o,p-DDD	ug/g	0.05	<0.0020	<0.0020	0.0020	8877937	<0.0020	0.0020	8877937
p,p-DDD	ug/g	0.05	<0.0020	<0.0020	0.0020	8877937	<0.0020	0.0020	8877937
o,p-DDE	ug/g	0.05	<0.0020	<0.0020	0.0020	8877937	<0.0020	0.0020	8877937
p,p-DDE	ug/g	0.05	<0.0020	<0.0020	0.0020	8877937	<0.0020	0.0020	8877937
o,p-DDT	ug/g	1.4	<0.0020	<0.0020	0.0020	8877937	<0.0020	0.0020	8877937
p,p-DDT	ug/g	1.4	<0.0020	<0.0020	0.0020	8877937	<0.0020	0.0020	8877937
Dieldrin	ug/g	0.05	<0.0020	<0.0020	0.0020	8877937	<0.0020	0.0020	8877937
Lindane	ug/g	0.01	<0.0020	<0.0020	0.0020	8877937	<0.0020	0.0020	8877937
Endosulfan I (alpha)	ug/g	0.04	<0.0020	<0.0020	0.0020	8877937	<0.0020	0.0020	8877937
Endosulfan II (beta)	ug/g	0.04	<0.0020	<0.0020	0.0020	8877937	<0.0020	0.0020	8877937
Endrin	ug/g	0.04	<0.0020	<0.0020	0.0020	8877937	<0.0020	0.0020	8877937
Heptachlor	ug/g	0.05	<0.0020	<0.0020	0.0020	8877937	<0.0020	0.0020	8877937
Heptachlor epoxide	ug/g	0.05	<0.0020	<0.0020	0.0020	8877937	<0.0020	0.0020	8877937
Hexachlorobenzene	ug/g	0.02	<0.0020	<0.0020	0.0020	8877937	<0.0020	0.0020	8877937
Hexachlorobutadiene	ug/g	0.01	<0.0020	<0.0020	0.0020	8877937	<0.0020	0.0020	8877937
Hexachloroethane	ug/g	0.01	<0.0020	<0.0020	0.0020	8877937	<0.0020	0.0020	8877937
Methoxychlor	ug/g	0.05	<0.0050	<0.0050	0.0050	8877937	<0.0050	0.0050	8877937
No Fill	No Evenodance				-			•	

No Fill Grey

Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Groundwater Condition

Report Date: 2023/08/30

DS Consultants Limited Client Project #: 23-267-100

Site Location: 12101 CREDITVIEW RD.

Sampler Initials: MEG

O.REG 153 OC PESTICIDES (SOIL)

Bureau Veritas ID			WSX059	WSX060			WSX060		
Sampling Date			2023/08/18	2023/08/18			2023/08/18		
COC Number			n/a	n/a			n/a		
	UNITS	Criteria	S1	S2	RDL	QC Batch	S2 Lab-Dup	RDL	QC Batch
Aroclor 1242	ug/g	-	<0.015	<0.015	0.015	8877937	<0.015	0.015	8877937
Aroclor 1248	ug/g	-	<0.015	<0.015	0.015	8877937	<0.015	0.015	8877937
Aroclor 1254	ug/g	-	<0.015	<0.015	0.015	8877937	<0.015	0.015	8877937
Aroclor 1260	ug/g	-	<0.015	<0.015	0.015	8877937	<0.015	0.015	8877937
Surrogate Recovery (%)									
2,4,5,6-Tetrachloro-m-xylene	%	-	90	94		8877937	90		8877937
Decachlorobiphenyl	%	-	127	128		8877937	122		8877937

No Fill Grey Black

No Exceedance

Exceeds 1 criteria policy/level Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Groundwater Condition

Site Location: 12101 CREDITVIEW RD.

Sampler Initials: MEG

O.REG 153 OC PESTICIDES (SOIL)

Bureau Veritas ID			WSX061		WSX062		WSX063		
Sampling Date			2023/08/18		2023/08/18		2023/08/18		
COC Number			n/a		n/a		n/a		
	UNITS	Criteria	S3	QC Batch	S4	QC Batch	S 5	RDL	QC Batch
Calculated Parameters									
Chlordane (Total)	ug/g	0.05	<0.0020	8865584	<0.0020	8865584	<0.0020	0.0020	8865584
o,p-DDD + p,p-DDD	ug/g	0.05	<0.0020	8865584	<0.0020	8865584	<0.0020	0.0020	8865584
o,p-DDE + p,p-DDE	ug/g	0.05	<0.0020	8865584	<0.0020	8865584	<0.0020	0.0020	8865584
o,p-DDT + p,p-DDT	ug/g	1.4	<0.0020	8865584	<0.0020	8865584	<0.0020	0.0020	8865584
Total Endosulfan	ug/g	0.04	<0.0020	8865584	<0.0020	8865584	<0.0020	0.0020	8865584
Total PCB	ug/g	0.3	<0.015	8865584	<0.015	8865584	<0.015	0.015	8865584
Pesticides & Herbicides									
Aldrin	ug/g	0.05	<0.0020	8880217	<0.0020	8877937	<0.0020	0.0020	8880217
a-Chlordane	ug/g	0.05	<0.0020	8880217	<0.0020	8877937	<0.0020	0.0020	8880217
g-Chlordane	ug/g	0.05	<0.0020	8880217	<0.0020	8877937	<0.0020	0.0020	8880217
o,p-DDD	ug/g	0.05	<0.0020	8880217	<0.0020	8877937	<0.0020	0.0020	8880217
p,p-DDD	ug/g	0.05	<0.0020	8880217	<0.0020	8877937	<0.0020	0.0020	8880217
o,p-DDE	ug/g	0.05	<0.0020	8880217	<0.0020	8877937	<0.0020	0.0020	8880217
p,p-DDE	ug/g	0.05	<0.0020	8880217	<0.0020	8877937	<0.0020	0.0020	8880217
o,p-DDT	ug/g	1.4	<0.0020	8880217	<0.0020	8877937	<0.0020	0.0020	8880217
p,p-DDT	ug/g	1.4	<0.0020	8880217	<0.0020	8877937	<0.0020	0.0020	8880217
Dieldrin	ug/g	0.05	<0.0020	8880217	<0.0020	8877937	<0.0020	0.0020	8880217
Lindane	ug/g	0.01	<0.0020	8880217	<0.0020	8877937	<0.0020	0.0020	8880217
Endosulfan I (alpha)	ug/g	0.04	<0.0020	8880217	<0.0020	8877937	<0.0020	0.0020	8880217
Endosulfan II (beta)	ug/g	0.04	<0.0020	8880217	<0.0020	8877937	<0.0020	0.0020	8880217
Endrin	ug/g	0.04	<0.0020	8880217	<0.0020	8877937	<0.0020	0.0020	8880217
Heptachlor	ug/g	0.05	<0.0020	8880217	<0.0020	8877937	<0.0020	0.0020	8880217
Heptachlor epoxide	ug/g	0.05	<0.0020	8880217	<0.0020	8877937	<0.0020	0.0020	8880217
Hexachlorobenzene	ug/g	0.02	<0.0020	8880217	<0.0020	8877937	<0.0020	0.0020	8880217
Hexachlorobutadiene	ug/g	0.01	<0.0020	8880217	<0.0020	8877937	<0.0020	0.0020	8880217
Hexachloroethane	ug/g	0.01	<0.0020	8880217	<0.0020	8877937	<0.0020	0.0020	8880217
Methoxychlor	ug/g	0.05	<0.0050	8880217	<0.0050	8877937	<0.0050	0.0050	8880217
Aroclor 1242	ug/g	-	<0.015	8880217	<0.015	8877937	<0.015	0.015	8880217

No Fill
Grey
Black

No Exceedance

Exceeds 1 criteria policy/level Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Groundwater Condition

Report Date: 2023/08/30

DS Consultants Limited Client Project #: 23-267-100

Site Location: 12101 CREDITVIEW RD.

Sampler Initials: MEG

O.REG 153 OC PESTICIDES (SOIL)

Bureau Veritas ID			WSX061		WSX062		WSX063		
Sampling Date			2023/08/18		2023/08/18		2023/08/18		
COC Number			n/a		n/a		n/a		
	UNITS	Criteria	S3	QC Batch	S4	QC Batch	S5	RDL	QC Batch
Aroclor 1248	ug/g	-	<0.015	8880217	<0.015	8877937	<0.015	0.015	8880217
Aroclor 1254	ug/g	-	<0.015	8880217	<0.015	8877937	<0.015	0.015	8880217
Aroclor 1260	ug/g	-	<0.015	8880217	<0.015	8877937	<0.015	0.015	8880217
Surrogate Recovery (%)									
2,4,5,6-Tetrachloro-m-xylene	%	-	103	8880217	82	8877937	98		8880217
Decachlorobiphenyl	%	-	130	8880217	110	8877937	120		8880217

No Fill Grey

Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Groundwater Condition

Report Date: 2023/08/30

DS Consultants Limited Client Project #: 23-267-100

Site Location: 12101 CREDITVIEW RD.

Sampler Initials: MEG

O.REG 153 OC PESTICIDES (SOIL)

Bureau Veritas ID			WSX064	WSX065	WSX066	WSX067	WSX068	WSX069		
Sampling Date			2023/08/18	2023/08/18	2023/08/18	2023/08/18	2023/08/18	2023/08/18		
COC Number			n/a	n/a	n/a	n/a	n/a	n/a		
	UNITS	Criteria	S6	S7	\$8	S9	S10	DUP-1	RDL	QC Batch
Calculated Parameters							•		·	
Chlordane (Total)	ug/g	0.05	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	8865584
o,p-DDD + p,p-DDD	ug/g	0.05	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	8865584
o,p-DDE + p,p-DDE	ug/g	0.05	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	8865584
o,p-DDT + p,p-DDT	ug/g	1.4	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	8865584
Total Endosulfan	ug/g	0.04	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	8865584
Total PCB	ug/g	0.3	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	0.015	8865584
Pesticides & Herbicides							1		I.	I.
Aldrin	ug/g	0.05	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	8877937
a-Chlordane	ug/g	0.05	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	8877937
g-Chlordane	ug/g	0.05	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	8877937
o,p-DDD	ug/g	0.05	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	8877937
p,p-DDD	ug/g	0.05	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	8877937
o,p-DDE	ug/g	0.05	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	8877937
p,p-DDE	ug/g	0.05	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	8877937
o,p-DDT	ug/g	1.4	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	8877937
p,p-DDT	ug/g	1.4	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	8877937
Dieldrin	ug/g	0.05	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	8877937
Lindane	ug/g	0.01	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	8877937
Endosulfan I (alpha)	ug/g	0.04	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	8877937
Endosulfan II (beta)	ug/g	0.04	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	8877937
Endrin	ug/g	0.04	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	8877937
Heptachlor	ug/g	0.05	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	8877937
Heptachlor epoxide	ug/g	0.05	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	8877937
Hexachlorobenzene	ug/g	0.02	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	8877937
Hexachlorobutadiene	ug/g	0.01	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	8877937
Hexachloroethane	ug/g	0.01	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	8877937
Methoxychlor	ug/g	0.05	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	8877937
Aroclor 1242	ug/g	-	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	0.015	8877937
Aroclor 1248	ug/g	-	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	0.015	8877937
=:::	. F									

No Fill Grey

Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Groundwater Condition

Bureau Veritas Job #: C3P2467 Report Date: 2023/08/30 DS Consultants Limited Client Project #: 23-267-100

Site Location: 12101 CREDITVIEW RD.

Sampler Initials: MEG

O.REG 153 OC PESTICIDES (SOIL)

Bureau Veritas ID			WSX064	WSX065	WSX066	WSX067	WSX068	WSX069		
Sampling Date			2023/08/18	2023/08/18	2023/08/18	2023/08/18	2023/08/18	2023/08/18		
COC Number			n/a	n/a	n/a	n/a	n/a	n/a		
	UNITS	Criteria	S6	S7	S8	S9	S10	DUP-1	RDL	QC Batch
Aroclor 1254	ug/g	-	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	0.015	8877937
Aroclor 1260	ug/g	-	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	0.015	8877937
Surrogate Recovery (%)		•								
2,4,5,6-Tetrachloro-m-xylene	%	-	100	99	107	92	95	94		8877937
Decachlorobiphenyl	%	-	129	121	139 (1)	122	128	116		8877937

No Fill Grey

No Exceedance

Exceeds 1 criteria policy/level

Black Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Groundwater Condition

Soil - Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

(1) Surrogate recovery was above the upper control limit due to matrix interference. This may represent a high bias in some results. For results that were not detected (ND), this potential bias has no impact.

Bureau Veritas Job #: C3P2467 Report Date: 2023/08/30 DS Consultants Limited Client Project #: 23-267-100

Site Location: 12101 CREDITVIEW RD.

Sampler Initials: MEG

RESULTS OF ANALYSES OF SOIL

Bureau Veritas ID			WSX059		WSX060		WSX061		WSX062		
Sampling Date			2023/08/18		2023/08/18		2023/08/18		2023/08/18		
COC Number			n/a		n/a		n/a		n/a		
	UNITS	Criteria	S1	QC Batch	S2	QC Batch	S3	QC Batch	S4	RDL	QC Batch
Inorganics											
Moisture	%	-	20	8870628	19	8870628	20	8870628	18	1.0	8870628
Available (CaCl2) pH	рН	-	6.26	8873477	6.28	8873459	5.99	8873459	6.26		8873477
WAD Cyanide (Free)	ug/g	0.051	<0.01	8868881	<0.01	8870571	<0.01	8868881	<0.01	0.01	8868881

No Fill Grey No Exceedance

Exceeds 1 criteria policy/level

Black

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Groundwater Condition

Soil - Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Bureau Veritas ID			WSX063		WSX064		WSX065		WSX066		
Sampling Date			2023/08/18		2023/08/18		2023/08/18		2023/08/18		
COC Number			n/a		n/a		n/a		n/a		
	UNITS	Criteria	S5	QC Batch	S6	QC Batch	S7	QC Batch	S8	RDL	QC Batch
Inorganics											
Moisture	%	-	18	8870628	18	8870628	25	8870628	19	1.0	8870628
Available (CaCl2) pH	рН	-	7.51	8873477	5.90	8873477	6.83	8873459	6.10		8873477

No Fill Grev

No Exceedance

Exceeds 1 criteria policy/level
Exceeds both criteria/levels

Black Exceed

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Groundwater Condition

Report Date: 2023/08/30

DS Consultants Limited Client Project #: 23-267-100

Site Location: 12101 CREDITVIEW RD.

Sampler Initials: MEG

RESULTS OF ANALYSES OF SOIL

Bureau Veritas ID			WSX067	WSX068		WSX069		
Sampling Date			2023/08/18	2023/08/18		2023/08/18		
COC Number			n/a	n/a		n/a		
	UNITS	Criteria	S9	S10	QC Batch	DUP-1	RDL	QC Batch
Inorganics								
Moisture	%	-	21	17	8870628	19	1.0	8870628
Available (CaCl2) pH	рН	-	7.37	6.04	8873477			
WAD Cyanide (Free)	ug/g	0.051	<0.01	<0.01	8870571	<0.01	0.01	8870571

No Fill Grey

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Groundwater

Condition

Black

Report Date: 2023/08/30

DS Consultants Limited Client Project #: 23-267-100

Site Location: 12101 CREDITVIEW RD.

Sampler Initials: MEG

TEST SUMMARY

Bureau Veritas ID: WSX059

Sample ID: S1

Collected:

2023/08/18 Shipped:

Matrix: Soil

Received: 2023/08/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Free (WAD) Cyanide	TECH	8868881	2023/08/22	2023/08/23	Prgya Panchal
Acid Extractable Metals by ICPMS	ICP/MS	8871067	2023/08/23	2023/08/28	Daniel Teclu
Moisture	BAL	8870628	N/A	2023/08/23	Joe Thomas
OC Pesticides (Selected) & PCB	GC/ECD	8877937	2023/08/25	2023/08/26	Mahmudul Khan
OC Pesticides Summed Parameters	CALC	8865584	N/A	2023/08/24	Automated Statchk
pH CaCl2 EXTRACT	AT	8873477	2023/08/24	2023/08/24	Gurparteek KAUR

Bureau Veritas ID: WSX060

Sample ID: S2 Matrix: Soil

Collected: 2023/08/18

Shipped:

Received: 2023/08/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Free (WAD) Cyanide	TECH	8870571	2023/08/23	2023/08/23	Jency Sara Johnson
Acid Extractable Metals by ICPMS	ICP/MS	8871255	2023/08/23	2023/08/28	Daniel Teclu
Moisture	BAL	8870628	N/A	2023/08/23	Joe Thomas
OC Pesticides (Selected) & PCB	GC/ECD	8877937	2023/08/25	2023/08/26	Mahmudul Khan
OC Pesticides Summed Parameters	CALC	8865584	N/A	2023/08/24	Automated Statchk
pH CaCl2 EXTRACT	AT	8873459	2023/08/24	2023/08/24	Gurparteek KAUR

Bureau Veritas ID: WSX060 Dup

Sample ID: S2

Matrix: Soil

2023/08/18 Collected:

Shipped:

Received: 2023/08/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
OC Pesticides (Selected) & PCB	GC/ECD	8877937	2023/08/25	2023/08/26	Mahmudul Khan

Bureau Veritas ID: WSX061

Sample ID: S3

Matrix: Soil

Collected:

2023/08/18 Shipped:

Received: 2023/08/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Free (WAD) Cyanide	TECH	8868881	2023/08/22	2023/08/23	Prgya Panchal
Acid Extractable Metals by ICPMS	ICP/MS	8871067	2023/08/23	2023/08/28	Daniel Teclu
Moisture	BAL	8870628	N/A	2023/08/23	Joe Thomas
OC Pesticides (Selected) & PCB	GC/ECD	8880217	2023/08/27	2023/08/29	Mahmudul Khan
OC Pesticides Summed Parameters	CALC	8865584	N/A	2023/08/24	Automated Statchk
pH CaCl2 EXTRACT	AT	8873459	2023/08/24	2023/08/24	Gurparteek KAUR

Bureau Veritas ID: WSX062 Sample ID: S4

Shipped:

Collected: 2023/08/18

Matrix: Soil

Received: 2023/08/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Free (WAD) Cyanide	TECH	8868881	2023/08/22	2023/08/23	Prgya Panchal
Acid Extractable Metals by ICPMS	ICP/MS	8871067	2023/08/23	2023/08/28	Daniel Teclu

Bureau Veritas Job #: C3P2467 Report Date: 2023/08/30 DS Consultants Limited Client Project #: 23-267-100

Site Location: 12101 CREDITVIEW RD.

Sampler Initials: MEG

TEST SUMMARY

Bureau Veritas ID: WSX062

Sample ID: S4 Matrix: Soil Collected: 2

2023/08/18

Shipped:

Received: 2023/08/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Moisture	BAL	8870628	N/A	2023/08/23	Joe Thomas
OC Pesticides (Selected) & PCB	GC/ECD	8877937	2023/08/25	2023/08/26	Mahmudul Khan
OC Pesticides Summed Parameters	CALC	8865584	N/A	2023/08/24	Automated Statchk
nH CaCl2 FXTRACT	ΔΤ	8873477	2023/08/24	2023/08/24	Gurnarteek KALIR

Bureau Veritas ID: WSX063

Sample ID: S5

Matrix: Soil

Collected: 20

2023/08/18

Shipped: Received:

Received: 2023/08/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Free (WAD) Cyanide	TECH	8868881	2023/08/22	2023/08/23	Prgya Panchal
Acid Extractable Metals by ICPMS	ICP/MS	8871255	2023/08/23	2023/08/28	Daniel Teclu
Moisture	BAL	8870628	N/A	2023/08/23	Joe Thomas
OC Pesticides (Selected) & PCB	GC/ECD	8880217	2023/08/27	2023/08/29	Mahmudul Khan
OC Pesticides Summed Parameters	CALC	8865584	N/A	2023/08/24	Automated Statchk
pH CaCl2 EXTRACT	AT	8873477	2023/08/24	2023/08/24	Gurparteek KAUR

Bureau Veritas ID: WSX064

Sample ID: S6

. Matrix: Soil Collected: 2

2023/08/18

Shipped: Received:

2023/08/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Free (WAD) Cyanide	TECH	8870571	2023/08/23	2023/08/23	Jency Sara Johnson
Acid Extractable Metals by ICPMS	ICP/MS	8871067	2023/08/23	2023/08/28	Daniel Teclu
Moisture	BAL	8870628	N/A	2023/08/23	Joe Thomas
OC Pesticides (Selected) & PCB	GC/ECD	8877937	2023/08/25	2023/08/26	Mahmudul Khan
OC Pesticides Summed Parameters	CALC	8865584	N/A	2023/08/24	Automated Statchk
pH CaCl2 EXTRACT	AT	8873477	2023/08/24	2023/08/24	Gurparteek KAUR

Bureau Veritas ID: WSX065

Sample ID: S7

Matrix: Soil

Collected: 2023/08/18

Shipped:

Received: 2023/08/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Free (WAD) Cyanide	TECH	8870571	2023/08/23	2023/08/23	Jency Sara Johnson
Acid Extractable Metals by ICPMS	ICP/MS	8871067	2023/08/23	2023/08/28	Daniel Teclu
Moisture	BAL	8870628	N/A	2023/08/23	Joe Thomas
OC Pesticides (Selected) & PCB	GC/ECD	8877937	2023/08/25	2023/08/26	Mahmudul Khan
OC Pesticides Summed Parameters	CALC	8865584	N/A	2023/08/24	Automated Statchk
pH CaCl2 EXTRACT	AT	8873459	2023/08/24	2023/08/24	Gurparteek KAUR

Report Date: 2023/08/30

DS Consultants Limited Client Project #: 23-267-100

Site Location: 12101 CREDITVIEW RD.

Sampler Initials: MEG

TEST SUMMARY

Bureau Veritas ID: WSX066

Sample ID: **S8** Matrix: Soil Collected:

2023/08/18

Shipped: Received:

2023/08/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Free (WAD) Cyanide	TECH	8870571	2023/08/23	2023/08/23	Jency Sara Johnson
Acid Extractable Metals by ICPMS	ICP/MS	8871067	2023/08/23	2023/08/28	Daniel Teclu
Moisture	BAL	8870628	N/A	2023/08/23	Joe Thomas
OC Pesticides (Selected) & PCB	GC/ECD	8877937	2023/08/25	2023/08/26	Mahmudul Khan
OC Pesticides Summed Parameters	CALC	8865584	N/A	2023/08/24	Automated Statchk
pH CaCl2 EXTRACT	AT	8873477	2023/08/24	2023/08/24	Gurparteek KAUR

Bureau Veritas ID: WSX067

Sample ID:

S9 Matrix: Soil Collected:

2023/08/18 Shipped:

Received: 2023/08/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Free (WAD) Cyanide	TECH	8870571	2023/08/23	2023/08/23	Jency Sara Johnson
Acid Extractable Metals by ICPMS	ICP/MS	8871255	2023/08/23	2023/08/28	Daniel Teclu
Moisture	BAL	8870628	N/A	2023/08/23	Joe Thomas
OC Pesticides (Selected) & PCB	GC/ECD	8877937	2023/08/25	2023/08/26	Mahmudul Khan
OC Pesticides Summed Parameters	CALC	8865584	N/A	2023/08/24	Automated Statchk
pH CaCl2 EXTRACT	AT	8873477	2023/08/24	2023/08/24	Gurparteek KAUR

Bureau Veritas ID: WSX067 Dup

Sample ID: **S9**

Matrix: Soil Collected: Shipped:

2023/08/18

Received: 2023/08/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Acid Extractable Metals by ICPMS	ICP/MS	8871255	2023/08/23	2023/08/28	Daniel Teclu

Bureau Veritas ID: WSX068

Sample ID: S10

Matrix: Soil

Collected:

2023/08/18

Shipped:

Received: 2023/08/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Free (WAD) Cyanide	TECH	8870571	2023/08/23	2023/08/23	Jency Sara Johnson
Acid Extractable Metals by ICPMS	ICP/MS	8871067	2023/08/23	2023/08/28	Daniel Teclu
Moisture	BAL	8870628	N/A	2023/08/23	Joe Thomas
OC Pesticides (Selected) & PCB	GC/ECD	8877937	2023/08/25	2023/08/26	Mahmudul Khan
OC Pesticides Summed Parameters	CALC	8865584	N/A	2023/08/24	Automated Statchk
pH CaCl2 EXTRACT	AT	8873477	2023/08/24	2023/08/24	Gurparteek KAUR

Bureau Veritas ID: WSX069 Sample ID: DUP-1

Matrix: Soil

Collected: 2023/08/18 Shipped:

Received: 2023/08/18

	Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Ī	Free (WAD) Cyanide	TECH	8870571	2023/08/23	2023/08/23	Jency Sara Johnson
Ī	Acid Extractable Metals by ICPMS	ICP/MS	8871067	2023/08/23	2023/08/28	Daniel Teclu

Bureau Veritas Job #: C3P2467 Report Date: 2023/08/30 DS Consultants Limited Client Project #: 23-267-100

Site Location: 12101 CREDITVIEW RD.

Sampler Initials: MEG

TEST SUMMARY

Bureau Veritas ID: WSX069

Collected: 2023/08/18

Shipped: Received: 2023/08/18

Sample ID: DUP-1 Matrix: Soil

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Moisture	BAL	8870628	N/A	2023/08/23	Joe Thomas
OC Pesticides (Selected) & PCB	GC/ECD	8877937	2023/08/25	2023/08/26	Mahmudul Khan
OC Pesticides Summed Parameters	CALC	8865584	N/A	2023/08/24	Automated Statchk

Site Location: 12101 CREDITVIEW RD.

Sampler Initials: MEG

GENERAL COMMENTS

Each te	emperature is the	average of up to t	hree cooler temperatures taken at receipt
	Package 1	18.7°C	
Result	s relate only to the	e items tested.	

QUALITY ASSURANCE REPORT

DS Consultants Limited Client Project #: 23-267-100

Site Location: 12101 CREDITVIEW RD.

Sampler Initials: MEG

			Matrix	Spike	SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8877937	2,4,5,6-Tetrachloro-m-xylene	2023/08/29	90	50 - 130	83	50 - 130	81	%		
8877937	Decachlorobiphenyl	2023/08/29	114	50 - 130	108	50 - 130	114	%		
8880217	2,4,5,6-Tetrachloro-m-xylene	2023/08/29	108	50 - 130	98	50 - 130	94	%		
8880217	Decachlorobiphenyl	2023/08/29	128	50 - 130	117	50 - 130	120	%		
8868881	WAD Cyanide (Free)	2023/08/23	78	75 - 125	94	80 - 120	<0.01	ug/g	NC	35
8870571	WAD Cyanide (Free)	2023/08/23	83	75 - 125	95	80 - 120	<0.01	ug/g	NC	35
8870628	Moisture	2023/08/23							1.8	20
8871067	Acid Extractable Antimony (Sb)	2023/08/28	104	75 - 125	100	80 - 120	<0.20	ug/g	NC	30
8871067	Acid Extractable Arsenic (As)	2023/08/28	104	75 - 125	102	80 - 120	<1.0	ug/g	3.4	30
8871067	Acid Extractable Barium (Ba)	2023/08/28	NC	75 - 125	100	80 - 120	<0.50	ug/g	0.76	30
8871067	Acid Extractable Beryllium (Be)	2023/08/28	104	75 - 125	96	80 - 120	<0.20	ug/g	3.6	30
8871067	Acid Extractable Boron (B)	2023/08/28	99	75 - 125	91	80 - 120	<5.0	ug/g	NC	30
8871067	Acid Extractable Cadmium (Cd)	2023/08/28	106	75 - 125	99	80 - 120	<0.10	ug/g	NC	30
8871067	Acid Extractable Chromium (Cr)	2023/08/28	102	75 - 125	101	80 - 120	<1.0	ug/g	8.3	30
8871067	Acid Extractable Cobalt (Co)	2023/08/28	102	75 - 125	101	80 - 120	<0.10	ug/g	0.45	30
8871067	Acid Extractable Copper (Cu)	2023/08/28	102	75 - 125	100	80 - 120	<0.50	ug/g	2.9	30
8871067	Acid Extractable Lead (Pb)	2023/08/28	59 (1)	75 - 125	100	80 - 120	<1.0	ug/g	84 (2)	30
8871067	Acid Extractable Molybdenum (Mo)	2023/08/28	106	75 - 125	98	80 - 120	<0.50	ug/g	NC	30
8871067	Acid Extractable Nickel (Ni)	2023/08/28	101	75 - 125	100	80 - 120	<0.50	ug/g	1.0	30
8871067	Acid Extractable Selenium (Se)	2023/08/28	107	75 - 125	101	80 - 120	<0.50	ug/g	NC	30
8871067	Acid Extractable Silver (Ag)	2023/08/28	110	75 - 125	105	80 - 120	<0.20	ug/g	NC	30
8871067	Acid Extractable Thallium (TI)	2023/08/28	106	75 - 125	103	80 - 120	<0.050	ug/g	0.67	30
8871067	Acid Extractable Uranium (U)	2023/08/28	105	75 - 125	100	80 - 120	<0.050	ug/g	1.7	30
8871067	Acid Extractable Vanadium (V)	2023/08/28	103	75 - 125	100	80 - 120	<5.0	ug/g	0.72	30
8871067	Acid Extractable Zinc (Zn)	2023/08/28	NC	75 - 125	101	80 - 120	<5.0	ug/g	6.5	30
8871255	Acid Extractable Antimony (Sb)	2023/08/28	98	75 - 125	103	80 - 120	<0.20	ug/g	NC	30
8871255	Acid Extractable Arsenic (As)	2023/08/28	105	75 - 125	102	80 - 120	<1.0	ug/g	2.7	30
8871255	Acid Extractable Barium (Ba)	2023/08/28	NC	75 - 125	99	80 - 120	<0.50	ug/g	2.3	30
8871255	Acid Extractable Beryllium (Be)	2023/08/28	101	75 - 125	98	80 - 120	<0.20	ug/g	5.5	30
8871255	Acid Extractable Boron (B)	2023/08/28	90	75 - 125	91	80 - 120	<5.0	ug/g	3.7	30
8871255	Acid Extractable Cadmium (Cd)	2023/08/28	105	75 - 125	101	80 - 120	<0.10	ug/g	7.2	30

QUALITY ASSURANCE REPORT(CONT'D)

DS Consultants Limited Client Project #: 23-267-100

Site Location: 12101 CREDITVIEW RD.

Sampler Initials: MEG

			Matrix	Spike	SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8871255	Acid Extractable Chromium (Cr)	2023/08/28	104	75 - 125	99	80 - 120	<1.0	ug/g	2.0	30
8871255	Acid Extractable Cobalt (Co)	2023/08/28	104	75 - 125	100	80 - 120	<0.10	ug/g	2.3	30
8871255	Acid Extractable Copper (Cu)	2023/08/28	97	75 - 125	98	80 - 120	<0.50	ug/g	3.0	30
8871255	Acid Extractable Lead (Pb)	2023/08/28	101	75 - 125	101	80 - 120	<1.0	ug/g	3.3	30
8871255	Acid Extractable Molybdenum (Mo)	2023/08/28	102	75 - 125	99	80 - 120	<0.50	ug/g	NC	30
8871255	Acid Extractable Nickel (Ni)	2023/08/28	102	75 - 125	102	80 - 120	<0.50	ug/g	5.0	30
8871255	Acid Extractable Selenium (Se)	2023/08/28	106	75 - 125	104	80 - 120	<0.50	ug/g	NC	30
8871255	Acid Extractable Silver (Ag)	2023/08/28	109	75 - 125	106	80 - 120	<0.20	ug/g	NC	30
8871255	Acid Extractable Thallium (TI)	2023/08/28	105	75 - 125	104	80 - 120	<0.050	ug/g	2.2	30
8871255	Acid Extractable Uranium (U)	2023/08/28	104	75 - 125	102	80 - 120	<0.050	ug/g	1.7	30
8871255	Acid Extractable Vanadium (V)	2023/08/28	NC	75 - 125	97	80 - 120	<5.0	ug/g	2.1	30
8871255	Acid Extractable Zinc (Zn)	2023/08/28	NC	75 - 125	102	80 - 120	<5.0	ug/g	3.7	30
8873459	Available (CaCl2) pH	2023/08/24			100	97 - 103			0.71	N/A
8873477	Available (CaCl2) pH	2023/08/24			101	97 - 103			0.43	N/A
8877937	a-Chlordane	2023/08/26	92	50 - 130	84	50 - 130	<0.0020	ug/g	NC	40
8877937	Aldrin	2023/08/26	83	50 - 130	77	50 - 130	<0.0020	ug/g	NC	40
8877937	Aroclor 1242	2023/08/26					<0.015	ug/g	NC	40
8877937	Aroclor 1248	2023/08/26					<0.015	ug/g	NC	40
8877937	Aroclor 1254	2023/08/26					0.022, RDL=0.015 (3)	ug/g	NC	40
8877937	Aroclor 1260	2023/08/26					<0.015	ug/g	NC	40
8877937	Dieldrin	2023/08/26	116	50 - 130	115	50 - 130	<0.0020	ug/g	NC	40
8877937	Endosulfan I (alpha)	2023/08/26	96	50 - 130	114	50 - 130	<0.0020	ug/g	NC	40
8877937	Endosulfan II (beta)	2023/08/26	113	50 - 130	106	50 - 130	<0.0020	ug/g	NC	40
8877937	Endrin	2023/08/26	113	50 - 130	110	50 - 130	<0.0020	ug/g	NC	40
8877937	g-Chlordane	2023/08/26	89	50 - 130	83	50 - 130	<0.0020	ug/g	NC	40
8877937	Heptachlor epoxide	2023/08/26	98	50 - 130	104	50 - 130	<0.0020	ug/g	NC	40
8877937	Heptachlor	2023/08/26	91	50 - 130	85	50 - 130	<0.0020	ug/g	NC	40
8877937	Hexachlorobenzene	2023/08/26	89	50 - 130	71	50 - 130	<0.0020	ug/g	NC	40
8877937	Hexachlorobutadiene	2023/08/26	88	50 - 130	90	50 - 130	<0.0020	ug/g	NC	40
8877937	Hexachloroethane	2023/08/26	66	50 - 130	70	50 - 130	<0.0020	ug/g	NC	40

QUALITY ASSURANCE REPORT(CONT'D)

DS Consultants Limited Client Project #: 23-267-100

Site Location: 12101 CREDITVIEW RD.

Sampler Initials: MEG

			Matrix	Spike	SPIKED BLANK Metl		Method I	Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	
8877937	Lindane	2023/08/26	84	50 - 130	79	50 - 130	<0.0020	ug/g	NC	40	
8877937	Methoxychlor	2023/08/26	111	50 - 130	115	50 - 130	<0.0050	ug/g	NC	40	
8877937	o,p-DDD	2023/08/26	108	50 - 130	103	50 - 130	<0.0020	ug/g	NC	40	
8877937	o,p-DDE	2023/08/26	99	50 - 130	104	50 - 130	<0.0020	ug/g	NC	40	
8877937	o,p-DDT	2023/08/26	99	50 - 130	92	50 - 130	<0.0020	ug/g	NC	40	
8877937	p,p-DDD	2023/08/26	108	50 - 130	110	50 - 130	<0.0020	ug/g	NC	40	
8877937	p,p-DDE	2023/08/26	98	50 - 130	97	50 - 130	<0.0020	ug/g	NC	40	
8877937	p,p-DDT	2023/08/26	103	50 - 130	94	50 - 130	<0.0020	ug/g	NC	40	
8880217	a-Chlordane	2023/08/29	118	50 - 130	97	50 - 130	<0.0020	ug/g	NC	40	
8880217	Aldrin	2023/08/29	94	50 - 130	91	50 - 130	<0.0020	ug/g	NC	40	
8880217	Aroclor 1242	2023/08/29					<0.015	ug/g	NC	40	
8880217	Aroclor 1248	2023/08/29					<0.015	ug/g	NC	40	
8880217	Aroclor 1254	2023/08/29					<0.015	ug/g	NC	40	
8880217	Aroclor 1260	2023/08/29					<0.015	ug/g	NC	40	
8880217	Dieldrin	2023/08/29	109	50 - 130	109	50 - 130	<0.0020	ug/g	NC	40	
8880217	Endosulfan I (alpha)	2023/08/29	116	50 - 130	105	50 - 130	<0.0020	ug/g	NC	40	
8880217	Endosulfan II (beta)	2023/08/29	107	50 - 130	99	50 - 130	<0.0020	ug/g	NC	40	
8880217	Endrin	2023/08/29	109	50 - 130	105	50 - 130	<0.0020	ug/g	NC	40	
8880217	g-Chlordane	2023/08/29	104	50 - 130	96	50 - 130	<0.0020	ug/g	NC	40	
8880217	Heptachlor epoxide	2023/08/29	91	50 - 130	99	50 - 130	<0.0020	ug/g	NC	40	
8880217	Heptachlor	2023/08/29	105	50 - 130	96	50 - 130	<0.0020	ug/g	NC	40	
8880217	Hexachlorobenzene	2023/08/29	106	50 - 130	102	50 - 130	<0.0020	ug/g	NC	40	
8880217	Hexachlorobutadiene	2023/08/29	112	50 - 130	113	50 - 130	<0.0020	ug/g	NC	40	
8880217	Hexachloroethane	2023/08/29	78	50 - 130	85	50 - 130	<0.0020	ug/g	NC	40	
8880217	Lindane	2023/08/29	110	50 - 130	96	50 - 130	<0.0020	ug/g	NC	40	
8880217	Methoxychlor	2023/08/29	113	50 - 130	113	50 - 130	<0.0050	ug/g	NC	40	
8880217	o,p-DDD	2023/08/29	116	50 - 130	112	50 - 130	<0.0020	ug/g	NC	40	
8880217	o,p-DDE	2023/08/29	109	50 - 130	98	50 - 130	<0.0020	ug/g	NC	40	
8880217	o,p-DDT	2023/08/29	109	50 - 130	109	50 - 130	<0.0020	ug/g	NC	40	
8880217	p,p-DDD	2023/08/29	107	50 - 130	108	50 - 130	<0.0020	ug/g	NC	40	
8880217	p,p-DDE	2023/08/29	121	50 - 130	112	50 - 130	<0.0020	ug/g	NC	40	

Bureau Veritas Job #: C3P2467 Report Date: 2023/08/30

QUALITY ASSURANCE REPORT(CONT'D)

DS Consultants Limited Client Project #: 23-267-100

Site Location: 12101 CREDITVIEW RD.

Sampler Initials: MEG

				Matrix Spike		SPIKED BLANK		Method Blank		RPD	
Ī	QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
I	8880217	p,p-DDT	2023/08/29	119	50 - 130	162 (4)	50 - 130	<0.0020	ug/g	NC	40

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) Metals Analysis: Matrix Spike exceeds acceptance limits, sample inhomogeneity suspected.
- (2) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.
- (3) Analyte was detected in the method blank at a level marginally above the detection limit. This may represent a high bias in some results. For results that were not detected (ND), this potential bias has no impact.
- (4) The recovery was above the upper control limit. This may represent a high bias in some results for flagged analytes. For results that were not detected (ND), this potential bias has no impact.

Site Location: 12101 CREDITVIEW RD.

Sampler Initials: MEG

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

=======================================
Brad Newman, B.Sc., C.Chem., Scientific Service Specialist
Criston Carriere
Custo - Custome
Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

applicable regulatory guidelines.

DS Consultants Limited Client Project #: 23-267-100

Site Location: 12101 CREDITVIEW RD.

Sampler Initials: MEG

Exceedance Summary Table – Reg153/04 T8-Soil/Res Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						
The exceedance summary to	able is for information purp	oses only and should no	t be considered a comprehe	nsive listing o	r statement of co	onformance to

6740 Campobello Road, Mississauga, Ontario LSN 2L8

CAM FCD-01191/6

Phone: 905-817-5700 Fax: 905-817-5779 Toll Free: 800-563-6266

CHAIN OF CUSTODY RECORD

	1	A
Page _	1_0	of L

Invoice Information	Report Inform	nation (if differs from invoice)	Project Information (where applicable)	Turnaround Time (TAT) Required
Company Name: DS Consultants	Company Name: D5 Cons	sultants	Quotation #:	Regular TAT (5-7 days) Most analyses
Contact Name: Accounting.	Contact Name: Moa	an Bender	P.O. #/ AFE#:	PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PRO
Address:	Address:	an Orra	Project #: 23~267-100	Rush TAT (Surcharges will be applied)
	5134(16/63/14/40)		Site Location: 12101 Credituran Rd.	1 Day 2 Days 3-4 Days
Phone: Fax:	Phone:	Fax:	Site #:	1
Email:	Email: mbender Ge	dsconsillants.ca	Site Location Province:	Date Required:
MOD REQULATED DRINKING WATER OR WATER INTENDED FOR HUMAN	CONSUMPTION MUST BE SUBMITTED ON THE BUI	REAU VERITAS DRINKING WATER CHAIN OF CUSTODY	Sampled By: Mega	Rush Confirmation #:
Regulation 153	Other Regulations		Analysis Requested	LABORATORY USE ONLY
Table 2 Ind/Comm Coarse Table 3 Agri/ Other Table 8 FOR RSC (PLEASE CIRCLE) Y / N	CCME Sanitary Sewer Bylav MISA Storm Sewer Bylav PWQO Region Other (Specify) REG 558 (MIN. 3 DAY TAT REQUIRED) REG 406 Table	Metals / Hg / CrVI	. А. 56, Se, CN'	CUSTODY SEAL Y/N COOLER TEMPERATU Present Intact Y 7 8/19///
	Commence Commence of the Comme	1 Z 2	ITALS IN ICPMS IN ICP	
SAMPLES MUST BE KEPT COOL (< 10°C) FROM TIME OF S		HC F1 RE CPN REIT	N, ICE	COOLING MEDIA PRESENT: 6 / N
SAMPLE IDENTIFICATION	DATE SAMPLED SAMPLED MAT (YYYY/MM/DD) (HH:MM)	TAIL STATES SUBMITTED CONTRINERS SUBMITTED FILE OF FILE OF THE FIRE OF THE FIR	REG 135 METAIS (He, Cr.VI, ICPMS METAIS), PAHS OC.PS CNEAGE, AS PAF	COMMENTS
1 SI	203/5/3 PM S	3 2 1		
2 52		2		
3 S3		2		
4 54		2.	D V V	
5 55		2	V 40	18-Aug-23 16:26
56		7.	Asht	on Gibson
7 57	1.			11111111111111111111111111111111111111
8 58		7	V V V	.SF 2407
9 59		2	A1V	ENV-1571
10 SIO		2	V VV	
	TE: (YYYY/MM/DD) TIME: (HH:MM)	RECEIVED BY: (Signature/Print)	DATE: (YYYY/MM/DD) JIME: (HH:MM)	Onice BUJOB#
Mysford 2	3/8/18	1712413 11114	Dec 2023/08/18 16:26	

6740 Campobello Road, Mississauga, Ontario LSN 2L8
Phone: 905-817-5700 Fax: 905-817-5779 Toll Free: 800-563-6266

Phone: 905-817-5700 Fax: 905-817-5779 Toll Free: 800-563-6266

CAM FCD-01191/6 CHAIN OF CUSTODY RECORD

Report Information (if differs from invoice) Project Information (where applicable) Turnaround Time (TAT) Required Invoice Information Regular TAT (5-7 days) Most analyses Company Name: **DS Consultants** Quotation #: Company Name: DS Consultants PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PRO P.O. #/ AFE#: Contact Name: Contact Name: Rush TAT (Surcharges will be applied) 23-267-100 Project #: Address: Address: Site Location: 12101 Creditivew Rd 1 Day 2 Days Site #: Phone: Date Required: Email: mbender@dsconsiltants.ca Site Location Province: MOE REQUIATED DRINKING WATER OR WATER INTENDED FOR HUMAN CONSUMPTION MUST BE SUBMITTED ON THE BUREAU VERITAS DRINKING WATER CHAIN OF CUSTODY Rush Confirmation #: Sampled By: LABORATORY USE ONLY **Analysis Requested** Other Regulations Regulation 153 CUSTODY SEAL Res/Park CCME Sanitary Sewer Bylaw Table 1 Med/ Fine Y / N COOLER.TEMPERATU Table 2 MISA Storm Sewer Bylaw Ind/Comm Coarse Metals / Hg / CrVI Present Intact Table 3 Agri/ Other PWQO Region Table 8 Other (Specify) REG 153 METALS (Hg. Cr VI, ICPMS Metals, HWS - E) FOR RSC (PLEASE CIRCLE) Y / N REG 558 (MIN. 3 DAY TAT REQUIRED) 5 NOT ANALYZE REG 406 Table (CIRCLE) REG 153 ICPMS METALS Include Criteria on Certificate of Analysis: (Y)/N SAMPLES MUST BE KEPT COOL (< 10 °C) FROM TIME OF SAMPLING UNTIL DELIVERY TO BUREAU VERITAS Y / N 8 COOLING MEDIA PRESENT OLD. DATE SAMPLED SAMPLED MATRIX 0 SAMPLE IDENTIFICATION COMMENTS (YYYY/MM/DD) (HH-MM) DUP -120 2 3 4 6 8 9 10 BV JOB# DATE: (YYYY/MM/DD) TIME: (HH:MM) RECEIVED BY: (Signature/Print) DATE: (YYYY/MM/DD) TIME: (HH:MM) RELINQUISHED BY: (Signature/Print)

Appendix E

Phase Two Conceptual Site Model

This Phase Two Conceptual Site Model has been prepared for the property comprised of Part of Lots 18 & 19 Concession 3, Caledon, Ontario, herein referred to as the "Site". This Phase Two CSM was developed through a synthesis of the information obtained through the completion of the Phase One ESA, and the data collected as part of the Phase Two ESA. The Phase Two CSM is comprised of the following Figures and text.

FIGURES

Figure 1 – Site Location Plan

Figure 2 - Phase Two Property Site Plan

Figure 3 – Phase One Study Area

Figure 4 – PCA within Phase One Study Area

Figure 5 – Borehole/Monitoring Well location plan with APECs

Figure 6 – Groundwater Contours and Flow Direction

Figure 7A – Soil Characterization – Metals and ORPs

Figure 7B – Soil Characterization – OCPs

Figure 8 – Contaminant Transport Diagram

The Phase Two Property is an irregularly shaped 59.97-hectare (148.19 acres) parcel of land situated within a rural neighbourhood in the Town of Caledon, Ontario. The Phase Two Property is located approximately 390 m northwest of the intersection of Creditview Road and Mayfield Road and was occupied by agricultural fields at the time of this investigation.

The Property contains agricultural fields with no structures. A Site Plan depicting the Site is provided in Figure 2.

A Phase One ESA was completed in September 2023. The results of the Phase One ESA identified four (4) areas of potential environmental concern on the Property associated with the following historical and current uses:

- Two (2) historical orchards on the west-central portion of the Site;
- One (1) historical orchard on the south end of the Site;
- Pesticides may be used on the agricultural fields on Site; and
- The inferred use of de-icing agents on the adjacent roadways.

The environmental soil conditions on the Site were investigated through the completion of 13 boreholes between August 9, 2023 and August 14, 2023. The boreholes were advanced to a maximum depth of 8.2 metres below ground surface (mbgs) under the supervision of DS personnel. Groundwater monitoring wells were installed in five (5) of the boreholes for the assessment of groundwater flow direction. The borehole locations were determined based on the findings of the Phase One ESA. All APECs were investigated with boreholes and/or monitoring wells in accordance with the requirements of O.Reg. 153/04 (as amended). Soil samples were collected and submitted for analysis of all PCOCs, including: Metals, As, Sb, Se, CN-, pH, EC, SAR, and organochlorinated pesticides (OCPs).

The soil analytical results were compared to the "Table 8: Generic Site Condition Standards for a Potable Groundwater Condition within 30 m of a Water Body for Residential/Parkland/Institutional use" provided in the MECP document entitled, "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" dated April 15, 2011 (Table 8 Standards) for coarse-textured soils and residential/parkland/institutional property use.

Based on the results of the Phase Two ESA, it was concluded that the soil and groundwater quality on the Site met the applicable MECP Table 8 SCS as of the Certification Date of August 30, 2023.

I. Description and Assessment of:

A. Areas where potentially contaminating activity has occurred

A total of nine (9) PCAs were identified in the Phase One ESA. A summary of the PCAs considered to be contributing to APECs on the Phase Two Property is provided in the table below.

PCA Item.	PCA Description (Per. Table 2, Schedule D of O.Reg. 153/04)	Description	Rationale
PCA-3	#40 – Pesticides Manufacturing, Processing, Bulk Storage and Large-Scale Applications	The Peel County Atlas shows two (2) orchards on the central portion of the Site.	Yes – APEC-1
PCA-6	#40 – Pesticides Manufacturing, Processing, Bulk Storage and Large-Scale Applications	Pesticides may be used on the agricultural fields on Site.	Yes – APEC-2
PCA-5	#N/S – Seasonal De-Icing Activities	The west portion of the adjacent roadway	Yes – APEC-3A

PCA Item.	PCA Description (Per. Table 2, Schedule D of O.Reg. 153/04)	Description	Rationale
		(Creditview Road) may be subject to de-icing activities.	
PCA-8	#40 – Pesticides Manufacturing, Processing, Bulk Storage and Large-Scale Applications	The Peel County Atlas shows an orchard on the south corner of the Site.	Yes – APEC-4
PCA-10	#N/S - Seasonal De-Icing Activities	The southeast portion of the adjacent roadway (Creditview Road) may be subject to de-icing activities.	Yes – APEC-3B
PCA-11	#N/S - Seasonal De-Icing Activities	The east adjacent roadway (Mayfield Road) may be subject to de-icing activities.	Yes – APEC-3C

N/S - not specified in Table 2, Schedule D, of O.Reg. 153/04

B. Areas of potential environmental concern

A total of four (4) APECs were identified to be present on the Phase Two Property through the completion of the Phase One ESA. A summary of the APECs identified, and the associated PCOCs is provided in the table below.

Area of Potential Environment al Concern	Location of Area of Potential Environment al Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (on-site or off-site)	Contaminant s of Potential Concern	Media Potentially Impacted (Ground water, soil and/or sediment)
APEC-1	Central portion of the Site	#40 – Pesticides Manufacturing, Processing, Bulk Storage and Large-Scale Applications	On Site PCA-3	OCPs, Metals, As, Sb, Se, CN-	Soil
APEC-2	Entire Site	#40 – Pesticides Manufacturing, Processing, Bulk Storage and Large-Scale Applications	On Site PCA-6	OCPs, Metals, As, Sb, Se, CN-	Soil
APEC-3A	West portion of the Site				
APEC-3B	Southwest portion of the Site	#N/S – Seasonal De-Icing Activities ¹	Off Site PCA-5 PCA-10	EC, SAR	Soil
APEC-3C	Southeast portion of the Site		PCA-11		

Email: office@dsconsultants.ca

Area of Potential Environment al Concern	Location of Area of Potential Environment al Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (on-site or off-site)	Contaminant s of Potential Concern	Media Potentially Impacted (Ground water, soil and/or sediment)
APEC-4	South corner of the Site	#40 – Pesticides Manufacturing, Processing, Bulk Storage and Large-Scale Applications	On Site PCA-8	OCPs, Metals, As, Sb, Se, CN-	Soil

N/S - not specified in Table 2, Schedule D, of O.Reg. 153/04

C. Any subsurface structures and utilities on, in or under the Phase Two Property that may affect contaminant distribution and transport

The groundwater table was encountered at depths ranging from 0.70 to 1.80 mbgs on the Phase Two Property. The Site has not been developed, therefore it is unlikely that utility corridors may act as preferential pathways for contaminant distribution and transport in the event that shallow subsurface contaminants exist at the Phase Two Property.

Description of, and as appropriate, figures illustrating, the physical setting of the Phase Two Property and any areas under it including:

D. <u>Stratigraphy from ground surface to the deepest aquifer or aquitard</u> investigated

A surficial layer of topsoil approximately 200 to 400 mm in thickness was encountered in all of the boreholes advanced. Reworked clayey silt material with trace amounts of organics and sand was encountered below the topsoil. The reworked material was generally heterogeneous and ranged in thickness from 0.5 to 1.9 metres. BH23-511 encountered silty sand below the reworked material with a thickness of 2.2 mbgs. The native overburden material encountered consisted of clayey silt till, with trace amounts of sand and gravel. The clayey silt till unit extended to a maximum depth of 6.7 mbgs and ranged in thickness from 2.3-5.9 m. Silty sand till was encountered below the clayey silt till in BH23-501, BH23-506 to BH23-513 to borehole termination at 6.7 to 8.2 mbgs.

The borehole locations are depicted on Figure 5.

E. Hydrogeological Characteristics, including aquifers, aquitards and, in each hydrostratigraphic unit where one or more contaminants is present at concentrations above the applicable site condition standards, lateral and vertical gradients

The groundwater table was encountered in a clayey silt till unit encountered at an approximate depth of 0.2 to 6.7 mbgs, which is considered to be an unconfined aquifer.

Based on the groundwater elevations, the groundwater flow direction is interpreted to be southeasterly towards Fletcher's Creek.

The horizontal hydraulic gradient was calculated based on the groundwater levels recorded on August 29. 2023.

Table 5-1: Summary of Horizontal Hydraulic Gradient Calculations

Hydrogeological Unit	Calculated Horizontal Hydraulic Gradient
Overburden – clayey silt till	Minimum: 0.00582
	Average: 0.00064
	Maximum: 0.00847

The vertical hydraulic gradient was not calculated, as no groundwater impacts were identified on the Phase Two Property.

F. Depth to bedrock

Bedrock was not encountered in this investigation, however, based on the "Bedrock Topography and Overburden Thickness Mapping, Southern Ontario, prepared by Ontario Geological Survey, published 2006," the bedrock is anticipated to be encountered at a depth of approximately 20 to 25 mbgs.

G. Approximate depth to water table

The depth to groundwater was found to range between 0.70 to 1.80 mbgs on August 29, 2023.

H. Any respect in which sections 35, 41 or 43.1 of the regulation applies to the property

Section 35

Section 35 does not apply to the Site as the Town of Caledon relies on groundwater for potable water.

Section 41

The pH values measured for both surface and sub-surface soil samples were within the acceptable limits for non-sensitive sites. There are no areas of natural significance on the Phase Two Property, or within 30 m of the Phase Two Property. As such the Phase Two Property is not considered to be environmentally sensitive as defined by Section 41.

Section 43.1

The Phase Two Property is not considered a shallow soil property, however a creek traverses the west boundary of the Site. Section 43.1 is applicable.

I. Areas on, in or under the Phase Two Property where excess soil is finally placed

Based on the review of the obtained documents, there was no indication of fill material of unknown quality being imported to the Site.

J. Approximate locations, if known, of any proposed buildings and other structures

It is our understanding that redevelopment of the Site for residential purposes has been proposed, and that the development will feature a low-rise subdivision. It is further understood that the proposed development will occupy the entirety of the Phase Two Property.

- II. Where a contaminant is present on, in or under the Phase Two Property at a concentration greater than the applicable site condition standard, identification of
 - A. Each area where a contaminant is present on, in or under the Phase Two Property at a concentration greater than the applicable SCS

All of the soil and groundwater samples analyzed met the MECP Table 8 SCS. Plans depicting the sample locations and chemical analyses are provided in Figures 7A and 7B.

B. The contaminants associated with each of the areas

All of the soil and groundwater samples met the MECP Table 8 SCS.

C. Medium that contaminants were identified in

All of the soil and groundwater samples met the MECP Table 8 SCS.

D. <u>Description and assessment of what is know about each of the areas</u>

APEC-1 was identified at the Site relating to the presence of two (2) historical orchards on the central portion of the Site. The soil quality met within APEC-1 met the MECP Table 8 SCS.

APEC-2 was identified on the Site relating to the possible use of pesticides on the agricultural fields across the Site. The soil quality within APEC-2 met the MECP Table 8 SCS.

APEC-3 was identified on the Site relating to the application of de-icing agents on the adjacent roadways. The soil quality within APEC-3 met the MECP Table 8 SCS.

APEC-4 was identified on the Site relating to the presence of a historical orchard on the south corner of the Site. The soil quality met within APEC-4 met the MECP Table 8 SCS.

E. <u>Distribution in which the areas of each contaminant is present in the area at a concentration greater than the applicable SCS, for each medium in which the contaminant is present, together with figures showing the distribution</u>

Not applicable – All of the soil and groundwater samples analyzed met the MECP Table 8 SCS.

F. Anything know about the reason for the discharge of the contaminants present on, in or under the Phase Two Property at a concentrations greater than the applicable SCS

Not applicable – All of the soil and groundwater samples analyzed met the MECP Table 8 SCS.

G. Anything known about migration of the contaminants present on, in or under the phase two property at a concentration greater than the applicable SCS away from any area of potential environmental concern, including the identification of any preferential pathways

Not applicable – Contaminant concentrations were below the MECP Table 8 SCS. Contaminant migration is not considered to be an issue of concern with respect to the soil and groundwater quality at the Site.

H. <u>Climatic or meteorological conditions that may have influenced distribution and migration of the contaminants, such as temporal fluctuations in groundwater levels</u>

Soil and groundwater impacts were not identified on the Site, as such, temporal fluctuations in groundwater levels are not considerer to be of concern with respect to contaminant distribution and/or migration of contaminants.

I. <u>Information concerning soil vapour intrusion of the contaminants into buildings</u>

No volatile parameters were identified at concentrations greater than the applicable SCS, therefore vapour intrusion is not considered to be an exposure pathway at this time.

- III. Where contaminants on, in or under the Phase Two Property are present at concentrations greater than the applicable SCS, one or more cross-sections showing
 - A. The lateral and vertical distribution of a contaminant in each area where the contaminants are present at concentrations greater than the applicable SCS in soil, groundwater and sediment
 - B. Approximate depth to water table
 - C. Stratigraphy from ground surface to the deepest aquifer or aquitard investigated
 - D. Any subsurface structures and utilities that may affect contaminants distribution and transport

Contaminants were not identified at levels in excess of the applicable MECP Table 8 SCS.

- IV. For each area where a contaminant is present on, in or under the property at a concentration greater than the applicable SCS for the contaminant, a diagram identifying, with narrative explanatory notes
 - A. The release mechanisms

- **B.** Contaminant transport pathway
- C. The human and ecological receptors located on, in or under the phase two property
- D. Receptor exposure points
- E. Routes of exposure

A visual representation of potential contaminant transport pathways is provided in Figure 8.

Tel: 905-264-9393

www.dsconsultants.ca