

74 Berkeley Street, Toronto, ON M5A 2W7 Tel: 647-795-8153 | www.pecg.ca

Hydrogeological Assessment – Mayfield West Phase 2 Stage 3 Lands, Caledon, Ontario

Official Plan Amendment (OPA) Application

Palmer Project # 1701616

Prepared For Brookvalley Project Management Inc.

July 4, 2022

74 Berkeley Street, Toronto, ON M5A 2W7 Tel: 647-795-8153 | www.pecg.ca

July 4, 2022

Frank Filippo Director, Land & Construction Brookvalley Project Management Inc. 137 Bowes Road Concord, Ontario L4K 1H3

Dear Mr. Filippo:

Re: Hydrogeological Assessment – Mayfield West Phase 2 Stage 3 Lands, Caledon, Ontario Project #: 1701616

Palmer is pleased to submit the attached report describing the results of our Hydrogeological Investigation for the Mayfield West Phase 2 Stage 3 Lands (MW2-3) as part of an Official Plan Amendment (OPA) application. This report was also prepared to support the preparation of a Comprehensive Environmental Impact Study and Management Plan (CEISMP) for the study area.

Beginning in October 2017, Palmer completed a detailed, multi-year hydrogeological and wetland water level monitoring program for the MW2-3 lands to build upon the existing hydrogeological data collected in the area as part of the Secondary Plan study for the overall Mayfield West Phase 2 area. This hydrogeological assessment is focused on characterizing groundwater recharge and discharge trends, groundwater flow, vertical and horizontal hydraulic gradients, wetland hydroperiods, Source Water Protection policy implications and the pre-to-post development water balance. Recommendations are made to protect aquifers and wetland communities through the use of Low Impact Development (LID) design measures that are based on the site-specific conditions encountered.

We trust that this report will be satisfactory for your current needs. If you have any questions or require further information, please contact our office at your convenience. This report is subject to the Statement of Limitations provided at the end of this report.

Yours truly,

Jason Cole, M.Sc., P.Geo. VP, Principal Hydrogeologist

Table of Contents

Letter

1.	Introduction1									
	1.1	Scope of Work	1							
2.	Regio	onal Conditions	.3							
	2.1 2.2	Physiography and Topography Surficial and Bedrock Geology 2.2.1 Modern Alluvium Deposits 2.2.2 Fine Grained Glaciolacustrine Deposits 2.2.3 Halton Till 2.2.4 Oak Ridges Moraine Formation 2.2.5 Newmarket Till 2.2.6 Bedrock Geology 2.2.7 Physiographic Region	3 3 3 3 5 5 5							
	2.3	Regional Aquifers and Aquitards 2.3.1 Surface Water Protection 2.3.2 MECP Water Wells	5 8 9							
3.	Local	Conditions	.9							
	3.1 3.2 3.3	Site Geology Groundwater Level and Flow Hydraulic Conductivity 3.3.1 In-situ Hydraulic Testing 3.3.2 Grain Size Analysis	9 17 19 19 19							
	3.4 3.5	Natural Features 3.5.1 Surface Water 3.5.2 Groundwater / Surface Water Interactions	21 22 22 23							
4.	Wate	r Budget	27							
	4.1 4.2	Methodology 4.1.1 Water Surplus 4.1.2 Infiltration Factors Site Wide Water Budget	27 27 27 29							
		 4.2.1 Pre-Development Conditions	29 30							
5.	Deve	lopment Considerations	33							
	5.1 5.2	Low-Impact Development Recommendations Groundwater Recharge and Discharge 5.2.1 Groundwater Recharge and Discharge	33 34 34							

Palmer.

	5.3	Aquifers and Groundwater Users	34
	5.4	Groundwater Supported Natural Features	34
6.	Con	clusions	35
7.	Cert	tification	37
8.	Refe	erences	38

List of Figures

Figure 1. Site Location	2
Figure 2. Surficial Geology	4
Figure 3. Bedrock Geology	6
Figure 4. Physiographic Region	7
Figure 5. Source Water Protection	10
Figure 6. MECP Water Well Records	11
Figure 7. Hydrostratigraphic Cross Section Through A-A'	14
Figure 8. Hydrostratigraphic Cross Section Through B-B'	15
Figure 9. Hydrostratigraphic Cross Section Through C-C'	16

List of Tables

Table 1. Monitoring Well Installation Data	12
Table 2. Groundwater Level Monitoring Data	18
Table 3. Hydraulic Conductivity Results	20
Table 4. Groundwater Chemistry Results from MW6	21
Table 5. MP Manual Monitoring Data	25
Table 6. Surface Water Flow Observations at Tributaries to Etobicoke Creek	
Table 7. Summary of Infiltration Factors	28
Table 8. Summary of Annual Water Surplus	29
Table 9. Infiltration Factors for the Site Pre-Development	30
Table 10. Pre-Development Water Balance Results	31
Table 11. Post-Development Water Balance Results	32

List of Appendices

Appendix A.	Land U	se Plan (MGP, 2022)					
Appendix B.	Boreho	Logs and Grain Size Distributions					
Append	lix B1.	Borehole Logs (PECG, 2018)					
Append	lix B2.	Borehole Logs and Grain Size (AMEC, 2010)					
Appendix C.	Single \	Well Response Test Results (Aqtesolv™, 2018)					
Appendix D.	Ground	water Chemistry Certificate of Analysis (ALS, 2018)					
Appendix E.	Continu	ous Wetland Hydroperiod Monitoring Data (2017-2019)					

1. Introduction

Palmer was retained by Brookvalley Project Management Inc. (Brookvalley) to complete a Hydrogeological Assessment for the Mayfield West Phase 2 Stage 3 (MW2-3) project. The study area is approximately 430 hectare (ha) in size, with 208 ha of tableland development area, and is bounded to the north by Old School Road, to the west by Chinguacousy Road, to the east by Highway 10, and to the south by Etobicoke Creek (**Figure 1**). The site is within the jurisdiction of the Toronto and Region Conservation Authority (TRCA) and is situated within the Etobicoke Creek Watershed. The Land Use Plan, created by MGP (2022) is given in **Appendix A**.

Palmer hydrogeologists have been actively working on the site since 2017 collecting groundwater and wetland water level data. This work was focused on characterizing groundwater and surface water interactions within the wetland communities and watercourses present on the site. A series of groundwater monitoring wells were installed across the MW2-3 site, and wetland communities and Etobicoke Creek (including tributaries) were instrumented with wetland mini-piezometers (MP) to measure groundwater and surface water levels. The intent of this work was to assess each wetland from a hydrological and hydrogeological perspective to characterize each as groundwater supported, surface water supported, or a combination of both to allow for a representative impact assessment and future feature-based water budget to be completed, where necessary.

1.1 Scope of Work

The scope of work for Palmer Hydrogeological Assessment includes the following main tasks:

- Review of available background information and data for the study area, including the AMEC Secondary Plan and the associated Hydrogeological Assessment Report;
- Characterize the surface and sub-surface geological and hydrogeological conditions through a borehole drilling and monitoring well installation program completed in 2017. This drilling program included a series of shallow and deep nested groundwater monitoring wells;
- Develop and test monitoring wells to estimate hydraulic conductivity, assess groundwater flow, and the distribution of aquifers and aquitards;
- Characterize the groundwater / surface water interaction within wetland communities, Etobicoke Creek and its tributaries through the installation and monitoring of mini-piezometers;
- Complete monthly groundwater and surface water level monitoring for 1-year, and continuous groundwater level and wetland water level monitoring for 18 months to establish seasonal trends in groundwater and surface water/ wetland water levels;
- Complete a site scale water balance to establish infiltration and runoff volumes under predevelopment conditions;
- Complete a preliminary post-development water balance to assess pre-to-post changes
- Provide recommendations for Low Impact Development (LID) measures to maintain infiltration volumes post-development;
- Prepare a Hydrogeological Assessment Report to document the study findings for the OPA submission; and,
- Provide hydrogeological and water balance information to support the Comprehensive Environmental Impact Study and Management Plan (CEISMP) Report for the site.

Document Path: G:\Shared drives\Projects 2017\17016 - Brook Valley Homes\1701616 - Mayfield West Phase 2\GIS\1_Workspace\Task 2 - HydroG Figures\1701616_1-1_Site Location.mxd

2. Regional Conditions

2.1 Physiography and Topography

The site is located within the South Slope physiographic region (Chapman and Putnam, 1984), which lies between the Oak Ridges Moraine (ORM) and the Peel Plain. The South Slope was formed along the shorelines of the Iroquois Plain, and is characterized by predominately clay till soils derived from former glacial lakes. The South Slope begins on the south side of the Niagara Escarpment, and slopes downwards towards Lake Ontario. Local to the site, topography slopes towards Etobicoke Creek and its tributaries. Surface elevation varies between approximately 255 meters above sea level (masl) and 270 masl.

2.2 Surficial and Bedrock Geology

The surficial and bedrock geology at the site as described by OGS mapping is described in detail below.

2.2.1 Modern Alluvium Deposits

Recent deposits of alluvial silts, sands, and gravels are found in the Etobicoke Creek Valley (**Figure 2**). The Etobicoke Creek follows an ancestral valley system which has subsequently infilled with modern and historical alluvium (TRCA, 2010). These soils have been described as undifferentiated gravels, sands, silts, and muck (Karrow, 2005).

2.2.2 Fine Grained Glaciolacustrine Deposits

Fine grained glaciolacustrine sediments (silt and clay) are located within small regions of the site along Etobicoke Creek (**Figure 2**). These soils were deposited in former glacial lakes in calm, offshore environments, and are generally less than 1 m in thickness. The soil textures range from near shore sand and beach deposits from the shoreline of Lake Iroquois, to fine sand, silts, and clay deposits of glaciolacustrine ponding.

2.2.3 Halton Till

The Halton Till overlies the majority of the study area, and consists of clayey silt to silty clay textured till representing the final advance of ice at the end of the Wisconsinan glaciation (**Figure 2**). Typically, this unit is between 3 and 6 m in thickness, however, locally can exceed 15 to 30 m west of Brampton. It has a predominantly silty clay to silt matrix, and contains isolated lenses of laminated sand, silt, and clay. Regionally the unit acts as a surficial aquitard, with hydraulic conductivities ranging from 10⁻¹⁰ m/sec to 10⁻⁶ m/sec (Interim Waste Authority, 1994), however can often provide sufficient water for residential use where isolated sand lenses occur. Within the till soils, groundwater flow is typically downwards towards the more permeable bedrock aquifer. The water table is commonly high within the till due to the poorly drained nature of the soil.

Document Path: G:\Shared drives\Projects 2017\17016 - Brook Valley Homes\1701616 - Mayfield West Phase 2\GIS\1_Workspace\Task 2 - HydroG Figures\1701616_2-1_Surficial Geology.mxd

Surficial Geology

Brook Valley Homes

PROJECT

Mayfield West Phase 2

100

Source Notes: Imagery (2020) provided by Peel Region map service. Contains information licensed under the Open Government Licence – Ontari

200

METRE SCALE

300

400

Monitoring Well (Palmer, 2017)

Monitoring Well (AMEC, 2010)

Surface Water Flow Station

Phanerozoic / Cenozoic / Quaternary / Recent

till and rainout deposits)

Interpreted (from borehole drilling data)

19: Modern alluvial deposits (clay, silt, sand, gravel, may contain organic remains)

8b: Fine-textured glaciolacustrine deposits (Interbedded silt and clay and gritty, pebbly flow

5d: Tilll (Clay to silt-textured till [derived from glaciolacustrine deposits or shale])

Oak Ridges Moraine Formation (or equivalent) (Fine to medium sand and silt

Phanerozoic / Cenozoic / Quaternary / Pleistocene

Mini-Piezometer

∼ Watercourse¹

Study Area

Surficial Geology²

500

2.2.4 Oak Ridges Moraine Formation

The Oak Ridges Moraine sand and gravel deposits formed approximately 13,000 ybp and is a significant regional aquifer unit in Southern Ontario. Although the Oak Ridges Moraine (ORM) landform lies approximately 12 km north of the study area, "finger-like" protrusions of highly permeable ORM sediments are known to extend southward below the South Slope physiographic region in the vicinity of the study area, and pinch out beneath the Halton Till south of Mayfield Road. Some ORM sediments are also present at surface within the headwaters of Etobicoke Creek north of Mayfield Road (**Figure 2**). These deposits are generally less than 30 m thick, and especially thin out south of Mayfield Road.

Where low-lying watercourse or wetland features encounter permeable ORM sand and gravel deposits below the Halton Till, groundwater discharge is expected, which can support wetland function and stream baseflow.

2.2.5 Newmarket Till

The Newmarket Till is a regionally extensive subglacial till which underlies the Oak Ridges Moraine and most of south central Ontario (Sharpe et al., 1997). Typically, this unit is characterized by a dense, overconsolidated till deposit, which ranges in thickness from 1 to 50 m. Sediments in the till are comprised of sandy silt to silt with trace gravel. Generally, it is massive however coarser textured features, such as interbeds and sand dykes, are common.

2.2.6 Bedrock Geology

Bedrock at the site is characterized as Queenston Shale (**Figure 3**), and is described as Upper Ordovician aged, dark red, hematic shale interbedded with grey to green limestone and occasionally sandstone. Shale of the Queenston Formation does not fracture readily and is reportedly compact and dense with relatively poor interconnectivity of pore spaces (Singer et al., 2x003). It is expected that the depth to bedrock at the site is approximately 17 mbgs - 25 mbgs according to the bedrock found in MECP Well IDs # 4908096 and 4904291 respectively.

2.2.7 Physiographic Region

The South Slope physiographic region (**Figure 4**) (Chapman and Putnam, 1984), deposited by successive glaciers between 135,000 and 13,000 years ago. This area is a sloping glaciolacustrine till plain that extends across the City of Toronto, as well as York, Peel, Halton and Durham Regions, and Northumberland County. The dominant soil texture of the region is clay and silt, but some deposits of sand and gravel may be found. In the Halton Region the South Slope begins on the south side of the Niagara escarpment and slopes downward to the south. The topography in this region is gently rolling with numerous drumlins oriented up slope.

2.3 Regional Aquifers and Aquitards

Hydrostratigraphic units can be subdivided into two distinct groups based on their capacity to permit groundwater movement: an aquifer or an aquitard. An aquifer is classically defined as a layer of soil

Document Path: G:\Shared drives\Projects 2017\17016 - Brook Valley Homes\1701616 - Mayfield West Phase 2\GIS\1_Workspace\Task 2 - HydroG Figures\1701616_3-1_Bedrock Geology.mxd

Palmer...

1701616-MR-203-A Figure 3

Document Path: G:\Shared drives\Projects 2017\17016 - Brook Valley Homes\1701616 - Mayfield West Phase 2\GIS\1_Workspace\Task 2 - HydroG Figures\1701616_4-1_Physiographic Region.mxd

permeable enough to permit a usable supply of water to be extracted. Conversely, an aquitard is a layer of soil that inhibits groundwater movement due to its low permeability. The major regional hydrostratigraphic units at the site are described below.

The *Halton Till* consists of clayey silt to silt textured till, and forms a regional aquitard at the site. Generally, groundwater flow through these soils is predominantly downwards (vertical), providing recharge (albeit limited) to deeper aquifers. Shallow groundwater flow is expected to mimic site topography and generally flow towards major creek valleys (i.e., Etobicoke Creek). The hydraulic conductivity of the Halton Till ranges between 10⁻¹⁰ m/sec to 10⁻⁶ m/sec (Interim Waste Authority, 1994). More permeable sand and gravel lenses are known to occur within the Halton Till, which can provide sufficient water for domestic supply and provide localized areas of groundwater discharge to support streams and wetlands.

The **Oak Ridges Moraine (ORM)** is a significant regional aquifer in Southern Ontario due to its predominantly sandy surface soils and hummocky topography. It is identified by OGS mapping to occur approximately 12 km north of the site, however ORM sediments that have extended south were identified within the project boundary (**Figure 2**). These sediments were observed at surface near Etobicoke Creek where Halton Till was absent, and beneath the Halton Till through the rest of the site. South of Mayfield Road these sediments tend to thin and pinch out. The hydraulic conductivity of the ORM sediments is generally in the range of $3x10^{-6}$ m/sec to $7x10^{-3}$ m/sec (Sharpe et al., 2003), and is tapped by numerous private wells and several municipal supply wells.

The *Newmarket Till* acts as a significant regional aquitard at the study area. It is a poorly sorted sandy silt to sand till that forms a thick aquitard unit of fine textured sediments. This limits groundwater recharge and contaminant migration, however thin discontinuous sand layers present in the till cause some heterogeneity. The hydraulic conductivity of the till generally ranges between 10⁻¹¹ to 10⁻⁹ m/sec (Sharpe et al., 2003), however more permeable regions may have hydraulic conductivity values between 10⁻⁶ to 10⁻² m/sec (Fenco-Mclaren, 1994).

The *Queenston Shale bedrock* is present underlying the site and surrounding region, including much of the Caledon and Brampton area. Generally, the bedrock forms a regional confining unit that limits groundwater movement to deeper bedrock aquifers, however the upper 3 – 6 m can be more highly weathered and can provide significant water for groundwater supplies. The hydraulic conductivity of the shale bedrock is typically in the range of 10⁻⁵ to 10⁻⁸ m/sec (Lee and ESG International, 2002). The well yield from the weathered zone is typically low.

2.3.1 Surface Water Protection

The site is located within the Toronto Region Conservation Authority. The Source Water Protection Plan identifies four main regulatory factors under the *Clean Water Act (2006)* relating to local hydrogeology to consider for site development: Significant Groundwater Recharge Areas (SGRAs), Highly Vulnerable Aquifers (HVAs), and Wellhead Protection Areas (WHPAs), and Intake Protection Zones (IPZs).

A Wellhead Protection Area (WHPA) is the area around the wellhead where land use activities have the potential to affect the quality or quantity of water that flows into the well. These areas are delineated into zones of vulnerability (A, B, C, and D) based on the time of travel of water into the well, and zones around a surface water body influencing a Groundwater Under Direct Influence (GUDI) (E, F). Other zones (Q1,

and Q2) are defined as the areas where new water takings or reduced recharge could impact the quantity of water available to municipal supply wells. IPZs are the area on the water and land surrounding a municipal surface water intake. HVAs are aquifers that are susceptible to contamination as a result of the soil structure/material or due its location near the ground surface. Lastly, SGRAs are areas where recharge is important to maintain the water level in a community drinking water aquifer.

The site is not located within any WHPA-A to D, IPZs, SGRAs, or WHPA Q1 or Q2 areas. There are HVAs scattered across the site with a vulnerability scoring of 6 (**Figure 5**). Based upon this assessment, there are no significant restrictions to development within the MW2-3 lands from Source Water Protection Policies and that changes to the post-development infiltration rates should be focused on the potential impacts to features.

2.3.2 MECP Water Wells

Based on a review of the MECP water well records, a total of 130 water wells are present within a 500 m radius of the MW2-3 lands, including within the site (**Figure 6**). Of these, 61 wells are used for domestic purposes, 26 are used for monitoring, 12 are used for domestic and livestock purposes, 4 are just used for livestock, one is used for monitoring and testing and the last use stated is for public use. Of the remaining wells 8 are marked as no longer in use, and the remaining 17 have no use stated.

A door-to-door water well survey is recommended as part of the Environmental Implementation Reporting (EIR) stage to confirm the presence/ absence of active potable groundwater wells.

3. Local Conditions

3.1 Site Geology

Borehole drilling investigations at the site for hydrogeological purposes was conducted from November 13 – 15, 2017. Eleven boreholes (MW-1, MW-2s/d, MW-3, MW-4, MW-5s/d, MW-6, MW-7s/d, MW-8) were drilled by DrillTech Ltd. under the supervision of Palmer staff, to depths ranging from 7.85 mbgs to 12.80 mbgs. Borehole drilling was completed using solid stem auger methods, and soil samples were collected using a 0.61 m long split spoon. Each borehole was completed as a 51 mm diameter monitoring well using schedule 52 PVC pipe and a 1.5 m long screen. The location of each borehole is presented on **Figure 1**, and the details of the installed monitoring wells are provided on **Table 1**. Nested wells, which consisted of one deep and one shallow monitoring well, were installed at MW-2s/d, MW-5s/d, and MW-7s/d. Borehole logs are presented in **Appendix B1**.

In addition, monitoring wells that were previously installed by AMEC Earth and Environmental (AMEC) (now called Wood.) as part of the Mayfield West Phase 2 Secondary Plan Environmental Impact Study (AMEC, 2010) where utilized as part of this study. The locations of all AMEC wells (BH1 to BH6) are shown on **Figure 1**. The available details for these monitoring wells are provided in **Table 1**, and available borehole logs are provided in **Appendix B2**.

Document Path: G:\Shared drives\Projects 2017\17016 - Brook Valley Homes\1701616 - Mayfield West Phase 2\GIS\1_Workspace\Task 2 - HydroG Figures\1701616_5-1_Source Water Protection.mxd

ument Path: G:\Shared drives\Projects 2017\17016 - Brook Valley Homes\1701616 - Mayfield West Phase 2\GIS\1_Workspace\Task 2 - HydroG Figures\1701616_6-1_MECP Well Records.mxd

4901121

- Well Record within 500m¹
- Monitoring Well (Palmer, 2017)
- Monitoring Well (AMEC, 2010) €
- Mini-Piezometer
- Surface Water Flow Station
- ── Watercourse¹
- Study Area
- 500m Site Buffer

1. MECP 2. LIO/MNRF

400 500 200 300 100 METRE SCALE

North American Datum 1983 Universal Transverse Mercator Projection Zone 17

Scale: 1:12,000 Page Size: Tabloid (11 x 17 inches)

Drawn: CV Checked: NA

Date: Jun 24, 2022

Source Notes: Imagery (2020) provided by Peel Region map service. Contains information licensed under the Open Govern

Brook Valley Homes

ROJECT

IENT

Mayfield West Phase 2

ITLE

MECP Well Records within a 500 m radius

REF. NO. 1701616-MR-206-A Palmer.

Figure 6

	Approximate	UTM С	Coordinates	Stick	Borehole	Screened	Screened Geology		
	(masl)	Easting	Northing	ор (m)	(mbgs)	(mbgs)	Screened Geology		
MW-1	268	590927	4843009	0.65	7.90	4.57 – 6.09	(ORM or Equivalent) Sand and silt		
MW-2s	268	591429	4843102	0.66	9.22	3.35 – 4.88	(Newmarket Till) Clayey silt to silty clay till		
MW-2d	268	591429	4843102	0.75	9.22	5.79 – 8.84	(Newmarket Till) Clayey silt to silty clay till		
MW-3	263	591415	4842905	0.75	7.92	4.57 – 7.62	(Newmarket Till) Silty sand to silty clay till		
MW-4	266	592077	4844413	0.68	10.91	6.40 – 7.92	(ORM or Equivalent) Fine to medium sand and silt		
MW-5s	260	592688	4844656	0.71	12.32	4.57 – 6.10	(ORM or Equivalent) Silt and fine sand		
MW-5d	260	592688	4844656	0.62	12.32	9.14 – 10.67	(ORM or Equivalent) Silt and fine sand		
MW-6	263	592407	4843628	0.68	7.85	3.66 – 5.18	(ORM or Equivalent) Fine sand and silt, some clay		
MW-7s	259	592776	4843760	0.81	11.13	4.57 – 6.10	(ORM or Equivalent) Fine sand, silt, some clay		
MW-7d	259	592776	4843760	0.84	11.13	9.14 – 10.67	(Newmarket Till) Clayey silt till, some sand, some gravel		
MW-8	263.24	592323	4844727	0.73	12.80	9.75 – 11.28	(ORM or Equivalent) Fine to coarse sand, some silt		
BH1	263.24	592316	4844433	0.51	9.60	6.05 – 9.10	(ORM or Equivalent) Sandy silt, trace gravel, trace clay		
BH2	264.14	592320	4844728	0.92	9.60	6.05 – 9.10	(ORM or Equivalent) Sandy silt, trace gravel, trace clay		
BH3	259.30	592088	4842354	-	9.60	6.05 – 9.10	(ORM or Equivalent) Silt, some sand, trace clay		
BH4s	259.50	593192	4843477	-	30.50	7.20 – 10.25	(ORM or Equivalent) Silt, some sand, trace clay		
BH4d	259.50	593192	4843477	-	30.50	27.3 – 30.45	(Newmarket Till) Silt and sand, gravelly, trace clay		
BH5	258.91	593200	4844357	0.55	9.60	6.05 – 9.10	(ORM or Equivalent) Sandy silt, trace gravel, trace clay		
BH6	261.0	592942	4841754	-	9.60	6.05 – 9.10	(Newmarket Till) Clayey Silt till, embedded sand and gravel		

Table 1. Monitoring Well Installation Data

Note: "-" indicates specifications are unknown.

Three (3) hydrostratigraphic cross sections through the site were interpreted based on borehole drilling investigations by Palmer, as well as drilling results reported by AMEC (2010), and are provided on **Figures 3, 4, and 5**. Cross sections were completed through three transects labelled A-A', B-B', and C-C' (noted on **Figure 2**) within the MW2-3 lands. In addition to boreholes drilled by Palmer, the cross sections incorporate borehole logs completed by AMEC (2010).

The following soil condition, and their associated hydrostratigraphic units were encountered and interpreted in MW2-3 study area over the depth of drilling:

Topsoil: All boreholes encountered topsoil that ranged in thickness from 0.69 m (MW-7s/d) to 1.45 m (MW-2, MW-3, MW-5s/d, and MW-6). Topsoil is generally described as loose fine sand, silt, and clay, with some organics. Generally, the soil material was moist to dry, and brown in colour.

Clayey Silt Till (Halton Till): A surficial unit of clayey silt till was encountered in MW-1, MW-5s/d, MW-6, MW-7s/d, and all AMEC wells (BH-1 – BH6). This unit is generally described as very stiff brown clayey silt to silty clay till with some sand and gravel. The thickness of this unit ranged from 0.8 m (BH-2) to 6.72 m (BH-4).

Fine to Medium Sand and Silt (Oak Ridges Moraine and Equivalent): A laterally extensive unit of fine and medium sand and silt with some clay was encountered in all boreholes. The thickness ranged between 0.79 m (MW-2) to 8.2 m (MW-5). Note that the lower extent of the unit could not be determined at MW-8 as the depth of the borehole did not exceed the depth of the silt and fine sand. The ORM sediments were encountered directly under either the topsoil sediments or less than 1 m of Halton Till at MW2s/d, BH-2. MW-3, and MW-4.

Clay: Layers of fine-textured glaciolacustrine clay was noted either underlying or overlying the ORM sediments at MW-2s/d, MW-3, MW-4, MW-5s/d and MW-7s/d. The thickness of the clay layers ranged from 0.26 m (MW-3) to 1.88 m (MW-4).

Sandy Silt to Silty Sand Till (Newmarket Till): A lower till unit, interpreted to be the Newmarket Till Formation was encountered in all boreholes with the exception of MW-8, BH-1, BH-2, and BH-3. This unit is generally described as red/brown silty clay to sandy silt till with some sand, gravel, and cobbles. A The red/brown colouration of the soils is a result of the erosional material from the underlying Queenston Shale bedrock during glaciation. The depth to the Newmarket Till from surface ranged from 2.6 mbgs (MW-2s/d) to 11.73 mbgs (MW-5s/d). All boreholes where the Newmarket Till was encountered were terminated within this unit.

Hydrostratigraphic Cross Section A-A'

Hydrostratigraphic Cross Section B-B'

Hydrostratigraphic Cross Section C-C'

3.2 Groundwater Level and Flow

Within the study area, groundwater levels were monitored by Palmer staff for a period between October 2017 and April 2019, with an additional monitoring event completed in May 2022 to provide updated spring water level data. A water level tape was used to measure the depth to water level to the nearest centimeter. The monitoring data collected to date is provided in **Table 2**. Generally, these results indicate shallow groundwater depths ranging between 0.06 mbgs (MW-3) and 9.08 mbgs (MW-8). It is expected that local shallow groundwater flow follows topography and is directed towards the valleylands of Etobicoke Creek and its associated tributaries. Previous water level data collected and reported by AMEC (2010) at monitoring wells BH-1 to BH-6 from April 23, 2009 to October 22, 2009 is also included for reference.

The ranges of groundwater water levels in the spring of 2022 were mostly found to be within previously reported and manually measured data. Groundwater levels at MW-3 were found -0.15 mbgs or 0.15 metres above ground surface (mags) in April 2019, while the deepest groundwater level observed remains 9.08 (MW-8).

Deeper vertical groundwater movement at the site is hydraulically influenced by the higher permeability sand and silt soils of the ORM, and the upper weathered zone of the Queenston Shale bedrock compared with the Halton and Newmarket Till units. The vertical hydraulic gradient was noted at the three nested monitoring wells installed on site (MW-2s/d, MW-5s/d, and MW-7s/d). At MW-7s/d, the shallow and deep wells were installed within the ORM and the Newmarket Till units, respectively. The upwards gradient suggests groundwater flowing from the Newmarket Till towards the higher permeability ORM. A similar upwards gradient was noted at monitoring completed at BH-4s/d on April 23, 2009, by AMEC (2010) which also has wells screened in the Newmarket Till and ORM sediments. At MW-2s/d, both the shallow and deep screened zones were installed within the Newmarket Till, and a downwards gradient was identified. This is potentially reflective of groundwater flowing downwards towards the higher permeability upper weathered zone of Queenston Shale bedrock.

Within the ORM Aquifer, it is expected that groundwater will flow laterally towards groundwater discharge areas. At MW-5s/d, both wells are screened within silt and fine to medium sand of the ORM. The near neutral gradient in these wells is therefore reflective of screening within the same geological unit and the predominance of lateral vs. vertical groundwater flow.

It is expected that regional groundwater flow within the site is ultimately directed to the southeast towards Lake Ontario.

MW ID	Screened		Water Level Measurement (mbgs)															
	Geology	23-Apr-	30-Jul-	6-Aug-	10-Sept-	9-Oct-	22-Oct-	5-Dec-	10-Jan-	26-Feb-	26-Mar-	17-May-	13-Jun-	19-Jul-	27-Aug-	29-Oct-	16-Apr-	25-May-
		2009*	2009*	2009*	2009*	2009*	2009*	2017	2018	2018	2018	2018	2018	2018	2018	2018	2019	2022
MW1	ORM or Equivalent	-	-	-	-	-	-	1.38	1.49	0.66	0.82	0.41	0.88	1.22	1.40	1.58	0.19	0.48
MW2s	Newmarket Till	-	-	-	-	-	-	1.66	1.83	0.67	1.21	0.28	0.98	1.18	1.61	1.92	0.15	0.73
MW2d	Newmarket Till	-	-	-	-	-	-	1.74	1.98	0.84	1.32	0.41	1.12	0.94	1.73	1.99	0.02	0.77
MW3	Newmarket Till	-	-	-	-	-	-	0.59	0.7	0.06	0.34	0.12	0.49	0.8	0.89	0.88	-0.15	0.17
MW4	ORM or Equivalent	-	-	-	-	-	-	4.53	4.6	4.32	4.44	4.29	4.35	4.48	4.51	4.585	4.19	4.41
MW5s	ORM or Equivalent	-	-	-	-	-	-	5.74	5.79	5.34	5.56	5.23	5.5	5.76	5.84	5.84	5.21	5.33
MW5d	ORM or Equivalent	-	-	-	-	-	-	5.77	5.8	5.38	5.62	5.29	5.56	5.79	5.86	5.85	5.23	5.38
MW6	ORM or Equivalent	-	-	-	-	-	-	2.24	2.44	0.61	1.07	0.51	1.12	1.44	1.64	2.33	0.25	0.96
MW7s	ORM or Equivalent	-	-	-	-	-	-	3.91	4.02	2.33	3.57	3.01	3.65	4.33	4.33	4.11	2.26	3.26
MW7d	Newmarket Till	-	-	-	-	-	-	3.63	3.84	2.09	3.32	2.66	3.51	4.47	4.05	3.73	0.94	2.91
MW8	ORM or Equivalent	-	-	-	-	-	-	8.97	9.04	8.7	9.01	8.89	-	9.14	9.08	9.055	8.72	8.98
BH1	ORM or Equivalent	6.23	6.31	6.33	6.40	6.41	6.42	6.57	6.66	6.59	6.64	6.44	5.845	6.57	6.60	6.7	6.47	-
BH2	ORM or Equivalent	8.56	dry	-	dry	8.76	8.72	8.66	dry	8.37	8.68	8.56	dry	dry	dry	8.72	8.38	8.84
BH3	ORM or Equivalent	1.98	2.50	2.59	2.55	2.76	-	-	-	-	-	-	-	-	-	-	-	-
BH4s	ORM or Equivalent	3.10	3.53	3.64	3.63	3.68	3.65	-	-	-	-	-	-	-	-	-	-	-
BH4d	Newmarket Till	1.21	1.65	1.73	1.75	1.77	1.80	-	-	-	-	-	-	-	-	-	-	-
BH5	ORM or Equivalent	6.46	7.42	-	7.55	7.47	7.38	7.43	7.44	6.49	7.18	6.82	7.34	7.64	7.49	7.41	6.46	-
BH6	Newmarket Till	2.12	2.68	-	2.92	3.16	3.40	-	-	-	-	-	-	-	-	-	-	-

Table 2. Groundwater Level Monitoring Data

* Note: April 23, 2009 – October 22, 2009 groundwater levels were reported by AMEC (2010).

3.3 Hydraulic Conductivity

3.3.1 In-situ Hydraulic Testing

Palmer personnel conducted single well response tests at each monitoring well on a series of dates, December 5 and 6, 2017, January 10, 2018, and February 26, 2018, to determine the hydraulic conductivity (K) of the identified hydrostratigraphic units. Response tests included both slug testing and injection testing. Injection testing was completed only in the case where there was insufficient water in the monitoring well to successfully conduct a slug test.

Slug tests were completed by lowering a 1 m long slug into each well (slug test) to create a change in hydraulic head. Hydraulic conductivity values were estimated by measuring the rate of change in recovery of the water level once the slug was inserted into the well (also known as a Falling Head (FH) Test). Once the Falling Head Test was terminated, the slug was removed and the subsequent rate of change in the water level was recorded (also known as a Rising Head (RH) Test). Where slug testing was conducted (MW-1, MW-2s/d, MW-3, MW-4, MW-5d, MW-6, and MW-7s/d) both rising head (RH) and falling head (FH) tests were completed. Injection tests were completed where the water level within the well was too low to accommodate the length of the slug (MW-5s and MW-8). In these cases, approximately 2 L of water was instantaneously added to each well to create a change in hydraulic head

Water levels in each well were recorded using a datalogger set to record water levels at 2-second intervals. Manual water-level measurements were also collected during the tests to gauge recovery. Tests were terminated once either 80% recovery had been attained, or 30-minutes had elapsed, whichever occurred first.

K values were calculated using the displacement-time data and were analysed using the Hvorslev (1951) method for confined aquifers, and Bower and Rice (1976) method for unconfined aquifers, as modelled by Aqtesolv[™] software. The analysis results are presented in **Appendix C**, and the range of calculated hydraulic conductivity values are summarized in **Table 3**.

3.3.2 Grain Size Analysis

The Puckett Method is typically used for calculating the hydraulic conductivity of low permeability clay and silt soils from grain size data (Puckett et al., 1985). This method utilizes the percentage of the total sample that is finer than 0.002 mm by weight. Puckett's method was utilized on the clayey silt till soil sample from BH-1, and was based on the grain size distribution curves completed by Terraprobe (2010) provided in **Appendix B2**. The resulting K value using this method is approximately 5.3x10⁻⁸ m/sec, and is provided in **Table 3**.

The Hazen Method is typically used for calculating the hydraulic conductivity of more permeable sandy soils (Hazen, 1892), by incorporating the 10% "finer than" grain size data. Hazen's method was utilized on the silt and sand soil samples from BH-2, BH-3, BH-4, and BH-5, and was based on the grain size distribution curves completed by Terraprobe (2010) provided in **Appendix B2**. The resulting K values using this method range from 1.0x10⁻⁷ m/sec (BH-5) to 2.25x10⁻⁶ m/sec (BH-2) and are provided in **Table 3**.

Well	Test Type	Aquifer Type	Solution Method	Hydraulic Conductivity (m/sec)	Aquifer Material	K Geometric Mean (m/sec)	
BH-1	Grain Size	-	Puckett	5.3x10⁻ ⁸	Halton Till	5.3x10 ⁻⁸	
MW-1	Slug – FH Slug – RH	Confined	Hvorslev	1.3x10 ⁻⁶ 1.0x10 ⁻⁶			
MW-4	Slug – FH Slug – RH	Unconfined	Bower and Rice	1.4x10 ⁻⁵ 6.1x10 ⁻⁶			
MW-5s	Injection 1 Injection 2	Unconfined	Bower and Rice	1.9x10 ⁻⁶ 2.3x10 ⁻⁶			
MW-5d	Slug – FH Slug – RH	Unconfined	Bower and Rice	9.9x10 ⁻⁷ 1.9x10 ⁻⁶	ORM	3.8x10 ⁻⁶	
MW-6	Slug – FH Slug – RH	Confined	Hvorslev	6.4x10 ⁻⁶ 9.9x10 ⁻⁶	(or equivalent)		
MW-7s	Slug – FH	Unconfined	Bower and Rice	5.2x10 ⁻⁶			
MW-8	Injection 1 Injection 2	Unconfined	Bower and Rice	2.8x10 ⁻⁵ 3.0x10 ⁻⁵			
BH-2	Grain Size		Hazen	2.3x10 ⁻⁶			
MW-2s	Slug – FH Slug – RH	Confined	Hvorslev	1.3x10 ⁻⁶ 6.3x10 ⁻⁷	Sand/ Gravel Layer within	1.2x10 ⁻⁶	
BH-4	Grain Size	-	Hazen	2.0x10 ⁻⁶	Newmarket Till Complex		
MW-2d	Slug – FH Slug – RH	Confined	Hvorslev	5.1x10 ⁻⁷ 5.1x10 ⁻⁷			
MW3	Slug – FH Slug – RH	Confined	Hvorslev	4.6x10 ⁻⁷	Newmarket Till	3 9x10 ⁻⁷	
MW-7d	Slug – FH	Confined	Hvorslev	4 3x10 ⁻⁷		0.0/10	
BH-5	Grain Size	-	Hazen	1 0x10 ⁻⁷			
BH-6	Grain Size	-	Puckett	8.4x10 ⁻⁷			

Table 3. Hydraulic Conductivity Results

Based on the results of the single well response testing and grain size analyses, the geometric mean hydraulic conductivity of the Halton Till is approximately $5.3x10^{-8}$ m/sec, the ORM is approximately $3.8x10^{-6}$ m/sec, and the Newmarket Till is approximately $3.9x10^{-7}$ m/sec. It should be noted that sand and gravel layers may exist within the Newmarket Till, such as the ones encountered at MW-2s/d and BH-4, that could increase the bulk hydraulic conductivity of the unit. Based on the results of slug testing completed at MW2s and the Hazen analysis on BH-4, the geometric mean K value of this layer is approximately $1.2x10^{-6}$ m/sec.

These values are comparable with previously reported values, which specified a k values in the range of 10⁻¹⁰ to 10⁻⁶ m/sec for the Halton Till (IWA, 1994), 3x10⁻⁶ to 7x10⁻³ m/sec for ORM sediments (Sharpe et al., 2003), and 10⁻¹¹ to 10⁻⁹ m/sec for the Newmarket Till (Sharpe et al., 2003) with regions of higher permeability ranging from 10⁻⁶ to 10⁻² m/sec (Fenco-Mclaren, 1994). The ORM sediments were found to be within the lower range of their expected permeability, potentially as a result of higher than typical silt and clay content and being less well sorted.

3.4 Groundwater Chemistry

Groundwater quality sampling was completed at MW6 on December 6, 2017 and January 10, 2018. The sample was analyzed for a suite of water quality parameters such as turbidity, TSS, pH, metals, and cations and anions. A summary table of the groundwater analysis results is presented on **Table 4**, and the Certificate of Analysis is provided in **Appendix D**.

Results were compared against Microbiological and Chemical criteria, and Aesthetic and Operational Guidelines under the Ontario Drinking Water Standards (ODWS). No exceedances to ODWS criteria were measured, with the exception of Turbidity. Total Suspended Solids (TSS) and turbidity were found to be very high in the sample at 64,900 mg/L and >4,000 NTU, respectively, and is likely due to the fine grained nature of the aquifer material and the sampling methods used.

			OI	ows	Sample Concentration	
Parameter	Units	Detection Limit	Microbiological and Chemical Standards	Aesthetic and Operational Guidelines	MW6	
Physical Tests						
Color, Apparent	C.U.	2.0	-	5	232 ¹	
рН	pH units	0.10	-	6.5-8.5	7.98	
Redox Potential	mV	-1000.00	-	-	350 ¹	
Total Suspended Solids	mg/L	4	-	-	64,900	
Total Dissolved Solids	Mg/L	20	-	500	369	
Turbidity	NTU	0.10	-	5	>40001	
Anions and Nutrients						
Acidity (as CaCO ₃)	mg/L	5.0	-	-	30.0 ¹	
Alkalinity, Total (as CaCO ₃)	mg/L	10	-	30-500	234 ¹	
Ammonia, Total (as N)	mg/L	0.020	-	-	0.159	
Bromide (Br)	mg/L	0.10	-	-	< 0.10 ¹	
Chloride (Cl)	mg/L	0.5	-	250	5.21 ¹	
Fluoride (F)	mg/L	0.020	1.5	-	0.126 ¹	
Nitrate (as N)	mg/L	0.020	10.0	-	< 0.020 ¹	
Nitrite (as N)	mg/L	0.010	1.0	-	< 0.010 ¹	
Total Kjeldahl Nitrogen	mg/L	1.5	-	-	8.0	
Phosphate-P (ortho)	mg/L	0.0030	-	-	<0.0030 ¹	
Phosphorous, Total	mg/L	0.030	-	-	38.3	
Sulfate (SO ₄)	mg/L	0.30	-	500	54.0 ¹	
Organic / Inorganic Carbor	۱					
Dissolved Organic Carbon	mg/L	1.0	-	5	1.8	
Dissolved Metals		-				
Aluminum (Al)	mg/L	0.050	-	0.1	<0.0050	
Antimony (Sb)	mg/L	0.0010	0.006	-	0.00053	
Arsenic (As)	mg/L	0.0010	0.01	-	0.00161	
Barium (Ba)	mg/L	0.0020	1.0	-	0.162	
Beryllium (Be)	mg/L	0.0010	-	-	<0.00010	
Bismuth (Bi)	mg/L	0.00050	-	-	<0.000050	
Boron (B)	mg/L	0.10	5.0	-	0.016	
Cadmium (Cd)	mg/L	0.000050	0.005	-	<0.000050	
Calcium (Ca)	mg/L	5.0	-	-	73.9	

Table 4. Groundwater Chemistry Results from MW6

			OE	ows	Sample Concentration
Parameter	Units	Detection Limit	Microbiological and Chemical Standards	Aesthetic and Operational Guidelines	MW6
Cesium (Cs)	mg/L	0.00010	-	-	<0.000010
Chromium (Cr)	mg/L	0.0050	0.05	-	<0.00050
Cobalt (Co)	mg/L	0.0010	-	-	0.00056
Copper (Cu)	mg/L	0.010	-	1	0.00026
Iron (Fe)	mg/L	0.50	-	0.3	<0.010
Lead (Pb)	mg/L	0.00050	0.01	-	<0.000050
Lithium (Li)	mg/L	0.010	-	-	0.0119
Magnesium (Mg)	mg/L	0.50	-	-	21.9
Manganese (Mn)	mg/L	0.0050	-	0.05	0.0418
Molybdenum (Mo)	mg/L	0.00050	-	-	0.00365
Nickel (Ni)	mg/L	0.0050	-	-	0.00156
Phosphorus (P)	mg/L	0.50	-	-	<0.050
Potassium (K)	mg/L	0.50	-	-	3.44
Rubidium (Rb)	mg/L	0.0020	-	-	0.00154
Selenium (Se)	mg/L	0.00050	0.05	-	0.000142
Silicon (Si)	mg/L	1.0	-	-	7.02
Silver (Ag)	mg/L	0.00050	-	-	<0.000050
Sodium (Na)	mg/L	5.0	20	200	5.59
Strontium (Sr)	mg/L	0.010	-	-	0.312
Sulfur (S)	mg/L	5.0	-	-	19.0
Tellurium (Te)	mg/L	0.0020	-	-	<0.00020
Thallium (TI)	mg/L	0.00010	-	-	0.000013
Thorium (Th)	mg/L	0.0010	-	-	<0.00010
Tin (Sn)	mg/L	0.0010	-	-	0.00010
Titanium (Ti)	mg/L	0.0030	-	-	<0.00030
Tungsten (W)	mg/L	0.0010	-	-	<0.00010
Uranium (U)	mg/L	0.00010	0.02	-	0.00168
Vanadium (V)	mg/L	0.0050	-	-	0.00155
Zinc (Zn)	mg/L	0.030	-	5	<0.0010
Zirconium (Zr)	ma/L	0.0030	-	-	< 0.00030

¹Sample collected on January 10, 2018 (others collected on December 6, 2017)

ONTARIO DRINKING WATER STANDARDS (ODWS)

Analytical result for this parameter exceeds Guideline Limit for Schedule 1 (Microbiological) and 2 (Chemical) ODWS Analytical result for this parameter exceeds Guideline Limit for Aesthetic and Operational ODWS

3.5 Natural Features

3.5.1 Surface Water

The study area lies within the Etobicoke Creek Headwaters Subwatershed, where Etobicoke Creek first appears as many small tributaries, groundwater springs, and wetland pockets. The drainage area of the subwatershed is roughly 6,300 ha and occupies portions of the Town of Caledon and the City of Brampton. The land use where Etobicoke Creek appears is primarily agricultural. The overall groundwater and surface water flow within the watershed is directed southeast towards Lake Ontario.

There are two main branches of Etobicoke Creek within the Mayfield West Phase 3 lands. The first is present flowing from east to west immediately south of the study area, and the second flowing north to south along the eastern boundary of the site (**Figure 1**). These branches ultimately converge at a culvert flowing beneath Highway 410 just south of the site boundary. The main branches are characterized by permanently flowing channels situated within a relatively defined valley setting. Several tributaries to Etobicoke Creek are also present throughout the site which are headwaters to the creek. These tributaries are characterized as undefined drainage features which are primarily surface water supported.

3.5.2 Groundwater / Surface Water Interactions

Identified wetlands, and portions of Etobicoke Creek and its tributaries were instrumented with shallow mini-piezometers on October 23-24, and October 31, 2017, to measure groundwater and surface water interactions and hydraulic gradients at these features. In addition, eleven (11) surface water flow observation stations were established at creek culvert locations bordering the study area to monitor seasonality in surface water flow conditions.

A total of 9 mini-piezometers (MP-1 – MP9) were installed at the locations shown on **Figure 1**. Five of the MPs were installed within headwater tributaries/ riparian marsh communities leading to Etobicoke Creek (MP-1, MP-2, MP-3, MP-6, and MP-8), and the remaining four were installed within the main branches of Etobicoke Creek (MP-4, MP-5, MP-7, and MP-9). MP4s/d was installed in an online shallow aquatic marsh wetland created by beaver dam activity. Reach delineation of Etobicoke Creek within the Mayfield West study area was completed by AMEC (2010).

Groundwater and surface water levels were monitored over a period of ~18 months from late October 2017 to mid-April 2019. An additional visit was conducted in May 2022 to ensure that current water levels continue to be within expected ranges. Water levels were collected using manual monthly measurements by Palmer, as well as leveloggers set to record water levels continuously in hourly intervals. Continuous water level hydrographs from each MP are presented in **Appendix E**. The details of the water level measurements collected to date and calculated vertical hydraulic gradients from the mini-piezometers are summarized in **Table 5**.

In addition to monitoring the groundwater and surface water levels at the MPs, surface water flow to Etobicoke Creek was observed at the tributaries crossing the site boundary along Chinguacousy Road and Old School Road. Locations of the flow monitoring stations are identified on **Figure 1**, and coordinates are listed in **Table 6**. If flow was present at the time of observation, a visual quantitative estimation was made and recorded. The results of the flow observations are provided in **Table 6**.

Groundwater and surface water results from the smaller tributaries of Etobicoke Creek suggest that these features are ephemeral to intermittent and are primarily surface water supported. At the tributaries near Chinguacousy Road (MP-1, MP-2, and MP-3), the calculated hydraulic gradients were mainly neutral to negative, and the surface water levels were observed dry at each monitoring event except February, March, and May 2018. This indicates the tributaries in this part of the creek are likely ephemeral and are surface water supported throughout the year. In comparison, the central tributary which crosses McLaughlin Road (MP-6) was slightly more inundated through the year, and surface water levels were observed above ground at all monitoring events except in January, June, and July 2018. Additionally, the hydraulic gradients were generally neutral to slightly positive indicating that this portion of the tributary is

likely intermittent and may receive some seasonal groundwater discharge. Lastly, the tributary near Hurontario Street (MP-8) had surface water present through the full monitoring period, and the hydraulic gradients were +0.45 on February 26, 2018, +0.16 on May 17, 2018, and +0.22 on August 27, 2018, indicating the presence of seasonal groundwater discharge.

Within the main branch (MP-7 and MP-9), preliminary results indicate a permanent flow regime. Surface water levels were always present, though certain measurements do not indicate it as the water level elevation had dropped below the elevation of the MP. When measured, water levels ranged from 0.02 mags (MP-7) to 0.35 mags (MP-9). The hydraulic gradients measured at MP-9 fluctuate from negative to positive through the year suggesting seasonal groundwater recharge and discharge, whereas at MP-7 the gradients are positive indicating groundwater discharge. This assessment corresponds with the presence of the confined to unconfined ORM Formation present throughout the site, that is likely intercepted by Etobicoke Creek within the valleylands and shown on the cross-sections (**Figure 3, 4** and **5**)

MP4s/d is installed within a shallow aquatic marsh wetland formed through recent beaver activity. It is likely this feature is fed through groundwater discharge as surface water levels were always present ranging from 0.36 mags (June 2018) to 0.63 mags (August 2018), and hydraulic gradients in the deep mini-piezometer were positive ranging from +0.09 (August 2018) to +0.21 (June 2018). MP-5 is installed in a small tributary connecting the wetland to the larger tributary containing MP-9. In contrast to the shallow aquatic marsh wetland, this feature is not likely connected to the water table as water levels ranged from dry (June and July 2018) to 0.21 mags (December 2017), and the hydraulic gradients were generally negative or neutral.

In 2022 manual monitoring showed the groundwater levels in the MPs to fall within the previous ranges reported except levels recorded for MP4S and D. Between 2017-2019 beaver activity in the area had created an open water wetland at the MP4S/D location, which is no longer present in May 2022 suggesting that the beaver dam had been washed out. MP4D still had a water level close to ground surface consistent with the expected upwards hydraulic gradient at this location. In addition, during the May 2022 monitoring, MP1 and MP5 were unable to be located and MP7 and MP8, some were found damaged. As 18 months of continuous data had already been collected from these locations, this loss of monitoring locations does not impact the overall trends and conclusions of the report.

Surface water flow was generally absent in the winter months as the tributaries were either dry or frozen over (**Table 6**). During the warmer period in February 2018, and early spring (March and May 2018) flow was present at most stations and ranged from <1 L/sec at Flow Stations 5 and 6 where ponded water was present, to approximately 62.5 L/sec at Flow Station 11. Very low to no flow was common in the summer months (June to August 2018), where only Flow Stations 9, 10, and 11 had observable flow. The April 16, 2019 monitoring event captured flows following a significant precipitation event and are therefore more representative of storm flow than the other monitoring events that capture primarily baseflow conditions.

Flow estimates were made in May 2022 and were generally consistent with previous spring flow trends.

Table 5. MP Manual Monitoring Data

MP ID	Location	Measurement		Water Level (meters below ground surface)										
			5-Dec-	10-Jan-	26-Feb-	26-Mar-	17-May-	13-Jun-	19-Jul-	27-Aug-	29-Oct-	16-Apr-	25 May 2022	
			2017	2018	2018	2018	2018	2018	2018	2018	2018	2019	25-11/ay-2022	
		GW	0.075	0.705	-0.245	0.075	-0.095	0.425	0.665	0.75	0.545	-0.125	-	
MP-1	Tributary/ Riparian Wetland	SW	dry	dry	-0.225	-0.045	-0.105	dry	dry	dry	dry	-0.205	-	
		Gradient	-	-	0.02	-0.13	-0.01	-	-	-	-	-0.07	-	
		GW	dry	0.49	0	0.76	0	dry	dry	dry	0.75	0.08	0.22	
MP-2	Marsh Wetland	SW	dry	dry	-0.07	dry	-0.02	dry	dry	dry	dry	0.02	dry	
		Gradient	-	-	-0.09	-	-0.03	-	-	-	-	-0.09	-	
		GW	0.94	0.89	-0.36	-0.04	-0.02	0.32	0.53	0.42	0.99	-0.28	-0.25	
MP-3	Tributary	SW	dry	dry	-0.36	-0.16	0.07	dry	dry	dry	dry	-0.35	-0.25	
		Gradient	-	-	0.00	-0.12	0.09	-	-	-	-	-0.07	0.04	
MD_	Etobicoko Crook/Shallow Aquatic	GW	-0.12	-0.07	-0.26	-0.2	-0.3	-0.04	-0.15	-0.335	-0.13	-0.47	dry	
МГ- Де	Wetland	SW	-0.12	-0.06	-0.26	-0.19	-0.32	-0.05	-0.15	-0.33	-0.15	-0.48	dry	
73	Welland	Gradient	0.00	0.03	0.00	0.03	-0.06	-0.03	0	0.02	0.24	0.94	-	
MD_	Etabicaka Crack/ Shallow Aquatic	GW	-0.365	-0.425	-0.695	-0.675	-0.725	-0.545	-0.59	-0.715	-0.525	-0.835	-0.02	
101F- 4d	Wetland	SW	-0.405	-0.425	-0.575	-0.525	-0.605	-0.355	-0.455	-0.63	-0.455	-0.815	dry	
тч	Welland	Gradient	-0.04	0.00	0.13	0.17	0.13	0.21	0.15	0.09	0.13	0.11	-	
		GW	-0.205	-0.115	-0.115	0.175	0.085	0.565	0.13	-0.095	-0.275	-0.055	-	
MP-5	Etobicoke Creek	SW	-0.205	-0.165	-0.035	-0.005	0.025	dry	dry	-0.1	-0.345	-0.025	-	
		Gradient	0.00	-0.05	0.08	-0.18	-0.06	-	-	-0.01	0.06	0.00	-	
		GW	-0.07	-0.07	-0.19	0.04	-0.11	0.22	0.41	-0.07	-0.03	-0.07	-0.04	
MP-6	Tributary/ Mineral Meadow Marsh	SW	-0.06	dry	-0.16	0.04	-0.09	dry	dry	-0.05	-0.05	-0.16	-0.01	
		Gradient	0.01	-	0.04	0	0.03	-	-	0.03	-0.01	-0.07	0.03	
MP-7	Etobicoke Creek	GW	-0.12	-0.11	-0.44	-0.09	-0.65	-0.42	-0.3	-0.26	-0.19	-0.02	damaged	
		SW	-0.12	-0.11	-0.27	0	0	dry	dry	0.02	-0.11	-0.2		
		Gradient	0.00	0.00	0.18	0.10	0.71	-	-	0.30	0.10	-0.18		
MP-8	Tributary	GW	-0.115	-0.115	-0.645	0.005	-0.285	-0.265	-0.185	-0.285	-0.215	0.195	damaged	
		SW	-0.105	-0.135	-0.185	-0.055	-0.125	dry	dry	-0.06	-0.11	-0.205		
		Gradient	0.01	-0.02	0.45	-0.06	0.16	-	-	0.22	0.10	-0.40		
MP-9	Etobicoke Creek	GW	-0.12	-0.19	-0.28	0.06	-0.18	-0.1	-0.055	-0.15	-0.18	-0.48	0.48	
		SW	-0.06	-0.23	-0.35	-0.04	-0.11	-0.1	dry	-0.035	-0.08	-0.36	dry	
		Gradient	0.06	-0.04	-0.07	-0.10	0.07	0	0.05	0.11	0.09	0.10	-	

Notes: - negative gradient indicates groundwater recharge, and a positive gradient indicates groundwater discharge.

- "tributary" or "main branch" designation based on the Mayfield West Phase 2 Secondary Plan Comprehensive Environmental Impact Study and Management Plan completed by AMEC, 2010

TADIE 0. SU																
Flow Station ID	Location within Etobicoke Creek	UTM Coordinates			Approximate Flow Measurement (L/sec)											
		Etobicoke Creek	Easting (m)	Northing (m)	5-Dec-2017	10-Jan-2018	26-Feb-2018	26-Mar-2018	17-May-2018	13-Jun-2018	19-Jul-2018	27-Aug-2018	29-Oct-18	16-Apr-19	25-May-22	
Flow Point 1	Tributary	591944	4841766	5	-	10	7.5	3	-	-	-	-	16	<1		
Flow Point 2	Tributary	591550	4842151	-	-	2	-	10	0	-	-	-	11.4	<1		
Flow Point 3	Tributary	591322	4842378	-	-	0.5	-	3	-	-	-	-	35.1	<1		
Flow Point 4	Tributary	591098	4842601	-	-	3	-	3	-	-	-	-	10.9	0		
Flow Point 5	Tributary	590852	4843042	-	-	0	-	-	-	-	-	-	<1	0		
Flow Point 6	Tributary	590983	4843206	-	-	0	-	-	-	-	-	-	<1	0		
Flow Point 7	Tributary	591558	4843979	-	-	20	4	21	0	-	-	-	14.7	0		
Flow Point 8	Tributary	591813	4844290	-	-	4	-	-	-	-	-	-	8.8	-		
Flow Point 9	Etobicoke Creek	592003	4844544	4	-	20	20	19	0	0	<1	21	37.5	20		
Flow Point 10	Tributary	592229	4844855	4	-	20	20	15	12	7.3	12.9	24	64.9	0		
Flow Point 11	Etobicoke Creek	592852	4844727	12	5	50	35	62.5	1	1	18.9	35	19.4	40		

Table 6. Surface Water Flow Observations at Tributaries to Etobicoke Creek

Notes:

"tributary" or "main branch" designation based on the Mayfield West Phase 2 Secondary Plan Comprehensive Environmental Impact Study and Management Plan completed by AMEC, 2010.

" - " indicates no flow or dry conditions were observed.

4. Water Budget

4.1 Methodology

The study area is just outside of the TRSPA Online Water Balance Tool coverage and therefore this method was not used for pre-development conditions. A Thornthwaite and Mather water balance method was therefore utilized.

4.1.1 Water Surplus

The water surplus describes the difference between precipitation and evapotranspiration (ET) to estimate the amount of water or *surplus* that is available to contribute to infiltration and runoff. The surplus was calculated using the monthly soil-moisture balance approach as described in Thornthwaite and Mather (1957). A soil moisture storage value of 200 mm was chosen, appropriate for shallow-rooted crops in silty clay loam. Data for average monthly precipitation and temperature was derived from the 1981 – 2010 climate normals from the Georgetown WWTP (43°38' N/79°52' W) meteorological station. This is the closest climate station to the site, at approximately 11 km from the site. Actual evapotranspiration is calculated based on a potential ET (or PET) and soil-moisture storage withdrawal. Monthly PET is estimated using monthly temperature data and is defined as a water loss from a homogeneous vegetation-covered area that never lacks water (Thornthwaite, 1948; Mather, 1978).

4.1.2 Infiltration Factors

The partitioning of the water surplus between runoff and infiltration depends on soil type, topography and vegetation cover. Water will infiltrate more easily through sands compared to clays, on flat slopes compared to steep slopes, and through natural vegetated soils compared to agricultural crops or urban areas. The method developed by Bernard (1932) and described by the MOEE (1995) was used to estimate infiltration for the site.

The infiltration factors are described in the MOEE manual and are reproduced here for reference (**Table 7**). The infiltration factor is calculated by adding the individual sub-factors at the site. The water surplus is then multiplied by the total infiltration factor to determine the partitioning between the amount of runoff and the amount of infiltration that occurs annually. The runoff is the total amount of surplus remaining after taking into account infiltration or (1) - (infiltration factor) = (runoff factor).

This approach takes into consideration three factors: topography/slope, soil type, and land cover. The topography factor for each Ecological Land Classification (ELC) area was estimated based on different elevation lines drawn across the site, after ELC areas were combined the lowest topographic factor was chosen. The soil type factor was determined from surficial geology mapping published by the Geological Survey of Canada (Sharpe et al., 1999) (**Figure 2**). The final factor in the MOEE (1995) methodology is based on land cover and utilized the ELC mapping completed by Palmer staff (see CEISMP Report, 2022). The total average annual infiltration estimates for each section was then calculated by multiplying the appropriate water surplus value by the sum of the three individual factors.

Table 7. Summary of Infiltration Factors

Area Description	Infiltration Factor Value
SOIL TYPE	
Modern alluvial deposits; silt, sand	0.40
Halton Till; clay to silt-textured till	0.10
ORM deposits: fine to medium sand and silt	0.30
Fine Grained Glaciolacustrine; massive to well laminated clay and silt	0.10
TOPOGRAPHY/SLOPE	
10% slope	0.05
5% slope	0.10
1% slope	0.15
0.5% slope	0.20
0.1% slope	0.25
VEGETATION FACTOR	
Agricultural	0.1
Anthropogenic (rural residential)	0.1
Roads	0.0
Natural Heritage Features	0.3
PRE-DEVELOPMENT LAND COVER	
Agricultural	0.45
Anthropogenic (rural residential)	0.35
Roads	0.00
Natural Heritage Features	0.75

4.2 Site Wide Water Budget

4.2.1 Pre-Development Conditions

The total yearly precipitation as published in the Georgetown WWTP 1981 – 2010 Climate Normals was 877 mm/yr. The calculated actual ET (or AET) based on the Thornthwaite and Mather monthly water balance model is approximately 559.7 mm within the study area (**Table 8**). The calculated PET for the study area is 594 mm/yr, or about 68% of the total precipitation. There is a total soil moisture deficit of about 98 mm/yr, equivalent to 11% of the total precipitation in the study area. The estimated water surplus for the site area is approximately 318 mm/yr (36% of the total precipitation).

Water Balance (mm)	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Precipitation	67.8	60	57.2	76.5	79.3	74.8	73.5	79.3	86.2	68.3	88.5	65.9	877
Temperature (C)	-6.3	-5.2	-0.9	6	12.3	17.4	20	19	14.8	8.4	2.8	-2.9	7.12
Potential Evapotranspiratio n (PET)	0	0	0	32	77	112	132	116	77	38	10	0	594
P-PET	68	60	57	45	2	-37	-59	-36	10	30	78	66	283
Change in Soil Moisture Storage	0	0	0	0	0	-34	-43	-21	5	18	75	0	0
Soil Moisture Storage	200	200	200	200	200	166	123	102	107	125	200	200	0
Actual Evapotranspiratio n (AET)	0	0	0	32	77	109	117	100	77	38	10	0	560
Soil Moisture Deficit	0	0	0	0	0	-34	-43	-21	0	0	0	0	-98
Surplus (P-AET)	68	60	57	45	2	-34	-43	-21	10	30	78	66	318

Table 8. Summary of Annual Water Surplus

Based on OGS surficial geology mapping and drilling results, the site is mostly underlain by till with some fine textured glaciolacustrine deposits (infiltration factors of 0.1), near the creeks there are modern alluvial deposits (infiltration factor of 0.4). The site is hilly within forested areas and near the creeks with slopes ranging from 1% to 11% resulting in a range of infiltration factors. Given the results of the ELC study there is also a variety of vegetation factors for each ELC. **Table 9** presents the interpreted vegetation, soil and slope factors used for each pre-development land use area. The selection of these values is generally based on the MOEE (1995) values and are presented in **Table 7**.

Land use (ELC)	Area (ha)	Vegetation Factor	Soil Factor	Slope Factor	Infiltration Factor	Run off Factor
Agricultural	253.3	0.1	0.1 - 0.15	0.15 – 0.20	0.45	0.55
Anthropogenic	22.9	0.1	0.1	0.15	0.35	0.65
Roads	4.4	-	-	-	0.00	1.00
Natural Heritage Features	149.4	0.3	0.2 - 0.4	0.05 – 0.15	0.75	0.25

Table 9. Infiltration Factors for the Site Pre-Development

Using the method in the MOE SWM manual and MOEE (1995) for guidance, it is estimated that approximately 54% (181 mm/yr) of the surplus runs off, and the remaining 46% (152 mm/year) infiltrates. Based on a site area of 430 ha, it is estimated that 652,390 m³/yr of precipitation infiltrates and 778,232 m³/yr runs off. Results are summarized in **Table 10**. Eventually, this runoff may either enter the local creeks or recharge the local groundwater system.

4.2.2 Post-Development Conditions

The proposed development on site will include low and medium density residential units, parklands, roads, stormwater management facilities, schools, commercial facilities, natural heritage system (NHS) and Greenbelt Lands. The post-development water balance is presented in **Table 11**.

In the absence of mitigation measures, it is estimated that post-development, 616,436 m³/yr of precipitation will infiltrate and 1,328,407 m³/yr of precipitation will run off within the MW2-3 area. This represents a decrease in infiltration of 6% or 35,954 m³/yr. The overall change in pre-to-post development infiltration has been buffered by the change from agricultural land use to Greenbelt over 64.9 ha of MW2-3 area. Over time, this large land area is expected to naturalize which will reduce runoff and increase recharge over the existing condition. This change has off set some of the infiltration losses from residential development and has been accounted for in the pre-to-post development water budget.

Palmer...

Table 10. Pre-Development Water Balance Results

Land Use	Area (ha)	Impervious Factor	Impervious area (ha)	Water Surplus on Impermeable Surfaces (m/yr)	Run off from Impervious Area (m³/yr)	Estimated Pervious Area (ha)	Water Surplus on Vegetated Pervious Areas (m/yr)	Runoff Coefficient	Runoff Volume From Pervious Area (m³/yr)	Infiltration Coefficient	Infiltration Volume from Pervious Area (m³/yr)	Total Runoff Volume (m³/yr)	Total Infiltration Volume (m³/yr)
Agricultural	253.3	0.00	0.00	0.790	0	253.30	0.318	0.65	522,858	0.35	281,539	522,858	281,539
Anthropogenic	22.9	0.41	9.39	0.790	74,133	13.51	0.318	0.65	27,889	0.35	15,017	102,022	15,017
Roads	4.4	1.00	4.40	0.790	34,741	0.00	0.318	0.75	0	0.25	0	34,741	0
Natural Heritage Features	149.4	0.00	0.00	0.790	0	149.40	0.318	0.25	118,611	0.75	355,834	118,611	355,834
Total	430.0		13.79		108,874	416.21		0.51	669,358	0.49	652,390	778,232	652,390

Table 11. Post-Development Water Balance Results

Land Use	Area (ha)	Impervio us Factor	Impervious area (ha)	Water Surplus on Impermeab Ie Surfaces (m/yr)	Run off from Impervious Area (m³/yr)	Estimated Pervious Area (ha)	Water Surplus on Vegetate d Pervious Areas (m/yr)	Runoff Coefficie nt	Runoff Volume From Pervious Area (m³/yr)	Infiltratio n Coefficie nt	Infiltration Volume from Pervious Area (m³/yr)	Total Runoff Volume (m³/yr)	Total Infiltration Volume (m³/yr)
Roads	60.4	1.00	60.40	0.790	476,900	0.00	0.318	0.65	0	0.35	0	476,900	0
Stormwater Management Facilities	15.1	0.50	7.55	0.790	59,613	7.55	0.318	0.65	15,585	0.35	8,392	75,197	8,392
Parkland and Recreation Facilities	14.6	0.07	1.02	0.790	8,069	13.58	0.318	0.65	28,027	0.35	15,092	36,097	15,092
Schools	5.6	0.43	2.41	0.790	19,013	3.19	0.318	0.65	6,589	0.35	3,548	25,602	3,548
Commercial	8.2	0.44	3.61	0.790	28,488	4.59	0.318	0.65	10,652	0.35	5,104	39,139	5,104
Residential	104.0	0.42	43.68	0.790	344,884	60.32	0.318	0.65	135,576	0.35	67,045	480,460	67,045
Future Trail (Railway Corridor)	7.7	0.20	1.54	0.790	12,159	6.16	0.318	0.65	12,715	0.35	6,847	24,875	6,847
Greenbelt Lands	165.5	0.00	0.00	0.790	0.00	165.50	0.318	0.25	131,393	0.75	394,180	131,393	394,180
Natural Heritage System	48.8	0.00	0.00	0.790	0.00	48.80	0.318	0.25	38,743	0.75	116,229	38,743	116,229
Total	430.0		120.21		949,126	309.69		0.45	379,281	0.55	616,436	1,328,407	616,436

5. Development Considerations

5.1 Low-Impact Development Recommendations

The use of Low Impact Development (LID) measures is recommended as part of the overall stormwater management plan to help achieve at least 5 mm of stormwater retention and minimize changes to the existing water budget. As stated in *Low Impact Development Stormwater Management Planning and Design Guide Version 1.0* (2010) by CVC and TRCA,

"Developing stormwater management plans requires an understanding of the depth to water table, depth to bedrock, native soil infiltration rates, estimated annual groundwater recharge rates, locations of significant groundwater recharge and discharge, groundwater flow patterns and the characteristics of the aquifers and aquitards that underlay the area" (TRCA and CVC, 2010).

For sites with deep water table conditions and high permeability soils, LID practices can significantly improve infiltration and groundwater recharge to maintain the groundwater characteristics of the underlying aquifer. Conversely, for sites with low permeability soils and high water table conditions, the amount of infiltration is limited by the saturated hydraulic conductivity of the soil (i.e., the rate at which water can infiltrate).

LID measures need to take the permeability of the soils, and depth to the seasonally high-water table into consideration. Based on OGS surficial geology mapping and borehole drilling results, the surficial material across the site consists primarily of low permeability clayey silt to silty clay till of the Halton Till formation (K value of 10⁻⁸ m/sec), higher permeability alluvial deposits, and silt and fine sand of the ORM formation (K value of 10⁻⁶ m/sec) near the Etobicoke Creek valley. Based on initial water level monitoring results, the shallow water table ranges between approximately 0.41 mbgs and 9.14 mbgs within the ORM sand and silt deposits, and between approximately 0.06 mbgs and 4.47 mbgs within the Newmarket Till. Infiltration trenches, vegetated swales and bioretention areas can all be effective in low permeability soils to increase infiltration. It is recommended that the implemented LIDs target areas associated with the deeper water table to ensure that the minimum separation requirement of 1 m from the seasonally high water table is met.

The north corner of the site near the Etobicoke Creek valley and Old School Road has a high infiltration capacity due to the presence of higher permeability ORM and alluvial soil deposits at surface, as well as a very deep water table (approximately 4.29 – 9.14 m below ground). A wide variety of infiltration-based LIDs, such as infiltration chambers (i.e., clean water collection systems), infiltration galleries, trenches or soakaway pits, are expected to be effective in this area.

For the overall site, it is recommended that site and rear yard grading should be directed to the main branches and tributaries of Etobicoke Creek to contribute infiltration and overland flow to these features and maintain the water balance pre- to post-development, where applicable.

5.2 Groundwater Recharge and Discharge

5.2.1 Groundwater Recharge and Discharge

While the study area is predominantly underlain by low permeability aquitard materials, it still functions as a groundwater recharge area, albeit limited by the surficial soils. Over the majority of the site, the ORM aquifer is present below the Halton Till, which acts as a groundwater recharge feature and discharge feature depending upon the specific location in the MW2-3 area. In addition, long-term groundwater monitoring data that shows a wide range of groundwater level but generally, little seasonal and temporal change in groundwater levels at each well location.

The area with highest infiltration potential is found along the Etobicoke Creek valley, which is part of the protected Greenbelt Lands and Natural Heritage System. These lands will remain undeveloped, and naturalization of the greenbelt lands will over time be expected to increase the recharge function of this area.

Due to the low permeability Halton Till aquitard at surface, the dominant groundwater flow direction in the study area is downwards towards deeper aquifers. Near breaks in slope, shallow groundwater flow generally follows topography, and flows towards rivers and topographic lows. Lateral groundwater flow over the majority of the study area is towards the Etobicoke Creek valleylands. Many areas where the ORM aquifer intercepts Etobicoke Creek, its tributaries or valley wetlands, the features are supported by groundwater support discharge and baseflow. Maintaining groundwater recharge on tableland areas that directly contribute to groundwater discharge to these features should be the focus of LID measures and future SWM design.

5.3 Aquifers and Groundwater Users

The ORM aquifer is present at shallow depths over the majority of the study area, and is expected to be utilized by older, shallow dug water wells. A search of the MECP database identified potable water wells in the vicinity of the MW2-3 area, however it is expected that municipal water will be available in the near future. Newer well records generally target deeper overburden or bedrock aquifers below the Newmarket Till. These deeper wells would not be impacted by the proposed development.

The primary groundwater recharge area for the ORM aquifer is from lands north of the MW2-3 area and with LID measures implemented, no impacts to this aquifer are expected. A door-to-door water well survey should be completed at a future design phase to confirm the number of active wells and assess the risks to individual groundwater users.

5.4 Groundwater Supported Natural Features

As presented in Cross Section in **Figures 7**, **8** and **9**, Etobicoke Creek, its tributaries and valley wetlands are interpreted to be supported by groundwater discharge from the ORM aquifer where the valleylands have incised through the Halton Till. These areas are contained within the protected NHS and Greenbelt Lands and will not be directly impacted. Targeted infiltration based LID measures are recommended to be employed in tableland areas where groundwater flow is towards these on-site features.

Shallow drainage features and wetlands on the tableland areas are interpreted to be perched on the Halton Till and not connected to the groundwater table.

6. Conclusions

The following summarizes the key results of the Hydrogeological Investigation for the Mayfield West Phase 2 Stage 3 Lands:

- The MW2-3 study area lies within the South Slope physiographic region, characterized by
 predominately the clayey silt to silty clay Halton Till soils, derived from former glacial lakes.
 Modern alluvial deposits of clay, silt, sand, gravel, and organics are present within the Etobicoke
 Creek valley. Based on the results of borehole drilling, fine to medium sand and silt deposits
 associated with the Oak Ridges Moraine Formation were identified and mapped in the
 northwestern portion of the study area near Etobicoke Creek and Old School Road.
- The site is located within the Etobicoke Creek Headwaters Subwatershed. Etobicoke Creek is present along the eastern and southern boundaries of the site, and ultimately flows south towards Lake Ontario. Small tributaries leading to the creek are also present through the site.
- The Halton Till is the dominant surficial unit across the site and behaves as an unconfined aquitard. Based on single well response testing and grain size analyses results, the geometric mean hydraulic conductivity of the Halton Till is approximately 5.3x10⁻⁸ m/sec, the underlying ORM aquifer is approximately 3.8x10-6 m/sec, and the Newmarket Till is approximately 3.9x10⁻⁷ m/sec. Note that more permeable gravel layers may occur within the Newmarket Till. Based on the results of slug testing, these deposits have a geometric mean K value of approximately 1.2x10⁻⁶ m/sec.
- Groundwater quality was tested for a suite of parameters included turbidity, TSS, pH, metals, and cations and anions, and compared with Ontario Drinking Water Standards. No exceedances were with the exception of turbidity, which is related to aquifer materials and sampling methods.
- Within the study area, groundwater levels were monitored by Palmer staff for a period between October 2017 and April 2019, with an additional monitoring event completed in May 2022 to provide updated spring water level data. Generally, these results indicate shallow groundwater depths ranging between 0.06 mbgs (MW-3) and 9.08 mbgs (MW-8). It is expected that local shallow groundwater flow follows topography and is directed towards the valleylands of Etobicoke Creek and its associated tributaries.
- Groundwater and surface water monitoring was completed at MPs installed within the main branch and tributaries to Etobicoke Creek, as well as surface water flow measurements at tributaries surrounding the site. Groundwater and surface water results of the tributaries indicate an ephemeral to intermittent flow regime, as these reaches of the creek were often observed as dry and had hydraulic gradients indicative of surface water supported features. Monitoring of the main branch indicates a permanent flow regime, and seasonal to continual groundwater

discharge. Results suggest that the tributaries to the creek can be characterized as ephemeral/intermittent, and the main branch is permanent.

- A water budget was completed for the site under the pre-development scenario. Results of this analysis showed that over the MW2-3 area it is estimated that approximately 54% (181 mm/yr) of the surplus runs off, and the remaining 46% (152 mm/year) infiltrates. Based on a site area of 430 ha, it is estimated that 652,390 m³/yr of precipitation infiltrates and 778,232 m³/yr runs off. Development will change the infiltration factors of the site. Planned changes to the landscape will increase the impervious area from 13.79 ha to 120.21 ha and with no mitigation measures, it is estimated that post-development, 614,436 m³/yr of precipitation will infiltrate and 1,328,407 m³/yr of precipitation will run off within the site area. This represents a decrease of 6% in pre-to-post development infiltration.
- Given the low permeability soils over most of the study area, LID measures should focus on infiltration trenches, vegetated swales and bioretention areas, which can all be effective in low permeability soils to increase infiltration. Site grading and rear yard grading should be directed to the main branches and tributaries of Etobicoke Creek to contribute overland flow to these features and maintain the water balance, where applicable. Opportunities for higher volume infiltration type LIDs should be explored south of Old School Road where a deeper water table is expected, and the higher permeability ORM materials were encountered at surface (BH-2, MW-4, and MW-8).

7. Certification

This report was prepared, reviewed, and approved by the undersigned:

Prepared By:

Nicole Anasis, M.Env.Sc., G.I.T. Environmental Scientist

Prepared By:

Bethany Cruber, P.Geo.

Hydrogeologist

Approved By:

1. Cale

Jason Cole, M.Sc., P.Geo VP, Principal Hydrogeologist

Palmer.

8. References

AMEC Earth and Environmental (AMEC). 2010.

Mayfield West, Phase 2 Secondary Plan Comprehensive Environmental Impact Study and Management Plan. Part A: Existing Conditions and Characterization. No. 108041.

Chapman, L.J. and D.F. Putnam. 1984. Physiography of Southern Ontario. Ontario Geological Survey, Special Volume 2: 270 p.

Credit Valley Conservation (CVC) and Toronto and Region Conservation Authority (TRCA). 2010. Low Impact Development Stormwater Management Planning and Design Guide. Version 1.0.

Hazen, A. 1892.

Some physical properties of sands and gravels: Mass. State Board of Health, Ann. Rept. Pp: 539-556.

Interim Waste Authority. 1993.

Identification of the preferred site: for Peel Region landfill site search. Vol 3.

Karrow, P.F. 1987.

Quaternary geology of the Hamilton-Cambridge area, Southern Ontario: Ontario Geological Survey Report 255, 94p. Accompanied by Maps 2508 and 2509, scale 1:50,000 and 4 Charts.

Karrow, P.F. 2005.

Quaternary geology of the Brampton area, Ontario Geological Survey, Report 257, 59p.

Lee, P.K. & ESG International. 2002.

Shale Resources Review Final Report Technical Report Appendix. City of Brampton.

Mather, J.R. 1978.

The climactic water balance in environmental analysis: Lexington, Mass., D.C. Heath and Company, 239 p.

MGP, 2022.

Land Use Plan: Mayfield West Phase 2 - Stage 3, Caledon.

Ministry of Environment and Energy (MOEE). 1995.

Hydrogeological Technical Information Requirements for Land Development Applications.

Ostry, R.C. 1979.

The Hydrogeology of IFYGL Forty Mile and Oakville Creeks Study Areas. Ontario Ministry of the Environment (MOE), Water Resources Report 5b.

Sharpe, D.R., Barnett, P.J., Brennand, T.A., Gorrell, G., Russell, H.A.J. 1999.

Digital Surficial Geology Data of the Greater Toronto and Oak Ridges Moraine Area, Southern Ontario; Geological Survey of Canada, 1999.

Singer, S.N., Cheng, C.K., Scafe, M.G. 2003.

The hydrogeology of southern Ontario. Hydrogeology of Ontario series, Report 1, Ontario Ministry of Environment, Toronto.

Thornthwaite, C.W. 1948.

An approach toward a rational classification of climate. Geographical Review, Vol. 38, No. 1, pp. 55-94.

Thornthwaite, C.W., and Mather, J.R. 1957.

Instructions and tables for computing potential evapotranspiration and the water balance. Publications in Climatology, Vol. 10, No. 3, pp. 185-311. Laboratory of Climatology, Drexel Institute of Technology, Centerton, New Jersey.

Toronto Region Conservation Authority (TRCA). 2008. Etobicoke Creek Headwaters Subwatershed Study Synthesis Report.

Toronto Region Conservation Authority (TRCA). 2010. Etobicoke and Mimico Creeks Watersheds Technical Update Report, 21p.

Land Use Plan: Mayfield West Phase 2 – Stage 3, Caledon (MGP, 2022)

LAND USE PLAN

Mayfield West Phase 2 - Stage 3 Caledon

LAND USE

- Mayfield West Phase 2 Stage 3 Secondary Plan Boundary
- Low Density Residential
- Medium Density Residential
- General Commercial
- Institutional
- Open Space Policy Area
- Stormwater Pond Facility
- ---- Collector Roads
- Future Trail System
 - Environmental Policy Area
- Boundary of Greenbelt Plan Area
- Elementary School

LAND USE PLAN

Mayfield West Phase 2 - Stage 3 Caledon

LAND USE

- Mayfield West Phase 2 Stage 3 Secondary Plan Boundary
 - Low Density Residential
 - Medium Density Residential
- General Commercial
- Institutional
- Open Space Policy Area
- Stormwater Pond Facility
- ---- Collector Roads
 - Future Trail System
 - Environmental Policy Area
- Boundary of Greenbelt Plan Area
- Elementary School
- Brookvalley Properties

Borehole Logs and Grain Size Distributions

- B1. Borehole Logs (Palmer, 2018)
- B2. Borehole Logs and Grain Size (AMEC, 2010)

Appendix B1

Borehole Logs (Palmer, 2018)

July 4, 2022 1701616 MW2-3 Hydrog Report_4Jul22

Project: N	Mayfi	eld West Stage 3	Drilling Method: Stolid	Stem Au	igers		Coord	linates: 590	926.7 E, 4	843008.	5 N
Project #	:170	162	Borehole Diameter: 0.1	2 m			Well D	Diameter: 0.	0508 m		
Location	: Cale	edon, Ontario	Rig Type: Marl M-5				S. Scr	eened Inte	rval: N/A		
Date: Nov	/emb	er 13, 2017	Drilling Contractor: Dri	llTech			D. Sci	reened Inte	rval: 4.57	m - 6.09 i	m
			Soil Profile			Samr	hles	Sample D	escription		
Depth (ml	bas)				Elevation	oum		Recovery		Piezom	leter
2 op (~g-,	Descriptio	n	Strata	Depth	Number	Туре	(m)	N-Value	Installa	ition
	0				Dopui			,			
						1	SS	0.254 /	8		
		l opsoil: clay and silt, some sand	d, organics, loose, moist,					0.609	Ũ		
_	0.6	biowit									
	0.75				267.16		1	[
1-					0.84	2	66	0.432 /	30		
						2	00	0.609	50		
	1.36		manual come stiff to bound								
	1.52	Clayey silt till, some sand, some	gravel, very suit to nard,				1	[
-		moist, brow	***					0.432 /			
2						3	55	0.609	44		
_	2.13				265.79						
	2.20				2.21		1			\sim	
	2.20							0 533 /			
						4	SS	0.609	55		
2	2.89										
3	2.04						1				
_	3.04							0 609 /			
						5	SS	0.609	26		
	3.65										
		Medium cond and ailt medium a	lance to vary dance, wat								
4 -		arev	iense to very dense, wet,								
		5,7									
	4.57						I				
						6	~~~	0.609 /	47		
5 -	5 40					0	- 33	0.609	47		
	5.10										
7										E	
6										E	
	6.09						1				
1	-				261.6	N1/A	N1/A	N1/A	N1/A		
1					6.4	N/A	N/A	N/A	N/A		
1	6.7										
7											
1		Silty clay till, some sand, very o	dense, moist, red/brown								
d		· · · ·									
]	7.62							0 279 /	83 /		
					260.4	7	SS	0.279	0.28m		
8	7.9	END OF BOREHOLE AT 7.9 m			<u> </u>	I	L		I		
04		ht 0.05 m	Well Installat	ion Det	ails						
Stick Up	Heig	nt: 0.65 m tion: 268 mast			W.L. upor	n Well Co	ompleti	on (D.): 2.9	3 mbtoc, 2	28 mbgs	3
	.16 V d	200 md3i			11. L. upol		mpiel	0.	•		

BOREHOLE RECORD OF MW-2 s/d

Project:	Mayfi	eld West Stage 3	Drilling Method: Stolid	Stem A	uge	ers		Coord	l inates: 591	429.4 E, 4	84310)1.6 N
Project #	#: 170	162	Borehole Diameter: 0.1	2 m				Well D)iameter: 0.	0508 m		
Location	ı: Cal	edon, Ontario	Rig Type: Marl M-5					S. Scr	eened Inter	r val: 3.35 r	n - 4.8	38 m
Date: No	vemb	per 13, 2017	Drilling Contractor: Dri	ITech				D. Scr	eened Inte	r val: 5.79 i	n - 8.8	34 m
			Soil Profile				Samr	oles	Sample De	escription		
Depth (m	ibas)			1	F	levation	oump	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Recovery	seenpuon	Piez	ometer
		Descriptio	n	Strata	a –	Depth	Number	Туре	(m)	N-Value	Insta	allation
_	0					200			()			
							1	SS	0.330 /	7		
	0.6								0.609			
	0.0	I opsoil: Fine and medium sai	nd and silt, some clay,									
	0.75	organics, loose, moist ic	uly, dalk blowii									
1-							2	SS	0.305 /	10		
7	1.26						-		0.609			
=	1.50					266.55						
-	1.52					1.45						
		Fine to medium sand and silt, me	dium dense, moist to wet	l,			3	SS	0.609 /	22		
2-	2 13	brown/gre	ey.				0	00	0.609	~~		
	2.10					265.76						
_	2.28	Clay, yory stiff, cabasi	vo moist grov			2.24						
_			ve, moist, grey			265.4	4	SS	0.609 /	28		
_	2.00				8	2.6	•	00	0.609	20		
3-	2.89				8							
	3.04				8							
_					8		5	SS	0.508 /	49		
7	3.65				8				0.609			
_	0.00											
4					8							
_												Ξ
_					8							
		4.11 m - 4.65 m: Gravel with silt matrix	r, very wet, grey		8							M
_	4.57				8							
5					8		6	SS	0.356 /	71 / 0.23		
	5.18	Clavey eilt to eilty clay till, some	and aroust and applica		8				0.001			
		verv dense moist	red/brown		8							
		,,			8							
					8							
6					8						E	
0					8						Ξ	
	6.09				8				0 100 /		目	
-					8		7	SS	0.1027	50 / 0.10	目	
]	6.7				8						E	
					8						目	
					8						E	
7					8						B	
7					8						員	
7	7.62				8				0.070 /		¥	
7					8		8	SS	0.0767	50 / 0.08	目	
8-					8				0.070			
			Well Installat	ion De	tails	<u>s</u>						
S. Stick	Up H	eight: 0.66 m; D. Stick Up Height: tion: 268 mast	0.75 m		W	L. upon	Well Co	mpleti	on (D.):8.3	5 mbtoc, 7	.60 mb	ogs
Siounu		1. 1. 200 md3			144	. <u>-</u> . upon		mpieti		- 110100, 4		-y-

BOREHOLE RECORD OF MW-2 s/d

Perject #: 170162 Borehole Diameter: 0.12 m Well Diameter: 0.080 m Location: Calculation: Onliario Rig Type: Mait M-5 S. screened Interval: 5:7 m - 8.84 m Date: November 13, 2017 Drilling Contractor: DrillTech 0. Screened Interval: 5:7 m - 8.84 m Depth (mbgs) Soil Profile Samples Sample Description Depth (mbgs) Description Strata Elevation Depth 1 Continued Continued Depth Numbe Type Record 9 SS 0.076 00 / 0.08 0.076 / 0.0 0 0 10 0.076 00 / 0.08 0.076 / 0.0 0 0 0 11 0.07 Sitek Up Height: 0.66 m; D. Stick Up Height: 0.75 m Well Installation Details Vel Unstallation Details 13 0.5 Stick Up Height: 0.66 m; D. Stick Up Height: 0.75 m Well upon Well Completion (D): 8.35 mbco; 7.60 mbgs	Project:	Mayfi	eld West Stage 3	Drilling Method: Stolid	Stem Au	igers		Coord	linates: 591	429.4 E, 4	843101.6 N
Location: Rig Type: Mail M-5 S. Screened Interval: 57 0° - 84 m Date: November 13, 2017 Online Difference D. Screened Interval: 57 0° - 84 m Depth: (mbgs) Soil Profile Sample Description Destroyment 13, 2017 Profile Depth: (mbgs) Description State Elevation Number Type Recovery N-Value Percent Installation 0 4 Soil Profile Sample Description Number Type Recovery N-Value Percent Installation 1 4 Controod Controod Sample Description Percent Installation Percent Installation 1 1 1 1 1 Percent Installation Percent Installation Percent Installation 1	Project #	#: 170	162	Borehole Diameter: 0.1	2 m			Well D	Diameter: 0.	0508 m	
Date: November 13, 2017 Diffing Contractor: Diff Coll Descreption Depth: (mbgs) Soll Profile Sample Description Depth: (mbgs) Description Strata Elevation Depth 0 4 0 Clayey silt to silty clay till, some sand, gravel and oobbles 0 9 0 0.076 11 1.07 12 1.07 13 0.076 14.07 1.07 14.07 1.07 15 1.07 16 1.07 16.07 1.07 <tr< td=""><td>Location</td><td>n: Cal</td><td>edon, Ontario</td><td>Rig Type: Marl M-5</td><td></td><td></td><td></td><td>S. Scr</td><td>eened Inte</td><td>rval: 3.35</td><td>m - 4.88 m</td></tr<>	Location	n: Cal	edon, Ontario	Rig Type: Marl M-5				S. Scr	eened Inte	rval: 3.35	m - 4.88 m
Soli Profile Sample Sample Sample Description Depth (mbgs) Description Strats Elevation Number Type Recovery N-Value Prezonater 4 Controved Clayery sill to silly clay till, some sand, gravel and cobbles Exe OF BOREHOLE AT 3.22 m 280 75 9 SS 0.076 / 50 / 0.08 9 515 EVD OF BOREHOLE AT 3.22 m 9.25 9 SS 0.076 / 50 / 0.08 101 102 103 104 107 9 SS 0.076 / 50 / 0.08 111 10.27 10.27 9 SS 0.076 / 50 / 0.08 100 102 103 104 107 104 105 107 103 104 104 104 104 104 104 104 105 104 104 104 104 104 104 104 105 104 104 104 104 104 104 105 104 104 104 104 104 104 104 104 104 104 10	Date: No	vemb	per 13, 2017	Drilling Contractor: Dri	llTech			D. Scr	eened Inte	rval: 5.79	m - 8.84 m
Soli Proteine Soli Proteine Description Strata Elevation Description Strata Elevation Contrived Carter of the second				Cail Drafila			C		Commis D		
Upper (Titligs) Description Strate Elevation Number Type Hecovery N-Value Installation 1 1 Clayery sill to silly day till, some sand, gravel and cobbles 1	Dawth (m	- h - a - h		Soli Profile	1		Sam	bles	Sample De	escription	Piezometer
Bit Depth (M) 9 52 Continued 28.70 9 55 0.076 / 0.08 10 9 55 0.076 / 50 / 0.08 10 9 55 0.076 / 50 / 0.08 10 10 9 55 0.076 / 50 / 0.08 11 112 9 55 0.076 / 50 / 0.08 11 112 9 55 0.076 / 50 / 0.08 11 112 112 9 55 0.076 / 50 / 0.08 11 112 112 112 112 112 11 112 112 112 112 112 11 112 112 112 112 112 113 114 112 112 112 112 114 112 112 112 112 112 115 112 112 112 112 112 115 112 112 112 112	Depth (n	(agar	Descriptio	n	Strata	Elevation	Number	Туре	Recovery	N-Value	Installation
Clayey silt to silty clay III, some sand, gravit and cobbles Clayey silt to silty clay III, some sand, gravit and cobbles P Clayey silt to silty clay III, some sand, gravit and cobbles P S S 0.076 / 50 / 0.08 P S 0.076 / 0.076 / 0.08 P S 0.076 / 0.08 P S 0.076 / 0.076 / 0.08 P S 0.076 / 0.08 P S 0.076 / 0.08 P S 0.076 / 0.08 P S 0.076 / 0.076 / 0.08 P S 0.08 P		0.00	Continued			Depth			(111)		
Image: Clayey silt to silty clay till, some sand, gravel and cobbles 208.78 Image: Clayey silt to silty clay till, some sand, gravel and cobbles 208.78 Image: Clayey silt to silty clay till, some sand, gravel and cobbles 9 Image: Clayey silt to silty clay till, some sand, gravel and cobbles 9 Image: Clayey silt to silty clay till, some sand, gravel and cobbles 9 Image: Clayey silt to silty clay till, some sand, gravel and cobbles 9 Image: Clayey silt to silty clay till, some sand, gravel and cobbles 9 Image: Clayey silt to silty clay till, some sand, gravel and cobbles 9 Image: Clayey silt to silty clay till, some sand, gravel and cobbles 9 Image: Clayey silt to silty clay till, some sand, gravel and cobbles 9 Image: Clayey silt to silty clay till, some sand, gravel and cobbles 9 Image: Clayey silt to silty clay till, some sand, gravel and cobbles 9 Image: Clayey silt to silty clay till, some sand, gravel and cobbles 9 Image: Clayey silt to silty clay till, some sand, gravel and cobbles 9 Image: Clayey silt to silty clay till, some sand, gravel and cobbles 9 Image: Clayey silt to silty clay till, some sand, gravel and clayey silt to silty clayetito silty clayet to silt, some sand to silty clayer silt, some sa		0.22	Communed								
Clayey sitt o sity clay III, some sand, gravel and cobbles very dense, moist, red/brown 9 57 57 58 58 50 OF BOREHOLE AT 9.22 m 9 58 58 50 OF 50 / 0.08 50 /	=										
9 9 S 0.076 / 50 / 0.08 10 9 SS 0.076 / 50 / 0.08 10 9 SS 0.076 / 50 / 0.08 11 107 9 SS 0.076 / 50 / 0.08 110 107 9 SS 0.076 / 50 / 0.08 111 107 9 SS 0.076 / 50 / 0.08 112 9 10 10 10 113 10 10 10 10 114 10.27 10.27 10.27 10.27 112 10.27 10.27 10.27 10.27 113 10.27 10.27 10.27 10.27 114 10.27 10.27 10.27 10.27 114 10.27 10.27 10.27 10.27 115 10.27 10.27 10.27 10.27 115 10.27 10.27 10.27 10.27 115 10.27 10.27 10.27 10.27	_		Clayey silt to silty clay till, some	sand, gravel and cobbles							
9 91 28.78 100 9 SS 0.076 / 50 / 0.08 111 127 9 SS 0.076 / 50 / 0.08 112 129 SS 0.076 / 50 / 0.08 0.076 / 50 / 0.08 113 129 SS 0.076 / 50 / 0.08 0.076 / 50 / 0.08 114 127 129 SS 0.076 / 50 / 0.08 114 128 129 SS 0.076 / 50 / 0.08 114 129 SS 0.076 / 50 / 0.08 0.076 / 50 / 0.08 114 129 SS 0.076 / 50 / 0.08 0.076 / 50 / 0.08 115 129 SS 0.076 / 50 / 0.08 0.076 / 50 / 0.08 129 129 SS 0.076 / 50 / 0.08 0.076 / 50 / 0.08 129 129 SS 0.076 / 50 / 0.08 0.076 / 50 / 0.08 129 129 SS 0.076 / 50 / 0.08 0.076 / 50 / 0.08 130 129 SS 0.076 / 50 / 0.08 0.076 / 50 / 0.08 141 129 SS <t< td=""><td>_</td><td></td><td>very dense, moist,</td><td>red/brown</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	_		very dense, moist,	red/brown							
0 *1 END OF BOREHOLE AT \$ 22 m 9 SS 0.076 / 50 / 0.08 0 *1 57 9 SS 0.076 / 50 / 0.08 11 127 9 SS 0.076 / 50 / 0.08 12 578 9 SS 0.076 / 50 / 0.08 13 127 9 SS 0.076 / 50 / 0.08 14 137 14 14 14 13 14 157 15 16 14 157 15 15 15 15 15 15 15 15 14 14 14 14 14 14 14 14 14 15 14 14 14 14 14 15 16 16 16 16 5 516k Up Height: 0.66 m; D. Stick Up Height: 0.76 m WL: upon Well Completion (D):8.35 mbloc; 7.60 mbgs 5 Stick Up Height: 0.26 m; D. Stick Up Height: 0.75 m WL: upon Well Completion (S):5.14 mbgs; 448 mgs	9										
Internal						258 78					
9 SS 0.076 50 / 0.08 9 SS 0.076 50 / 0.08	_	9.14	END OF BOREHOLE AT 9 22 m			9.22					
0 0.076 10 0.076 11 1.2 12 1.2 13 1.2 13 1.2 14 1.2 15 1.5 16 Well Installation Details 5. Stick Up Height: 0.66 m; D. Stick Up Height: 0.75 m [W.L. upon Well Completion (D): 8.35 mbbc; 7.60 mbgs Ground Elevation: 288 masi [W.L. upon Well Completion (S): 5.14 mbbc; 4.48 mbgs							9	SS	0.076/	50 / 0.08	
10 10 10 10 10 10 10 10 11 11.7 12 12.19 12.19 12.3 12 12.3 13 13.7 14 14.3 15 15.34 16 15.34 15 15.4 16 WL. upon Well Completion (D.): 8.35 mbloc. 7.60 mbgs: Ground Elevation: 268 mas! WL. upon Well Completion (D.): 8.35 mbloc. 7.60 mbgs:	-	0.75							0.076		
10- 10- 11 10- 11 11-27 12 12.10 12 12.10 12 12.10 13 12.10 14 14.32 15 15.34 15 15.34 16 15.34 5. Stick Up Height: 0.66 m; D. Stick Up Height: 0.75 m Well Installation Details S. Stick Up Height: 0.66 m; D. Stick Up Height: 0.75 m WL. upon Well Completion (D.): 8.35 mbloc; 7.60 mbgs Ground Elevation: 268 masl W.L. upon Well Completion (D.): 5.35 mbloc; 7.60 mbgs		9.75									
11 10.00 11 11.27 12 12.19 12 12.19 13 12.19 14 14.20 15 15.36 15 15.34 15 15.34 15 15.34 15 15.34 15 15.34 16 Well Installation Details S. Stick Up Height: 0.66 m; D. Stick Up Height: 0.75 m W.L. upon Well Completion (D.): 8.35 mbloc; 7.60 mbgs Ground Elevation: 268 masl W.L. upon Well Completion (D.): 5.14 mbloc, 4.48 mbgs	10 -										
11 10.66 11 11.27 12 12.19 13 12.8 13 12.8 14 13.71 14 14.32 15 15.24 15 15.24 16 15.24 5. Stick Up Height: 0.66 m; D. Stick Up Height: 0.75 m WL upon Well Completion (D.): 8.35 mbtoc; 7.60 mbg: Ground Elevation; 268 msi W.L. upon Well Completion (S.): 5.14 mbtoc, 4.48 mbgs WL. upon Well Completion (S.): 5.14 mbtoc, 4.48 mbgs											
III Well Installation Details 5. Stick Up Height: 0.66 m; D. Stick Up Height: 0.75 m Well Completion (D.): 8.35 mbtor, 7.60 mbgs Scrund Elevation: 268 masl W.L. upon Well Completion (S.): 5.14 mbtor, 4.48 mbgs											
11 112 12 12.19 13 12.8 13 13.71 14 14.32 15 15.24 16 Well Installation Details 5. Stick Up Height: 0.66 m; D. Stick Up Height: 0.75 m WL. upon Well Completion (D):8.35 mbtor, 7.60 mbgs Ground Elevation: 268 masl W.L. upon Well Completion (S):5.14 mbtor, 4.48 mbgs	-										
Mode Well Installation Details S. Stick Up Height: 0.66 m; D. Stick Up Height: 0.75 m W.L. upon Well Completion (D.): 8.35 mbtoc; 7.60 mbgs Ground Elevation: 268 masl W.L. upon Well Completion (S.): 5.14 mbtoc; 4.48 mbgs	_	10.66									
11 11.27 12 12.19 12 12.19 12 12.19 13 13.71 14 13.71 15 15.41 16 15.41 15 15.41 16 15.41 15 15.41 16 15.41 17 15.51ck Up Height: 0.66 m; D. Stick Up Height: 0.75 m Well Installation Details WL. upon Well Completion (D.): 8.35 mbtoc; 7.60 mbgs Ground Elevation: 268 masl W.L. upon Well Completion (S.): 5.14 mbtoc, 4.48 mbgs		10.00									
III Well Installation Details 5. Stick Up Height: 0.66 m; D. Stick Up Height: 0.75 m W.L. upon Well Completion (D.):8.35 mbloc, 7.60 mbgs Ground Elevation: 268 masl W.L. upon Well Completion (S.):5.14 mbloc, 4.48 mbgs	11										
12 12.19 13 12.8 13 13.71 14 13.71 15 15.24 15 15.4 16 Well Installation Details 5. Stick Up Height: 0.66 m; D. Stick Up Height: 0.75 m W.L. upon Well Completion (D.):8.35 mbloc, 7.60 mbgs Ground Elevation: 268 masl W.L. upon Well Completion (S.): 5.14 mbloc, 4.48 mbgs		11.27									
12 12.19 12 12.39 13 12.4 14 12.71 14 14.32 15 15.24 15.4 15.24 15.4 15.24 15.54 15.24 15.54 15.24 16 Well Installation Details S. Stick Up Height: 0.66 m; D. Stick Up Height: 0.75 m W.L. upon Well Completion (D.): 8.35 mbtor, 7.60 mbgs Ground Elevation: 268 masl W.L. upon Well Completion (D.): 5.14 mbtor, 4.48 mbge											
12 12.19 13 12.8 13 12.19 14 13.71 14 14.32 15 15.24 16 15.24 15.24 15.24 16 Well Installation Details S. Stick Up Height: 0.66 m; D. Stick Up Height: 0.75 m W.L. upon Well Completion (D.): 8.35 mbtoc, 7.60 mbgs Ground Elevation: 268 masl W.L. upon Well Completion (D.): 5.14 mbtoc, 4.48 mbg:	1 =										
12 128 13 14 13.71 14 15 15.24 15.24 15.34 15.34 15.34 15.34 15.34 15.34 16 15.34 16 15.34 16 15.34 16 15.34 16 15.35 16 17.37 18 19.35 19.35 10.10 10.10 11.10 11.10 11.10 11.10 11.10 11.10 11.10 11.10 11.10 11.10 11.10 11.10 11.10 11.10 11.10 11.10 11.10 11.											
Image: Well Installation Details S. Stick Up Height: 0.66 m; D. Stick Up Height: 0.75 m W.L. upon Well Completion (D.): 8.35 mbtoc, 7.60 mbgs Ground Elevation: 268 masl W.L. upon Well Completion (S.): 5.14 mbtoc, 4.48 mbgs	12										
Image: Well Installation Details S. Stick Up Height: 0.66 m; D. Stick Up Height: 0.75 m W.L. upon Well Completion (D.): 8.35 mbtoc, 7.60 mbgs Ground Elevation: 268 masl W.L. upon Well Completion (S.): 5.14 mbtoc, 4.48 mbgs	_										
Image: Metric interview Well Installation Details 5. Stick Up Height: 0.66 m; D. Stick Up Height: 0.75 m W.L. upon Well Completion (D.): 8.35 mbtoc, 7.60 mbgs Ground Elevation: 268 masl W.L. upon Well Completion (S.): 5.14 mbtoc, 4.48 mbgs		12.19									
Image: Metric Stress Well Installation Details S. Stick Up Height: 0.66 m; D. Stick Up Height: 0.75 m W.L. upon Well Completion (D.): 8.35 mbtoc, 7.60 mbgs Ground Elevation: 268 masi W.L. upon Well Completion (S.): 5.14 mbtoc, 4.48 mbgs	_										
13 12.8 13 13.71 14 13.71 14 14.32 15 15.24 15 15.24 16 15.84 S. Stick Up Height: 0.66 m; D. Stick Up Height: 0.75 m W.L. upon Well Completion (D.): 8.35 mbtoc, 7.60 mbgs Ground Elevation: 268 masl W.L. upon Well Completion (S.): 5.14 mbtoc, 4.48 mbgs	_										
13 13 14 15 15 15 15 15.24 15.25 15.26 1	-	12.8									
13.71 14.32 15 15.24 15 15.24 16 15.54 Well Installation Details S. Stick Up Height: 0.66 m; D. Stick Up Height: 0.75 m W.L. upon Well Completion (D.): 8.35 mbtoc, 7.60 mbgs Ground Elevation: 268 masl W.L. upon Well Completion (S.): 5.14 mbtoc, 4.48 mbgs	13 -										
Well Installation Details S. Stick Up Height: 0.66 m; D. Stick Up Height: 0.75 m W.L. upon Well Completion (D.): 8.35 mbtoc, 7.60 mbgs Ground Elevation: 268 masl W.L. upon Well Completion (S.): 5.14 mbtoc, 4.48 mbgs	_										
Well Installation Details S. Stick Up Height: 0.66 m; D. Stick Up Height: 0.75 m W.L. upon Well Completion (D.): 8.35 mbtoc, 7.60 mbgs Ground Elevation: 268 masl W.L. upon Well Completion (S.): 5.14 mbtoc, 4.48 mbgs	-										
Well Installation Details S. Stick Up Height: 0.66 m; D. Stick Up Height: 0.75 m W.L. upon Well Completion (D.): 8.35 mbtoc, 7.60 mbgs Ground Elevation: 268 masl W.L. upon Well Completion (S.): 5.14 mbtoc, 4.48 mbgs	-										
14 14.32 15 14.32 15 15.24 16 15.84 16 15.84 16 Well Installation Details S. Stick Up Height: 0.66 m; D. Stick Up Height: 0.75 m W.L. upon Well Completion (D.): 8.35 mbtoc, 7.60 mbgs Ground Elevation: 268 masl W.L. upon Well Completion (S.): 5.14 mbtoc, 4.48 mbgs		10 71									
15 14.32 15 15.24 16 15.84 Well Installation Details S. Stick Up Height: 0.66 m; D. Stick Up Height: 0.75 m W.L. upon Well Completion (D.): 8.35 mbtoc, 7.60 mbgs Ground Elevation: 268 masl W.L. upon Well Completion (S.): 5.14 mbtoc, 4.48 mbgs	14	13.71									
15 15.24 16 15.24 16 15.84 Well Installation Details S. Stick Up Height: 0.66 m; D. Stick Up Height: 0.75 m W.L. upon Well Completion (D.): 8.35 mbtoc, 7.60 mbgs Ground Elevation: 268 masl	14										
15 15 15.24 15.24 15.84 16 15.84 S. Stick Up Height: 0.66 m; D. Stick Up Height: 0.75 m Well Installation Details Ground Elevation: 268 masl W.L. upon Well Completion (S.): 5.14 mbtoc, 4.48 mbgs	-	14.32									
15 15 15.24 16 17 18 19 10 10 11 10 11 10 11 10 11 10 11 10 11 10 10 10 10 10 10 10 10 10 10 </td <td> </td> <td></td>											
15 15 15.24 16 15.84 16 15.84 16 15.84 16 15.84 16 15.84 16 15.84 16 15.84 16 15.84 16 15.84 16 15.84 16 16 16 15.84 16 17.84 18.85 19.95	=										
15 15.24 15.24 16 15.84 16 15.84 S. Stick Up Height: 0.66 m; D. Stick Up Height: 0.75 m Well Installation Details Ground Elevation: 268 masl WL. upon Well Completion (D.): 8.35 mbtoc, 7.60 mbgs WL. upon Well Completion (S.): 5.14 mbtoc, 4.48 mbgs											
15.24 16 15.84 16 15.84 16 15.84 16 15.84 16 15.84 16 15.84 16 15.84 16 15.84 16 15.84 16 15.84 16 17.84 18 18 18 19 10 10 10 10 10 110 <	15										
15.24 15.84 16 15.84 16 15.84 16 15.84 16 15.84 15.84 15.84 15.84 16 15.84 16 15.84 16 15.84 16 15.84 16 17.84 18 18 19 10 10 10 11.84 12.835 13.95 14.95 14.95 15.14 10.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 <td>_</td> <td></td>	_										
Image: Meil Installation Details S. Stick Up Height: 0.66 m; D. Stick Up Height: 0.75 m Well Installation Details Ground Elevation: 268 masl WL. upon Well Completion (D.): 8.35 mbtoc, 7.60 mbgs WL. upon Well Completion (S.): 5.14 mbtoc, 4.48 mbgs	=	15.24									
16 15.84 16 15.84 Well Installation Details S. Stick Up Height: 0.66 m; D. Stick Up Height: 0.75 m W.L. upon Well Completion (D.): 8.35 mbtoc, 7.60 mbgs Ground Elevation: 268 masl W.L. upon Well Completion (S.): 5.14 mbtoc, 4.48 mbgs	=										
16 15.84 16 15.84 16 Well Installation Details S. Stick Up Height: 0.66 m; D. Stick Up Height: 0.75 m W.L. upon Well Completion (D.): 8.35 mbtoc, 7.60 mbgs Ground Elevation: 268 masl W.L. upon Well Completion (S.): 5.14 mbtoc, 4.48 mbgs	-										
16] Well Installation Details S. Stick Up Height: 0.66 m; D. Stick Up Height: 0.75 m W.L. upon Well Completion (D.): 8.35 mbtoc, 7.60 mbgs Ground Elevation: 268 masl W.L. upon Well Completion (S.): 5.14 mbtoc, 4.48 mbgs		15.84									
Well Installation Details S. Stick Up Height: 0.66 m; D. Stick Up Height: 0.75 m W.L. upon Well Completion (D.): 8.35 mbtoc, 7.60 mbgs Ground Elevation: 268 masl W.L. upon Well Completion (S.): 5.14 mbtoc, 4.48 mbgs	16										
S. Stick Up Height: 0.66 m; D. Stick Up Height: 0.75 m W.L. upon Well Completion (D.): 8.35 mbtoc, 7.60 mbgs Ground Elevation: 268 masl W.L. upon Well Completion (S.): 5.14 mbtoc, 4.48 mbgs				Well Installat	ion Deta	ails					
Ground Elevation: 268 masl W.L. upon Well Completion (S.): 5.14 mbtoc, 4.48 mbgs	S. Stick	Up H	eight: 0.66 m; D. Stick Up Height	0.75 m		W.L. upo	n Well Co	mpleti	on (D.):8.3	5 mbtoc, 7	.60 mbgs
	Ground	Eleva	ition: 268 masl			W.L. upor	n Well Co	ompleti	on (S.): 5.1	4 mbtoc, 4	.48 mbgs

Project: May	field West Stage 3	Drilling Method: Stolid	Stem A	ugers	3		Coord	inates: 591	415.3 E, 4	842905.	.2 N
Project #: 17	0162	Borehole Diameter: 0.1	2 m				Well D	iameter: 0.	0508 m		
Location: Ca	ledon, Ontario	Rig Type: Marl M-5					S. Scr	eened Inter	rval: N/A		
Date: Novem	ber 13, 2017	Drilling Contractor: Dril	ITech				D. Scr	eened Inte	rval: 4.57	m - 7.62	m
		Soil Profilo				Samr		Sample D	oscription		
Depth (mbgs			1		votion	Samp	163		scription	Piezon	neter
Deptil (Inbgs	Descriptio	on	Strat	a Ele	evation	Number	Туре	(m)	N-Value	Installa	ation
0					epui			()			
-						4	~~~	0.254 /	-		
						I	33	0.609	Э		
0.6	Toppoil: ailt and fine cond. come	alay, aama arganiga, laga									
0.75	moist to wet	brown	5 .								
1 -						_		0.483 /	_		
-	1.12 m: soils turn grey					2	SS	0.609	/		
1.36				26	81 55						
				1	1.45				-		
- 1.52								0 584 /			
2	Fine sand and silt, some clay, lan	ninae, medium dense, we	,			3	SS	0.004 /	22		
2.13	grey							0.000			
				26	60 64						
2.28		a bard wat		20	2.36						
	Clay, some slit, conesive	e, nard, wet, grey		26	60.38	4	SS	0.533 /	27		
2.89				2	2.62			0.009			
3 -				8							
3.04				8							
-				8		5	SS	0.609 /	47		
3.65				8				0.609			
				8							
4				8							
				8							
				8							
-	Silty agend to ailty along till, groups	and apphlant dance to var		8							
4.57	dense moist re	and copples, dense to ver d/brown		8							
-		4, 2. 0		8		6	22	0.381 /	37		-
5 -				8		0	00	0.609	57		4
5.18				8							-
				8						E	-
-				8						E	-
				8						E	-
6				8						E	1
				8						E	
6.09				8				0 279 /			1
				8		7	SS	0.279	73 / 0.28	E	1
6.7				8							-
_ 				8						E	1
/				8						E	1
]				8						E	1
1				8						E	1
7.60				8							1
1.02				8		8	SS	0.305 /	59		
8 7.92				25	55.08			0.305			
	END OF BOREHOLE AT 7.92 m	Well Installat	ion De	7 tails	7.92						
Stick Up Hei	ght: 0.75 m	<u></u>		W.L	upon	n Well Co	mpleti	on (D.): 5.80	0 mbtoc, 5	.05 mbg	s
Ground Elev	ation: 263 masl			W.L	upon	n Well Co	mpleti	on (S.): N/A	· · ·		
1											

Project:	Mayfi	eld West Stage 3	Drilling Method: Stolid	Stem Au	igers		Coord	linates: 592	2076.8 E, 4	844412.8 N
Project #	: 170	162	Borehole Diameter: 0.1	2 m			Well D	Diameter: 0.	0508 m	
Location	: Cal	edon, Ontario	Rig Type: Marl M-5				S. Scr	eened Inter	rval: N/A	
Date: No	vemb	per 15, 2017	Drilling Contractor: Dril	lTech			D. Scr	eened Inte	rval: 6.40	m - 7.92 m
			Soil Drofilo			Some		Sampla D	oporintion	
Depth (m	bgs)	Descriptio	n	Strata	Elevation Depth	Number	Туре	Recovery (m)	N-Value	Piezometer Installation
_	8.22	Continued								
-										
=			4:66							
9		Clay, conesive, very	still, wet, grey							
	0.14							-		
	9.14							0.533 /		
						7	SS	0.609	20	
	9.75				256.3			01000		
10-					9.7					
- 10										
		Silty clay till, some gravel and co	bbles, very dense, moist							
_		red/browi	1							
_	10.66						1			
11	10.00				255.09			0 254 /		
		END OF BOREHOLE AT 10.91 m			10.91	8	SS	0.254	70 / 0.25	
	11.27									
_										
_										
10										
12										
-	12.19									
-										
-										
	12.8									
13-										
]										
7										
7										
	13.71									
14 -										
7	14.32									
7										
]										
1										
15										
1	15 24									
1	10.24									
1										
1	15.84									
16										
			Well Installat	ion Det	ails					
Stick Up	Heig	ht: 0.68 m			W.L. upor	n Well Co	mpleti	on (D.):5.2	7 mbtoc, 4	.59 mbgs
Ground	=leva	ition: 266 masi			w.L. upoi	n well Co	ompleti	on (S.): N/A	1	

BOREHOLE RECORD OF MW-5 s/d

Project:	Mayfi	eld West Stage 3	Drilling Method: Stolid	Ster	m Au	gers		Coord	linates: 592	688.1 E, 4	8446	55.6 N
Project #	: 170	162	Borehole Diameter: 0.1	2 m	I			Well D	Diameter: 0.	0508 m		
Location	: Cal	edon, Ontario	Rig Type: Marl M-5					S. Scr	eened Inter	r val: 4.57	m - 6.	10 m
Date: No	vemb	er 14, 2017	Drilling Contractor: Dril	llTe	ch			D. Scr	reened Inte	rval: 9.14	m - 1().67 m
			Soil Profile				Samr	oles	Sample D	escription		
Depth (m	ibas)			1		Elevation	Carri	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Recovery	boonpaon	Piez	zometer
	5,	Descriptio	n	St	trata	Depth	Number	Туре	(m)	N-Value	Inst	allation
	0						1	SS	0.483 / 0.609	5		
	0.6 0.75	Topsoil: silt and sand, some cla dark brow	y, organics, loose, moist, n									
1-	1.36						2	SS	0.051 / 0.609	5		
	1.52					258.55 1.45						
2	2.13	Clayey silt to silty clay till, son	ne gravel, moist, brown				3	SS	0.508 / 0.609	18		
	2.28								1			
	2.89	2.57 m: Grey				057.00	4	SS	0.533 / 0.609	28		
	3.04					257.03						
	3.65	Clay, cohesive, har	d, wet, grey			256.47	5	SS	0.508 / 0.609	33		
	4.57 5.18 6.09	Silt and fine to medium sand, so dense, moist to w	ne clay, medium dense to ret, brown	0			6	SS	0.609 / 0.609	33		
7	6.7						7	SS SS	0.609 / 0.609	33		
0			147-11 1 4 14 4									
S Stick	Un H	eight: 0.62 m·D. Stick Un Height	0.71 m	tion	Deta	ails Willinger		mnlati		5 mbtoc 9	23 m	bas
Ground	Eleva	ition: 260 masl	V.1 T III			W.L. upor	n Well Co	mpleti	ion (S.): 6.7	7 mbtoc, 6	.06 m	ibgs
	-								· / ···	, -		<u> </u>

BOREHOLE RECORD OF MW-5 s/d

Project:	Mayfi	eld West Stage 3	Drilling Method: Stolid	Stem Au	ugers		Coord	linates: 592	2688.1 E, 4	844655.6	3 N
Project	#: 170	162	Borehole Diameter: 0.1	2 m			Well D	Diameter: 0.	.0508 m		
Location	n: Cal	edon, Ontario	Rig Type: Marl M-5				S. Scr	eened Inte	rval: 4.57	m - 6.10 r	n
Date: No	vemb	er 14, 2017	Drilling Contractor: Dri	llTech			D. Scr	eened Inte	rval: 9.14	m - 10.67	m
			Soil Profile			Samr	hles	Sample D	escription		
Depth (n	npas)				Elevation	oum		Recovery	Comption	Piezom	eter
		Descriptio	n	Strata	Depth	Number	Туре	(m)	N-Value	Installat	tion
_	8.22	Continued			Dopui			()			
_										\sim	
1 =		Silt and fine to modium sand, sor	no clav, modium donco tr								
=		dense moist to w	rie ciay, medium dense k vet brown								
-			,								
9-											
=	9.14	9.14 m: Grey							1		
=						0	<u> </u>	0.609 /	20		
1 =		9.45 m - 9.50 m: Coarse sand lense, wet, gre	9 <i>y</i>			9	55	0.609	30	Ξ	
=	9.75										
10											
_											
=											
1 =											
1 =	10.00							-			
	10.00							0.205 /			
11-						10	SS	0.3057	16		
=	11.27							0.003			
=											
1 =											
1 =					248.27						
12		Clay and silt till, gravel and cob	bles, very dense, moist,		11.73						
-		red/brow	n								
=	12.19				247.68						
=					12.52	11	SS	0.128 /	50 / 0.13		
=	12.8							0.120			
13											
=											
-											
=											
=	13.71										
14 -											
=	14 32										
=	14.02										
-											
-											
15											
-											
=	15.24										
=											
=											
	15.84										
16											
			Well Installat	ion Det	ails						
S. Stick		eignt: 0.62 m; D. Stick Up Height: tion: 260 mast	:U./1 m		W.L. upor	n Well Co	mpleti	on (D.):8.8	5 mbtoc, 8	.23 mbgs	
Ground	LIGAS	11011. 200 111051			w.∟. upoi		mpieti	on (3.) .0.7		.oo mbgs	

Project:	Mayfi	eld West Stage 3	Drilling Method: Stolid Stolid	Stem A	ugers		Coord	linates: 592	407.1 E, 4	843628.3 N
Project #	‡: 170	162	Borehole Diameter: 0.1	2 m			Well D	Diameter: 0.	0508 m	
Location	: Cal	edon, Ontario	Rig Type: Marl M-5				S. Scr	eened Inter	rval: N/A	
Date: No	vemb	er 14, 2017	Drilling Contractor: Dril	ITech			D. Scr	eened Inte	rval: 3.66	m - 5.18 m
			Soil Profile			Samp	oles	Sample De	escription	Piezometer
Depth (m	ıbgs)	Descriptio	n	Strata	Elevation Depth	Number	Туре	Recovery (m)	N-Value	Installation
	0.6	Topsoil: Sand and silt, some clay	, loose to dense, dry, dar			1	SS	0.305 / 0.609	12	
1-	0.75	brown			004.55	2	SS	0.305 / 0.609	47	
2	1.52 2.13				1.45	3	SS	0.457 / 0.609	32	
	2.28	Clayey silt to silty clay till, gravel brown 2.67 m: Grey	and cobbles, hard, moist			4	SS	0.508 / 0.609	44	
	3.04				259.8 3.2	5	SS	0.533 / 0.609	45	
4	4.57	Fine sand and silt, some clay, 4.97 m - 5.18: Medium to coarse sand lense	very dense, wet, grey			6	SS	0.609 / 0.609	49	
					257.36 5.64					
6-	6.09	Silty clay to clayey silt till, gravel	and cobbles, very dense			7	SS	0.152 / 0.152	50 / 0.15	
7-	7.60	moist, red/br	own							
]	1.02				255.15	8	SS	0.203 / 0.229	95 / 0.23	
8-		END OF BOREHOLE AT 7.85 m			7.85			0.220		
			Well Installat	ion De	ails					
Stick Up	Heig	ht: 0.68 m			W.L. upor	n Well Co	mpleti	on (D.): 3.6	8 mbtoc, 3	.00 mbgs
Ground	Eleva	ition: 263 masi			W.L. upoi	n Well Co	ompleti	on (S.): N/A	۱	

BOREHOLE RECORD OF MW-7 s/d

Project: N	Mayfi	eld West Stage 3	Drilling Method: Stolid	Stem Au	igers		Coord	l inates: 592	776.2 N, 4	843760.4 N
Project #	: 170	162	Borehole Diameter: 0.1	2 m			Well D	liameter: 0.	0508 m	
Location	: Cal	edon, Ontario	Rig Type: Marl M-5				S. Scr	eened Inter	rval: 4.57	m - 6.10 m
Date: Nov	vemb	per 15, 2017	Drilling Contractor: Dri	llTech			D. Scr	eened Inter	r val: 9.14	m - 10.67 m
			Soil Profile			Sam	oles	Sample De	escription	
Depth (m	bgs)	Descriptio	งท	Strata	Elevation Depth	Number	Туре	Recovery (m)	N-Value	Piezometer Installation
	0	Topsoil: sand, silt, clay, loos	e, moist, dark brown		258.31	1	SS		8	
1-	0.75	Clayey silt till, gravel and cobbl	es, some sand, medium		0.69	2	SS		18	
2-	1.52 2.13	dense, dry to mo	ist, brown		256 79	3	SS		22	
	2.28 2.89	Clay, cohesive, wet, hard, 2.67 m: Grey	moist to wet, brown		2.21	4	SS		34	
	3.04	3.20 m - 4.72 m: Cohesive clay, sand, and si	it layer		255.8 3.2	5	SS		41	
4	4.57	Fine and medium sand, silt, an	d clay, dense, wet, grey			6	SS		37	
6	5.18									
	6.09				252.52 6.48	7	SS		39	
7-		Clayey silt till, some sand, some red/brow	e gravel, very dense, wet, n							
8-	7.62					8	SS	0.254 / 0.254	71 / 0.25	
			Well Installat	ion Det	ails					
S. Stick L	Jp H	eight: 0.81 m; D. Stick Up Height:	0.84 m		W.L. upor	n Well Co	mpleti	on (D.): 11.3	34 mbtoc,	10.50 mbgs
Ground E	Eleva	ation: 259 masl			W.L. upor	n Well Co	mpleti	on (S.): 5.7	5 mbtoc, 4	.94 mbgs
	_									

BOREHOLE RECORD OF MW-7 s/d

Project:	Mayfi	eld West Stage 3	Drilling Method: Stolid Stolid	Stem Au	igers		Coord	l inates: 592	2776.2 N, 4	843760.4 N
Project #	#: 170	162	Borehole Diameter: 0.12	2 m			Well D	iameter: 0.	.0508 m	
Location	n: Cal	edon, Ontario	Rig Type: Marl M-5				S. Scr	eened Inte	rval: 4.57	m - 6.10 m
Date: No	vemb	per 15, 2017	Drilling Contractor: Dril	ITech			D. Scr	eened Inte	rval: 9.14	m - 10.67 m
			Soil Profile			Samr	مادد	Sample D	escription	
Depth (m	npas)				Elevation	Cam		Recovery	Comption	Piezometer
		Descriptio	n	Strata	Depth	Number	Туре	(m)	N-Value	Installation
	8.22	Continued			Dopui			()		
_										
_										
9-		Clevey eilt till some cond.com	aroual yers dance wat							
_	9.14	clayey siit uii, some sand, some red/browi	e gravel, very dense, wel, n							
		100/5100				Q	22	0.127 /	50 / 0 13	
						J	00	0.127	507 0.15	
_	9.75									
10-										
_										
_		10.21 m: Grey								員
_										_¥
_	10.66									
11						10	66	0.457 /	00	
_					247.87	10	33	0.457	90	
_	11.27	END OF BOREHOLE AT 11.13 m			11.13					
_										
12										
	12.19									
_										
_	12.8									
13-										
=										
=										
4.4	13.71									
14										
	14.32									
-										
15										
7	15.24									
=										
_=	15.84									
16										
			Well Installat	ion Deta	ails					
S. Stick	Up He	eight: 0.81 m; D. Stick Up Height: tion: 250 mast	0.84 m		W.L. upor	n Well Co	mpleti	on (D.): 11.	34 mbtoc,	10.50 mbgs
Ground	CIEVS	11011. 237 111851			w.∟. upoi		mpiet	on (3 .):5./	5 110100, 4	.94 mbys

Palmer.

Appendix B2

Borehole Logs and Grain Size (AMEC, 2010)

	PROJECT:	Mayfield West						[DATE	:	F	ebru	ary 12	2, 2009	9				
$\mathbf{\mathcal{T}}$	LOCATION:	Caledon, Ontario							EQUIF	MENT	Г: _В	Bomb	ardier	/Hollov	<i>w</i> Ster	n Aug	ers		
	CLIENT:	Philips Engineering	g Ltd.					6	ELEV	ATION		JM:	Ge	eodetic)			FILE:	_1-
	SOIL	PROFILE			SAMP	LES	Ш	PENE	TRATIO	ON E PLOT	>				o NATU	RAL .		υr	s
ELEV DEPTH	DES	CRIPTION	STRAT PLOT	NUMBER	TYPE	"N" VALUES	ELEVATION SCA	SHEA O UI O PI	AR ST NCONF	40 6 RENG FINED PEN.	0 80 TH kPa + F × L) 10 IELD	VANE		ER CO			d) ORGANI (a vapoul	INS F
263.0 262.8	250mm TOPSC	DIL	<u>×1 1</u> ×.	ž			263					, ii			5 20		5		
0.3	Weathered, firm	1		1	SS	6						1	50 kPa		0				
						-		$ \rangle$											
	CLAYEY SILT			2	ss	20	262	⊢ `				>2	25 kPa		•				
	embedded sand	t and gravel, L brown_moist																	
		、 、		3	ss	38			$ \rangle$	GR.	SA.SI.CI 8_39.34	L >2:	25 kPa		∘⊦		1		
	(GLACIAL TILL	-)				-	261	<u> </u>											
				1	00	07									0				
				4	55	3/						>2	zo kra		-				
							260								0				
	sanuy			5	SS	36						>2	25 kPa		Ũ				
							259									_			
258.4																			
4.6				6	22	36								0					
	SANDY SILT trace gravel, tra	ce clav.					258												
	compact to den	se, brown, moist																	
				-		-	257												
	wet			7	SS	36									c	>			Ā
						-													
							256		+										
	 grey			8	ss	21			1						0				
				\vdash		-	255	<u> </u>	\uparrow										
									$ \rangle$										
						-	254		\square										
253.4				9	SS	36			' '						0				
9.6	End	d of Borehole																	

	PROJECT: Mayfield West							DATE	:		Febru	ary 12	2, 200	9				
ð	LOCATION: Caledon, Ontario							EQUI	PMEN	T : _I	Bomb	ardier	/Hollo	w Ste	m Aug	ers		
	CLIENT: Philips Engineerin	g Ltd.						ELEV	ATION	I DAT	UM:	_Ge	eodeti	c			FILE:	1-08-30
	SOIL PROFILE			SAMP	LES	ALE	RESI	TRATI	ON E PLOT	\geq			PLAST		JRAL L	IQUID	JR R	STANDPIP
ELEV DEPTH 264.3	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	ELEVATION SC	SHE OU • P	AR ST NCON OCKE	40 6 RENG FINED T PEN. 40 6	0 8 TH kPa + ×	0 1 a FIELD LAB V	VANE ANE 00		TER CC		LIMIT W L (%) (%)	(mdđ) (Mdđa)	INSTALLATI OR REMARKS
0.0 264.0	280mm TOPSOIL	<u>st 1</u> /2	1	ss	7	264												
0.3 263.2	CLAYEY SILT embedded sand and gravel, stiff to very stiff, brown, moist GLACIAL TILL)		2	SS	15		$\left \right\rangle$			10	00 kPa 1	50 kPa	•	o				
1.1					-	263	<u> </u>	\setminus						0				
	SANDY SIL I trace gravel, trace clay, compact to dense, brown, moist		3	SS	24								ο					
			4	SS	24	262							0					
			5	SS	26	261		+					0					
			•			260												
			6	SS	31									c	Þ			
						259												
			7	SS	35	258	Gi 1	R.SA.S 34. 6	61.CL 3. 2					0				
			•			257												
	 wet		8	SS	26										o			
			•			256												⊻
					25	255									•			
254.7	End of Develoa			33	25													
5.0																		

	PROJECT: Mayfield West							DATE:	F	=ebru	ary 09	9, 2009)			
\mathbf{b}	LOCATION: Caledon, Ontario							EQUIPMEN	Г: <u>Е</u>	Bomb	ardier	/Hollov	v Stem	Augers		
	CLIENT: Philips Engineering	J Ltd.						ELEVATION	I DAT	UM:	Ge	eodetic	;		FILE:	
	SOIL PROFILE			SAMP	LES	ALE	RESI	ETRATION STANCE PLOT	\geq			PLASTI			일저	S
ELEV DEPTH	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	ELEVATION SC	SHE OL ● F	20 40 6 AR STRENG INCONFINED POCKET PEN. 20 40 6	0 80 TH kPa + 1 × 1 60 80	0 1 a FIELD LAB V. 0 1	VANE ANE 00	LIMIT W P WAT	ER CON	KE LIMIT	(mdd) ORGAN VAPOL	INS F
0.0	280mm TOPSOIL	<u>x¹ 1_X</u>		00	0	050										
0.3	Weathered, soft, dark brown				2	259	$\left \right $						0			
	CLAYEY SILT embedded sand and gravel, very stiff to hard, brown, moist		2	SS	13	258				>2	25 kPa		•		-	
	(GLACIAL TILL)		3	SS	28					>2	25 kPa	, c	o l			
			4	SS	27	257				>2	25 kPa		0			
	 grey		5	SS	30	256				>2	25 kPa		0		-	
						255										
			6	SS	17	254				2	0 kPa		c	,		¥
252.0						253			10)0 kPa	•			0		
6.4	moist, compact			SS	23	200		/					0			
	SILT some sand, trace clay,					252									-	
	very loose to loose, grey, wet		8	ss	3		G 0	R.SA.SI.CL 19.75.6					o			
			9	SS	8	251							c	,		
			_				$ \rangle$									
249.7 9.6	End of Borehole		10	SS	16	250							0			

	PROJECT:	Mayfield West							DATE:		Febru	uary 10	<u>) & 11</u>	, 200	9			
	LOCATION:	Caledon, Ontario	l td					_ '			Bomb	bardier	/Hollov	w Ste	m Aug	gers	EU E.	1
		Philips Engineering	Ltd.				1							2			FILE:	
	SOIL	PROFILE	<u> </u>		SAMF	PLES	CALE	RESI	STANCE P		>		PLASTI	IC NATI	JRAL		UR NIC	S
ELEV DEPTH	DESC	RIPTION	STRAT PLOT	NUMBER	TYPE	"N" VALUES	ELEVATION SC	: SHE/ 0 U • P	20 40 AR STRE NCONFINI OCKET PE 20 40	60 ENGTH I ED + EN. > 60	80 1 √Pa ⊢ FIELD < LAB V 80 1	VANE ANE	WP WAT			T (%)	ORGA VAPO	F
0.0 259.2	280mm TOPSC	IL	<u>7/ 1</u> /2															
0.3	Weathered, firm				33	4	259	+			-100 kPa	•						
				<u>}</u>		-												
	CLAYEY SILT	and gravel		2	SS	9					2	200 kPa			0			
	very stiff to hard	, brown, moist					258	$ \rightarrow $			_							
	(GLACIAL TILL)		3	SS	20					>2	25 kPa		0				
				4	SS	24	257		+		>2	25 kPa	•	-0				
				<u>}</u>					$ \rangle $									
				5	ss	34			$ \rangle $		>2	25 kPa		0				
				<u>}</u>		-	256		+/+		_							
							255		$ \vdash$		_							
	grey			6	ss	14		{				150kPa		0				
				<u> </u>														
							254											
						-								`				
				<u> </u>	55	23	253		\mathbb{N}^+		_							
252.5									$ \rangle $									
7.0	0" T																	
	some sand, trac	e clay,					252		\vdash		-							
	dense to very de	ense, grey, moist		8	ss	50				$\rangle \mid$				0				
						-			/	'								
							251		\vdash									
	compact				00	10							0					
				9	55	18	250		\mathbb{N}^+		_							
									$ \setminus$									Į₽
										\mathbf{N}								
							249			\neg	-							
	damp			10	ss	86							0					
				\vdash		-					$ \rangle$							
							248				+	\setminus						

	PROJECT: Mayfield West LOCATION: Caledon, Ontario CLIENT: Philips Engineering	g Ltd.					DATE: February 10 & 11, 2009 EQUIPMENT: Bombardier/Hollow Stem Augers ELEVATION DATUM: Geodetic
	SOIL PROFILE			SAM	PLES	ALE	PENETRATION RESISTANCE PLOT
ELEV DEPTH	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	ELEVATION SCA	20 40 60 80 100 Limit CONTENT Limit ZO 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 40 60 80 100 Limit CONTENT Limit 20 20 20 20 40 60 80 100 10 20 30 70 <
	finelly bedded		11	SS	96/25cr	n 247-	₀
	wet		12	SS	80/28cr	246 - n	
						245	
			13	SS	47	244	
			14			243	
				33	20	242	
			15	SS	-	241	
					_	240 -	
	dense, reddish brown		16	SS	34	239	
238.2 21.3	SAND some silt, trace gravel,		17	SS	26	238	
	compact, reddish brown, wet					237	
			18	SS	30	236	

Water level in deep well at 1.3m (Elev. 258.2m) on April 23, 2009. Water level in shallow well at 3.1m (Elev. 256.4m) on April 23, 2009.

NOTES:

Borehole was open and unstabilized water level at 9.8m upon completion of drilling. Water level in deep well at 1.3m (Elev. 258.2m) on April 23, 2009. Water level in shallow well at 3.1m (Elev. 256.4m) on April 23, 2009.

	PROJECT: Mayfield West						_ C	DATE:	Februa	ary 12	2, 2009				
	LOCATION: Caledon, Ontario						E		T: Bomba	ardier	/Hollow S	tem Ar	ugers		
	CLIENT: Philips Engineering	ng Ltd.					E		N DATUM:	Ge	eodetic			FILE:	1
	SOIL PROFILE			SAMF	PLES	щ	PENE								
ELEV DEPTH	DESCRIPTION		RAT PLOT	TYPE	4" VALUES	EVATION SCAI	SHEA O UN		60 80 10 TH kPa + FIELD	/ANE			LIQUID LIMIT 		INS INS
258.3			S		f	ELE	2	0 40 6	50 80 10	10	10	20	30	(phin)	
258.1	250mm TOPSOIL		<u>।,, ,</u> ,, ,, , ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,		7	258									
0.3	Weathered, firm					200	\Box						\top		
				\square	-		$ \setminus $								
	CLAYEY SILT		2	ss	16				>22	5 kPa		0			
	embedded sand and gravel,				-	257	\vdash					_	+		
	very stiff to hard, brown, moist							N		-5 vPa		0			
	(GLACIAL TILL)			33	23					5 KI G	ř				
]	256									
				ss	33	200			>22	5 kPa	0				
								/			[
				+	-			/							
			5	SS	22	255	$\left - \right $	/	>22	25 kPa			+		
				+	1										
						254									
						2.54	\Box						\top		
	 stiff arev				12					n kPa		0			
	Suil, groy			00	14)U KI	í				
						253						—	+		
252.2															
6.1				+	-	252									
	SANDY SILT		7	SS	15	202						-0			
	trace clay,			+	-										
	compact, grey, wei														
						251									
250.7				<u> </u>	-										Į₽
7.0	SANDY SILT		8	SS	22						0				
	embedded gravel, trace clay,			-	-	250		$ \rangle $							
	compact to dense, grey, moist					250									
	(GLACIAL TILL)														
					_										
			9	ss	47	249	GR 7	.SA.SI.OL			• •	_			
248.7	End of Porcholo	[:]	<u> </u>	—			1.	50. 50. 7							_
0.0															

	PROJECT: Mayfield West							DATE	:	Feb	ruary 0	9, 200	9			
$\mathbf{\nabla}$	LOCATION: Caledon, Ontario							EQUIP	MENT:	Bon	nbardie	/Hollo	w Stem	Augers		
	CLIENT: Philips Engineerin	g Ltd.						ELEV	ATION DA	TUM	: <u> </u>	eodeti	С		FILE:	
	SOIL PROFILE			SAMF	PLES	ALE	PENE RESI	STANCE		>		PLAST			의 또	ST
ELEV DEPTH 261.0	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	C ELEVATION SC	SHE OL ● F	20 4 AR STI NCONF OCKET 20 4	0 60 RENGTH I INED - PEN. > 0 60	80 √Pa ⊢ FIEL < LAB 80	D VANE VANE 100	LIMIT WP I WA	TER CONT 0 20	E LIMIT V L ENT (%) 30	(mdd) VAPOL	INS1 RI
0.0 260.7	280mm TOPSOIL		1	SS	10								0			
0.3	Weathered, stiff		_				$ \rangle$									
				00	-	260										
	embedded sand and gravel,			33	21						>225 KFC	Ī				
	very stiff, brown, moist				_											
	(GLACIAL TILL)			55	21	259					>225 КРа	•				
			_													
			4	SS	19					:	>225 kPa	•	0			
258.0					-	258		Λ_{-}								
3.0	trace gravel,		5	SS	26								•			
	compact, brown, moist															
	wet		6	SS	25	257		IJ								
					_											
256.4 4.6								R.SA.SI	CL							
	CLAYEY SILT		7	SS	10	256	6	. 27. 47.	20 ^{75 kPa}	•						
	stiff, grey, moist															
	(GLACIAL TILL)															
	()		_			255										
			8	SS	10				75 kPa	•			0			
						254	\vdash									
			9	SS	15						150 kPa		0			
			_		-	253		\setminus								
								$ \rangle$								
251.9 9.1	SANDY SILT - embedded gravel.		1			252			$\backslash \mid$							
251.4	some limestone fragments,		10	SS	48				`							
9.6	(GLACIAL TILL)															
	End of Borehole															

Sheet 1 of 1

PROJECT: Mayfield West LOCATION: Caledon, Ontario CLIENT: Philips Engineering BOREHOLE NUMBER: 1 SAMPLE NUMBER: 3 SAMPLE DEPTH: 1.5 - 2.0 m SAMPLE DESCRIPTION: CLAYEY SILT, some sand, trace gravel Glacial Till)

FILE NO.: **1-08-3053** LAB NO.: **1039A** SAMPLE DATE: February 12, 2009 SAMPLED BY: P.K.

GRAIN SIZE DISTRIBUTION

МІТ				COARSE	MEDIUM	FINE		
SYSTEM		GRAVEL			SAND		SILT	CLAY
UNIFIED	COARSE	FINE	COARSE	MEDIUM	1	FINE		
SYSTEM	GR	AVEL		SA	AND		SILT AND	CLAY

PROJECT: Mayfield West LOCATION: Caledon, Ontario CLIENT: Philips Engineering BOREHOLE NUMBER: 2 SAMPLE NUMBER: 7 SAMPLE DEPTH: 6.1 - 6.6 m SAMPLE DESCRIPTION: SANDY SILT, trace clay, trace gravel

FILE NO.: **1-08-3053** LAB NO.: **1039B** SAMPLE DATE: February 12, 2009 SAMPLED BY: P.K.

GRAIN SIZE DISTRIBUTION

MIT SYSTEM		GRAVEL	ŀ	COARSE	SAND	FINE	SILT	CLAY
UNIFIED	COARSE	FINE	COARSE	MEDIUM	T	FINE		
SYSTEM	GRA	AVEL		SA	ND		SILT AND	CLAY

PROJECT: Mayfield West LOCATION: Caledon, Ontario CLIENT: Philips Engineering BOREHOLE NUMBER: 3 SAMPLE NUMBER: 8 SAMPLE DEPTH: 7.6 - 8.1 m SAMPLE DESCRIPTION: SILT, some sand, trace clay

FILE NO.: 1-08-3053 LAB NO.: 1039C SAMPLE DATE: February 9, 2009 SAMPLED BY: P.K.

GRAIN SIZE DISTRIBUTION

МІТ				COARSE	MEDIUM	FINE					
SYSTEM	L	GRAVEL SAND					SILT	CLAY			
UNIFIED	COARSE	COARSE FINE COARSE			1	FINE					
SYSTEM	GR	AVEL		S	AND		SILT AND	CLAY			

PROJECT: Mayfield West LOCATION: Caledon, Ontario CLIENT: Philips Engineering BOREHOLE NUMBER: 4 SAMPLE NUMBER: 22 SAMPLE DEPTH: 29.0 - 29.8 m SAMPLE DESCRIPTION: SILT AND SAND, gravelly, trace clay

FILE NO.: **1-08-3053** LAB NO.: **1039D** SAMPLE DATE: February 11, 2009 SAMPLED BY: P.K.

GRAIN SIZE DISTRIBUTION

МІТ				COARSE	MEDIUM	FINE					
SYSTEM		GRAVEL			SAND		SILT	CLAY			
UNIFIED	COARSE	COARSE FINE COARSE				FINE					
SYSTEM	GR	AVEL	SA	AND		SILT AND	CLAY				

SIEVE AND HYDROMETER ANALYSIS TEST REPORT

PROJECT: Mayfield West LOCATION: Caledon, Ontario CLIENT: Philips Engineering BOREHOLE NUMBER: 5 SAMPLE NUMBER: 9 SAMPLE DEPTH: 9.1 - 9.6 m SAMPLE DESCRIPTION: SANDY SILT, trace clay, trace gravel (Glacial Till)

FILE NO.: 1-08-3053 LAB NO.: 1039E SAMPLE DATE: February 12, 2009 SAMPLED BY: P.K.

GRAIN SIZE DISTRIBUTION

U.S. STANDARD SIEVE SIZES

MIT SYSTEM		GRAVEL		COARSE	MEDIUM SAND	FINE	SILT	CLAY	
UNIFIED	COARSE	FINE	COARSE	MEDIUM		FINE			
SYSTEM	GRAVEL			SAND			SILT AND CLAY		

SIEVE AND HYDROMETER ANALYSIS TEST REPORT

PROJECT: Mayfield West LOCATION: Caledon, Ontario CLIENT: Philips Engineering BOREHOLE NUMBER: 6 SAMPLE NUMBER: 7 SAMPLE DEPTH: 4.0 - 5.0 m SAMPLE DESCRIPTION: CLAYEY SILT, sandy, trace gravel (Glacial Till)

FILE NO.: 1-08-3053 LAB NO.: 1039F SAMPLE DATE: February 9, 2009 SAMPLED BY: P.K.

GRAIN SIZE DISTRIBUTION

U.S. STANDARD SIEVE SIZES

MIT SYSTEM	GRAVEL			COARSE MEDIUM FINE			SILT	CLAY
UNIFIED	COARSE	FINE	COARSE	MEDIUM		FINE		
SYSTEM	GRAVEL			SAND			SILT AND	CLAY

Single Well Response Test Analyses (Aqtesolv[™], 2018)

Groundwater Chemistry Certificate of Analysis (ALS, 2017)

PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) ATTN: JASON COLE 374 Wellington Street West, Suite 3 Toronto ON M5E 1B5 Date Received: 06-DEC-17 Report Date: 18-DEC-17 10:23 (MT) Version: FINAL

Client Phone: 647-795-8153

Certificate of Analysis

Lab Work Order #: L2032761 Project P.O. #: NOT SUBMITTED Job Reference: MAYFIELD PHASE 3 C of C Numbers: 15-611901 Legal Site Desc:

Amanda Faseba

Amanda Fazekas Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 95 West Beaver Creek Road, Unit 1, Richmond Hill, ON L4B 1H2 Canada | Phone: +1 905 881 9887 | Fax: +1 905 881 8062 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2032761-1 MW6							
Sampled By: JMQ on 06-DEC-17 @ 10:00							
Matrix: WATER							
Field lests	7.0		50	Dec C			D0044004
Physical Tests	7.0		-50	Deg. C		15-DEC-17	R3914261
pH	7 98		0 10	pH units		09-DFC-17	R3907997
' Total Suspended Solids	64900	DLHC	100	ma/L	12-DEC-17	13-DEC-17	R3912174
Total Dissolved Solids	369	DLDS	20	mg/L		11-DEC-17	R3912544
Anions and Nutrients			-	Ū			
Ammonia, Total (as N)	0.159		0.020	mg/L		11-DEC-17	R3909902
Total Kjeldahl Nitrogen	8.0	DLM	1.5	mg/L	13-DEC-17	14-DEC-17	R3913273
Phosphorus, Total	38.3	DLM	0.30	mg/L	13-DEC-17	14-DEC-17	R3913002
Organic / Inorganic Carbon							
Dissolved Organic Carbon	1.8		1.0	mg/L		11-DEC-17	R3911861
Total Metals							
Aluminum (Al)-Total	90.5	DLHC	0.050	mg/L	08-DEC-17	12-DEC-17	R3908668
Antimony (Sb)-Total	<0.0010	DLHC	0.0010	mg/L	08-DEC-17	12-DEC-17	R3908668
Arsenic (As)-Total	0.0536	DLHC	0.0010	mg/L	08-DEC-17	12-DEC-17	R3908668
Barium (Ba)-Total	0.811	DLHC	0.0020	mg/L	08-DEC-17	12-DEC-17	R3908668
Beryllium (Be)-Total	0.0048	DLHC	0.0010	mg/L	08-DEC-17	12-DEC-17	R3908668
Bismuth (Bi)-Total	0.00158	DLHC	0.00050	mg/L	08-DEC-17	12-DEC-17	R3908668
Boron (B)-Total	<0.10	DLHC	0.10	mg/L	08-DEC-17	12-DEC-17	R3908668
Cadmium (Cd)-Total	0.000841	DLHC	0.000050	mg/L	08-DEC-17	12-DEC-17	R3908668
Calcium (Ca)-Total	1560	DLHC	5.0	mg/L	08-DEC-17	12-DEC-17	R3908668
Cesium (Cs)-Total	0.00728	DLHC	0.00010	mg/L	08-DEC-17	12-DEC-17	R3908668
Chromium (Cr)-Total	0.149	DLHC	0.0050	mg/L	08-DEC-17	12-DEC-17	R3908668
Cobalt (Co)-Total	0.0997	DLHC	0.0010	mg/L	08-DEC-17	12-DEC-17	R3908668
Copper (Cu)-Total	0.311	DLHC	0.010	mg/L	08-DEC-17	12-DEC-17	R3908668
Iron (Fe)-Total	212	DLHC	0.50	mg/L	08-DEC-17	12-DEC-17	R3908668
Lead (Pb)-Total	0.0986	DLHC	0.00050	mg/L	08-DEC-17	12-DEC-17	R3908668
Lithium (Li)-Total	0.235	DLHC	0.010	mg/L	08-DEC-17	12-DEC-17	R3908668
Magnesium (Mg)-Total	181	DLHC	0.50	mg/L	08-DEC-17	12-DEC-17	R3908668
Manganese (Mn)-Total	8.41	DLHC	0.0050	mg/L	08-DEC-17	12-DEC-17	R3908668
Molybdenum (Mo)-Total	0.00270	DLHC	0.00050	mg/L	08-DEC-17	12-DEC-17	R3908668
Nickel (Ni)-Total	0.200	DLHC	0.0050	mg/L	08-DEC-17	12-DEC-17	R3908668
Phosphorus (P)-Total	8.59	DLHC	0.50	mg/L	08-DEC-17	12-DEC-17	R3908668
Potassium (K)-Total	14.8	DLHC	0.50	mg/L	08-DEC-17	12-DEC-17	R3908668
Rubidium (Rb)-Total	0.0937	DLHC	0.0020	mg/L	08-DEC-17	12-DEC-17	R3908668
Selenium (Se)-Total	0.00082	DLHC	0.00050	mg/L	08-DEC-17	12-DEC-17	R3908668
Silicon (Si)-Total	98.5	DLHC	1.0	mg/L	08-DEC-17	12-DEC-17	R3908668
Silver (Ag)-Total	0.00071	DLHC	0.00050	mg/L	08-DEC-17	12-DEC-17	R3908668
Sodium (Na)-Total	9.6	DLHC	5.0	mg/L	08-DEC-17	12-DEC-17	R3908668
Strontium (Sr)-Total	2.51	DLHC	0.010	mg/L	08-DEC-17	12-DEC-17	R3908668
Sulfur (S)-Total	50.4	DLHC	5.0	mg/L	08-DEC-17	12-DEC-17	R3908668
Tellurium (Te)-Total	<0.0020	DLHC	0.0020	mg/L	08-DEC-17	12-DEC-17	R3908668

* Refer to Referenced Information for Qualifiers (if any) and Methodology.

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2032761-1 MW6 Sampled By: JMQ on 06-DEC-17 @ 10:00 Matrix: WATER							
Total Metals							
Thallium (TI)-Total	0.00120	DLHC	0.00010	mg/L	08-DEC-17	12-DEC-17	R3908668
Thorium (Th)-Total	0.0455	DLHC	0.0010	mg/L	08-DEC-17	12-DEC-17	R3908668
Tin (Sn)-Total	0.0012	DLHC	0.0010	mg/L	08-DEC-17	12-DEC-17	R3908668
Titanium (Ti)-Total	0.949	DLHC	0.0030	mg/L	08-DEC-17	12-DEC-17	R3908668
Tungsten (W)-Total	<0.0010	DLHC	0.0010	mg/L	08-DEC-17	12-DEC-17	R3908668
Uranium (U)-Total	0.00726	DLHC	0.00010	mg/L	08-DEC-17	12-DEC-17	R3908668
Vanadium (V)-Total	0.173	DLHC	0.0050	mg/L	08-DEC-17	12-DEC-17	R3908668
Zinc (Zn)-Total	0.473	DLHC	0.030	mg/L	08-DEC-17	12-DEC-17	R3908668
Zirconium (Zr)-Total	<0.0030	DLHC	0.0030	mg/L	08-DEC-17	12-DEC-17	R3908668
Dissolved Metals							
Dissolved Metals Filtration Location	LAB					11-DEC-17	R3908267
Aluminum (Al)-Dissolved	<0.0050		0.0050	mg/L	11-DEC-17	11-DEC-17	R3909632
Antimony (Sb)-Dissolved	0.00053		0.00010	mg/L	11-DEC-17	11-DEC-17	R3909632
Arsenic (As)-Dissolved	0.00161		0.00010	mg/L	11-DEC-17	11-DEC-17	R3909632
Barium (Ba)-Dissolved	0.162		0.00010	mg/L	11-DEC-17	11-DEC-17	R3909632
Beryllium (Be)-Dissolved	<0.00010		0.00010	mg/L	11-DEC-17	11-DEC-17	R3909632
Bismuth (Bi)-Dissolved	<0.000050		0.000050	mg/L	11-DEC-17	11-DEC-17	R3909632
Boron (B)-Dissolved	0.016		0.010	mg/L	11-DEC-17	11-DEC-17	R3909632
Cadmium (Cd)-Dissolved	<0.000050		0.0000050	mg/L	11-DEC-17	11-DEC-17	R3909632
Calcium (Ca)-Dissolved	73.9		0.050	mg/L	11-DEC-17	11-DEC-17	R3909632
Cesium (Cs)-Dissolved	<0.000010		0.000010	mg/L	11-DEC-17	11-DEC-17	R3909632
Chromium (Cr)-Dissolved	<0.00050		0.00050	mg/L	11-DEC-17	11-DEC-17	R3909632
Cobalt (Co)-Dissolved	0.00056		0.00010	mg/L	11-DEC-17	11-DEC-17	R3909632
Copper (Cu)-Dissolved	0.00026		0.00020	mg/L	11-DEC-17	11-DEC-17	R3909632
Iron (Fe)-Dissolved	<0.010		0.010	mg/L	11-DEC-17	11-DEC-17	R3909632
Lead (Pb)-Dissolved	<0.000050		0.000050	mg/L	11-DEC-17	11-DEC-17	R3909632
Lithium (Li)-Dissolved	0.0119		0.0010	mg/L	11-DEC-17	11-DEC-17	R3909632
Magnesium (Mg)-Dissolved	21.9		0.050	mg/L	11-DEC-17	11-DEC-17	R3909632
Manganese (Mn)-Dissolved	0.0418		0.00050	mg/L	11-DEC-17	11-DEC-17	R3909632
Molybdenum (Mo)-Dissolved	0.00365		0.000050	mg/L	11-DEC-17	11-DEC-17	R3909632
Nickel (Ni)-Dissolved	0.00156		0.00050	mg/L	11-DEC-17	11-DEC-17	R3909632
Phosphorus (P)-Dissolved	<0.050		0.050	mg/L	11-DEC-17	11-DEC-17	R3909632
Potassium (K)-Dissolved	3.44		0.050	mg/L	11-DEC-17	11-DEC-17	R3909632
Rubidium (Rb)-Dissolved	0.00154		0.00020	mg/L	11-DEC-17	11-DEC-17	R3909632
Selenium (Se)-Dissolved	0.000142		0.000050	mg/L	11-DEC-17	11-DEC-17	R3909632
Silicon (Si)-Dissolved	7.02		0.050	mg/L	11-DEC-17	11-DEC-17	R3909632
Silver (Ag)-Dissolved	<0.000050		0.000050	mg/L	11-DEC-17	11-DEC-17	R3909632
Sodium (Na)-Dissolved	5.59		0.50	mg/L	11-DEC-17	11-DEC-17	R3909632
Strontium (Sr)-Dissolved	0.312		0.0010	mg/L	11-DEC-17	11-DEC-17	R3909632
Sulfur (S)-Dissolved	19.0		0.50	mg/L	11-DEC-17	11-DEC-17	R3909632
Tellurium (Te)-Dissolved	<0.00020		0.00020	mg/L	11-DEC-17	11-DEC-17	R3909632

* Refer to Referenced Information for Qualifiers (if any) and Methodology.

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2032761-1 MW6 Sampled By: JMQ on 06-DEC-17 @ 10:00 Matrix: WATER							
Dissolved Metals							
Thallium (TI)-Dissolved	0.000013		0.000010	mg/L	11-DEC-17	11-DEC-17	R3909632
Thorium (Th)-Dissolved	<0.00010		0.00010	mg/L	11-DEC-17	11-DEC-17	R3909632
Tin (Sn)-Dissolved	0.00010		0.00010	mg/L	11-DEC-17	11-DEC-17	R3909632
Titanium (Ti)-Dissolved	<0.00030		0.00030	mg/L	11-DEC-17	11-DEC-17	R3909632
Tungsten (W)-Dissolved	<0.00010		0.00010	mg/L	11-DEC-17	11-DEC-17	R3909632
Uranium (U)-Dissolved	0.00168		0.000010	mg/L	11-DEC-17	11-DEC-17	R3909632
Vanadium (V)-Dissolved	0.00155		0.00050	mg/L	11-DEC-17	11-DEC-17	R3909632
Zinc (Zn)-Dissolved	<0.0010		0.0010	mg/L	11-DEC-17	11-DEC-17	R3909632
Zirconium (Zr)-Dissolved	<0.00030		0.00030	mg/L	11-DEC-17	11-DEC-17	R3909632
Aggregate Organics							
COD	1600	DLM	1000	mg/L		12-DEC-17	R3911759

 * Refer to Referenced Information for Qualifiers (if any) and Methodology.

Reference Information

QC Samples with Qualifiers & Comments:

QC Type Descri	ption	Parameter	Qualifier	Applies to Sample Number(s)
Matrix Spike		COD	MS-B	L2032761-1
Matrix Spike		Barium (Ba)-Dissolved	MS-B	L2032761-1
Matrix Spike		Calcium (Ca)-Dissolved	MS-B	L2032761-1
Matrix Spike		Magnesium (Mg)-Dissolved	MS-B	L2032761-1
Matrix Spike		Manganese (Mn)-Dissolved	MS-B	L2032761-1
Matrix Spike		Potassium (K)-Dissolved	MS-B	L2032761-1
Matrix Spike		Silicon (Si)-Dissolved	MS-B	L2032761-1
Matrix Spike		Sodium (Na)-Dissolved	MS-B	L2032761-1
Matrix Spike		Strontium (Sr)-Dissolved	MS-B	L2032761-1
Matrix Spike		Sulfur (S)-Dissolved	MS-B	L2032761-1
Matrix Spike		Uranium (U)-Dissolved	MS-B	L2032761-1
Matrix Spike		Barium (Ba)-Total	MS-B	L2032761-1
Matrix Spike		Calcium (Ca)-Total	MS-B	L2032761-1
Matrix Spike		Magnesium (Mg)-Total	MS-B	L2032761-1
Matrix Spike		Silicon (Si)-Total	MS-B	L2032761-1
Matrix Spike		Sodium (Na)-Total	MS-B	L2032761-1
Matrix Spike		Strontium (Sr)-Total	MS-B	L2032761-1
Matrix Spike		Sulfur (S)-Total	MS-B	L2032761-1
Matrix Spike		Uranium (U)-Total	MS-B	L2032761-1
Matrix Spike		Ammonia, Total (as N)	MS-B	L2032761-1
Sample Param	eter Qualifier key	listed:		
Qualifier	Description			
DLDS	Detection Limit Rais	ed: Dilution required due to high Disso	olved Solids / Electr	ical Conductivity.
DLHC	Detection Limit Rais	ed: Dilution required due to high conc	entration of test ana	alyte(s).
DLM	Detection Limit Adju	sted due to sample matrix effects (e.c	. chemical interfere	nce. colour. turbidity).
MS-B	Matrix Spike recover	ry could not be accurately calculated o	ue to high analyte l	packground in sample.
Test Method R	eferences:			
ALS Test Code	Matrix	Test Description	Method Refere	ence**
C-DIS-ORG-WT Sample is filtere vaporized and t infrared detecto	Water ed through a 0.45um he organic carbon is r.	Dissolved Organic Carbon filter, then injected into a heated react oxidized to carbon dioxide. The carbon	APHA 5310 B- ion chamber which n dioxide is transpor	INSTRUMENTAL is packed with an oxidative catalyst. The water is rted in a carrier gas and is measured by a non-dispersive
COD-T-WT	Water	Chemical Oxygen Demand	APHA 5220 D	

This analysis is carried out using procedures adapted from APHA Method 5220 "Chemical Oxygen Demand (COD)". Chemical oxygen demand is determined using the closed reflux colourimetric method.

MET-D-CCMS-WT Water Dissolved Metals in Water by CRC APHA 3030B/6020A (mod) ICPMS

Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by CRC ICPMS.

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

MET-T-CCMS-WT Water Total Metals in Water by CRC EPA 200.2/6020A (mod) Water samples are digested with nitric dopted prochoric acids, and analyzed by CRC ICPMS.

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

 NH3-WT
 Water
 Ammonia, Total as N
 EPA 350.1

 Sample is measured colorimetrically.
 When sample is turbid a distillation step is required, sample is distilled into a solution of boric acid and measured colorimetrically.

P-T-COL-WT Water Total P in Water by Colour APHA 4500-P PHOSPHORUS

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Total Phosphorus is deteremined colourimetrically after persulphate digestion of the sample.

Reference Information

PH-WT Water samples are analy	Water zed directly b	pH y a calibrated pH meter.	APHA 4500 H-Electrode					
Analysis conducted in ac Protection Act (July 1, 20	cordance with 11). Holdtime	the Protocol for Analytical Methods Us for samples under this regulation is 28	ed in the Assessment of Properties under Part XV.1 of the Environmental days					
SOLIDS-TDS-WT This analysis is carried o (TDS) are determined by	OLIDS-TDS-WT Water Total Dissolved Solids APHA 2540C This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius. OLIDS_TSS_WT Water Supported a celida							
SOLIDS-TSS-WT Water Suspended solids APHA 2540 D-Gravimetric A well-mixed sample is filtered through a weighed standard glass fibre filter and the residue retained is dried in an oven at 104–1°C for a minimum of four hours or until a constant weight is achieved.								
TEMP-CLIENT-WT	Water	Temperature	Result supplied by Client					
TKN-WT This analysis is carried o sample digestion at 380 (FKN-WT Water Total Kjeldahl Nitrogen APHA 4500-N This analysis is carried out using procedures adapted from APHA Method 4500-Norg "Nitrogen (Organic)". Total Kjeldahl Nitrogen is determined by sample digestion at 380 Celsius with analysis using an automated colorimetric method.							
** ALS test methods may in	corporate mo	difications from specified reference mether	nods to improve performance.					

Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Chain of Custody Numbers:

15-611901

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid weight of sample

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Report Date: 18-DEC-17

Page 1 of 8

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 374 Wellington Street West, Suite 3 Toronto ON M5E 1B5

Workorder: L2032761

Contact: JASON COLE

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
C-DIS-ORG-WT	Water							
Batch R3911861 WG2681835-2 LCS Dissolved Organic Carb	on		100.4		%		80-120	11-DEC-17
WG2681835-1 MB Dissolved Organic Carb	on		<1.0		mg/L		1	11-DEC-17
COD-T-WT	Water							
Batch R3911759 WG2682634-2 LCS			102.3		%		85-115	12-DEC-17
WG2682634-1 MB COD			<10		mg/L		10	12-DEC-17
MET_D_CCMS_WT	Water				Ū.			
Batch R3909632	Water							
Aluminum (Al)-Dissolved	d		103.6		%		80-120	11-DEC-17
Antimony (Sb)-Dissolve	d		94.7		%		80-120	11-DEC-17
Arsenic (As)-Dissolved			100.1		%		80-120	11-DEC-17
Barium (Ba)-Dissolved			98.9		%		80-120	11-DEC-17
Beryllium (Be)-Dissolved	d		94.9		%		80-120	11-DEC-17
Bismuth (Bi)-Dissolved			97.9		%		80-120	11-DEC-17
Boron (B)-Dissolved			94.4		%		80-120	11-DEC-17
Cadmium (Cd)-Dissolve	ed		99.2		%		80-120	11-DEC-17
Calcium (Ca)-Dissolved			98.3		%		80-120	11-DEC-17
Cesium (Cs)-Dissolved			95.3		%		80-120	11-DEC-17
Chromium (Cr)-Dissolve	ed		101.4		%		80-120	11-DEC-17
Cobalt (Co)-Dissolved			99.7		%		80-120	11-DEC-17
Copper (Cu)-Dissolved			99.2		%		80-120	11-DEC-17
Iron (Fe)-Dissolved			97.0		%		80-120	11-DEC-17
Lead (Pb)-Dissolved			98.5		%		80-120	11-DEC-17
Lithium (Li)-Dissolved			98.0		%		80-120	11-DEC-17
Magnesium (Mg)-Dissol	ved		104.2		%		80-120	11-DEC-17
Manganese (Mn)-Dissol	ved		103.0		%		80-120	11-DEC-17
Molybdenum (Mo)-Disso	olved		95.1		%		80-120	11-DEC-17
Nickel (Ni)-Dissolved			100.6		%		80-120	11-DEC-17
Phosphorus (P)-Dissolv	ed		105.7		%		80-120	11-DEC-17
Potassium (K)-Dissolve	d		102.7		%		80-120	11-DEC-17
Rubidium (Rb)-Dissolve	d		101.4		%		80-120	11-DEC-17

		Workorder: L2032761			Report Date: 18-DEC-17		Page 2 of 8		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-D-CCMS-WT	Water								
Batch R39096	32								
WG2681426-2 LCS	S		100.0		0/				
Selenium (Se)-Dissol	ivea		100.2		%		80-120	11-DEC-17	
Silicon (Si)-Dissolved	1		103.5		%		60-140	11-DEC-17	
Silver (Ag)-Dissolved			96.7		%		80-120	11-DEC-17	
Sodium (INA)-Dissolve	ea		107.7		%		80-120	11-DEC-17	
Strontium (Sr)-Dissoi	ved		96.3		%		80-120	11-DEC-17	
Sulfur (S)-Dissolved			94.4		%		80-120	11-DEC-17	
Tellurium (Te)-Dissoi			92.8		%		80-120	11-DEC-17	
Thailium (TI)-Dissolve	ea		94.6		%		80-120	11-DEC-17	
Thorium (Th)-Dissolv	/ed		97.5		%		80-120	11-DEC-17	
Tin (Sn)-Dissolved	I		97.8		%		80-120	11-DEC-17	
	ea		94.4		%		80-120	11-DEC-17	
	vea		97.4		%		80-120	11-DEC-17	
Uranium (U)-Dissoive	ea		101.2		%		80-120	11-DEC-17	
Vanadium (V)-Disson	vea		101.1		%		80-120	11-DEC-17	
Zinc (Zn)-Dissolved	h an d		96.5		%		80-120	11-DEC-17	
	Ived		98.5		%		80-120	11-DEC-17	
WG2681426-1 MB Aluminum (Al)-Dissol	lved		<0.0050		mg/L		0.005	11-DEC-17	
Antimony (Sb)-Dissol	lved		<0.00010)	mg/L		0.0001	11-DEC-17	
Arsenic (As)-Dissolve	ed		<0.00010	C	mg/L		0.0001	11-DEC-17	
Barium (Ba)-Dissolve	ed		<0.00010	D	mg/L		0.0001	11-DEC-17	
Beryllium (Be)-Dissol	ved		<0.00010	D	mg/L		0.0001	11-DEC-17	
Bismuth (Bi)-Dissolve	ed		<0.00005	50	mg/L		0.00005	11-DEC-17	
Boron (B)-Dissolved			<0.010		mg/L		0.01	11-DEC-17	
Cadmium (Cd)-Disso	lved		<0.00000	050	mg/L		0.000005	11-DEC-17	
Calcium (Ca)-Dissolv	ved		<0.050		mg/L		0.05	11-DEC-17	
Cesium (Cs)-Dissolve	ed		<0.00002	10	mg/L		0.00001	11-DEC-17	
Chromium (Cr)-Disso	blved		<0.00050	D	mg/L		0.0005	11-DEC-17	
Cobalt (Co)-Dissolve	d		<0.00010	D	mg/L		0.0001	11-DEC-17	
Copper (Cu)-Dissolve	ed		<0.00020	D	mg/L		0.0002	11-DEC-17	
Iron (Fe)-Dissolved			<0.010		mg/L		0.01	11-DEC-17	
Lead (Pb)-Dissolved			<0.00005	50	mg/L		0.00005	11-DEC-17	
Lithium (Li)-Dissolved	d		<0.0010		mg/L		0.001	11-DEC-17	
Magnesium (Mg)-Dis	solved		<0.050		mg/L		0.05	11-DEC-17	

		Workorder: L2032761			Report Date: 1	8-DEC-17	Page 3 of 8		
Test Ma	atrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-D-CCMS-WT W	ater								
Batch R3909632									
WG2681426-1 MB					<i>"</i>				
Manganese (Mn)-Dissolved			<0.00050		mg/L		0.0005	11-DEC-17	
Molybdenum (Mo)-Dissolved	1		<0.000050)	mg/L		0.00005	11-DEC-17	
Nickel (Ni)-Dissolved			<0.00050		mg/L		0.0005	11-DEC-17	
Phosphorus (P)-Dissolved			<0.050		mg/L		0.05	11-DEC-17	
Potassium (K)-Dissolved			<0.050		mg/L		0.05	11-DEC-17	
Rubidium (Rb)-Dissolved			<0.00020		mg/L		0.0002	11-DEC-17	
Selenium (Se)-Dissolved			<0.000050)	mg/L		0.00005	11-DEC-17	
Silicon (Si)-Dissolved			<0.050		mg/L		0.05	11-DEC-17	
Silver (Ag)-Dissolved			<0.000050)	mg/L		0.00005	11-DEC-17	
Sodium (Na)-Dissolved			<0.50		mg/L		0.5	11-DEC-17	
Strontium (Sr)-Dissolved			<0.0010		mg/L		0.001	11-DEC-17	
Sulfur (S)-Dissolved			<0.50		mg/L		0.5	11-DEC-17	
Tellurium (Te)-Dissolved			<0.00020		mg/L		0.0002	11-DEC-17	
Thallium (TI)-Dissolved			<0.000010)	mg/L		0.00001	11-DEC-17	
Thorium (Th)-Dissolved			<0.00010		mg/L		0.0001	11-DEC-17	
Tin (Sn)-Dissolved			<0.00010		mg/L		0.0001	11-DEC-17	
Titanium (Ti)-Dissolved			<0.00030		mg/L		0.0003	11-DEC-17	
Tungsten (W)-Dissolved			<0.00010		mg/L		0.0001	11-DEC-17	
Uranium (U)-Dissolved			<0.000010)	mg/L		0.00001	11-DEC-17	
Vanadium (V)-Dissolved			<0.00050		mg/L		0.0005	11-DEC-17	
Zinc (Zn)-Dissolved			<0.0010		mg/L		0.001	11-DEC-17	
Zirconium (Zr)-Dissolved			<0.00030		mg/L		0.0003	11-DEC-17	
MET-T-CCMS-WT W	ater								
Batch R3908668									
WG2680772-2 LCS Aluminum (Al)-Total			100.5		%		80-120	12-DEC-17	
Antimony (Sb)-Total			100.2		%		80-120	12-DEC-17	
Arsenic (As)-Total			100.4		%		80-120	12-DEC-17	
Barium (Ba)-Total			101.5		%		80-120	12-DEC-17	
Bervllium (Be)-Total			97.0		%		80-120	12-DEC-17	
Bismuth (Bi)-Total			101.2		%		80-120	12-DEC-17	
Boron (B)-Total			96.2		%		80-120	12-DEC-17	
Cadmium (Cd)-Total			99.0		%		80-120	12-DEC-17	
Calcium (Ca)-Total			99.4		%		80-120	12-DEC-17	

		Workorder: L2032761			Report Date: 1	18-DEC-17	Page 4 of 8		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-T-CCMS-WT	Water								
Batch R3908668									
WG2680772-2 LCS									
Chromium (Cr)- I otal			100.6		%		80-120	12-DEC-17	
Cesium (Cs)-Total			97.5		%		80-120	12-DEC-17	
Cobalt (Co)- I otal			101.1		%		80-120	12-DEC-17	
Copper (Cu)-Total			99.1		%		80-120	12-DEC-17	
Iron (Fe)-Total			99.3		%		80-120	12-DEC-17	
Lead (Pb)-Total			101.2		%		80-120	12-DEC-17	
Lithium (Li)-Total			98.8		%		80-120	12-DEC-17	
Magnesium (Mg)-Total			103.3		%		80-120	12-DEC-17	
Manganese (Mn)-Total			101.6		%		80-120	12-DEC-17	
Molybdenum (Mo)-Tota	l		100.4		%		80-120	12-DEC-17	
Nickel (Ni)-Total			99.99		%		80-120	12-DEC-17	
Phosphorus (P)-Total			101.4		%		70-130	12-DEC-17	
Potassium (K)-Total			103.6		%		80-120	12-DEC-17	
Rubidium (Rb)-Total			96.8		%		80-120	12-DEC-17	
Selenium (Se)-Total			100.1		%		80-120	12-DEC-17	
Silicon (Si)-Total			101.8		%		60-140	12-DEC-17	
Silver (Ag)-Total			98.4		%		80-120	12-DEC-17	
Sodium (Na)-Total			101.1		%		80-120	12-DEC-17	
Strontium (Sr)-Total			97.9		%		80-120	12-DEC-17	
Sulfur (S)-Total			94.8		%		70-130	12-DEC-17	
Thallium (TI)-Total			102.7		%		80-120	12-DEC-17	
Tellurium (Te)-Total			93.6		%		80-120	12-DEC-17	
Thorium (Th)-Total			100.7		%		70-130	12-DEC-17	
Tin (Sn)-Total			97.2		%		80-120	12-DEC-17	
Titanium (Ti)-Total			90.0		%		80-120	12-DEC-17	
Tungsten (W)-Total			102.7		%		80-120	12-DEC-17	
Uranium (U)-Total			101.5		%		80-120	12-DEC-17	
Vanadium (V)-Total			100.7		%		80-120	12-DEC-17	
Zinc (Zn)-Total			93.6		%		80-120	12-DEC-17	
Zirconium (Zr)-Total			99.1		%		80-120	12-DEC-17	
WG2680772-1 MB							-		
Aluminum (Al)-Total			<0.0050		mg/L		0.005	12-DEC-17	
Antimony (Sb)-Total			<0.00010)	mg/L		0.0001	12-DEC-17	
Arsenic (As)-Total			<0.00010)	mg/L		0.0001	12-DEC-17	

		Workorder: L2032761			Report Date: 18-DEC-17		Page 5 of 8	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-WT	Water							
Batch R390866	8							
WG2680772-1 MB								
Barium (Ba)-Total			<0.00020		mg/L		0.0002	12-DEC-17
Beryllium (Be)-Total			<0.00010		mg/L		0.0001	12-DEC-17
Bismuth (Bi)-Total			<0.00005	0	mg/L		0.00005	12-DEC-17
Boron (B)-Total			<0.010		mg/L		0.01	12-DEC-17
Cadmium (Cd)-Total			<0.00000	50	mg/L		0.000005	12-DEC-17
Calcium (Ca)-Total			<0.50		mg/L		0.5	12-DEC-17
Chromium (Cr)-Total			<0.00050		mg/L		0.0005	12-DEC-17
Cesium (Cs)-Total			<0.00001	0	mg/L		0.00001	12-DEC-17
Cobalt (Co)-Total			<0.00010		mg/L		0.0001	12-DEC-17
Copper (Cu)-Total			<0.0010		mg/L		0.001	12-DEC-17
Iron (Fe)-Total			<0.050		mg/L		0.05	12-DEC-17
Lead (Pb)-Total			<0.00005	0	mg/L		0.00005	12-DEC-17
Lithium (Li)-Total			<0.0010		mg/L		0.001	12-DEC-17
Magnesium (Mg)-Tota	l		<0.050		mg/L		0.05	12-DEC-17
Manganese (Mn)-Tota	d		<0.00050		mg/L		0.0005	12-DEC-17
Molybdenum (Mo)-Tot	al		<0.00005	0	mg/L		0.00005	12-DEC-17
Nickel (Ni)-Total			<0.00050		mg/L		0.0005	12-DEC-17
Phosphorus (P)-Total			<0.050		mg/L		0.05	12-DEC-17
Potassium (K)-Total			<0.050		mg/L		0.05	12-DEC-17
Rubidium (Rb)-Total			<0.00020		mg/L		0.0002	12-DEC-17
Selenium (Se)-Total			<0.00005	0	mg/L		0.00005	12-DEC-17
Silicon (Si)-Total			<0.10		mg/L		0.1	12-DEC-17
Silver (Ag)-Total			<0.00005	0	mg/L		0.00005	12-DEC-17
Sodium (Na)-Total			<0.50		mg/L		0.5	12-DEC-17
Strontium (Sr)-Total			<0.0010		mg/L		0.001	12-DEC-17
Sulfur (S)-Total			<0.50		mg/L		0.5	12-DEC-17
Thallium (TI)-Total			<0.00001	0	mg/L		0.00001	12-DEC-17
Tellurium (Te)-Total			<0.00020		mg/L		0.0002	12-DEC-17
Thorium (Th)-Total			<0.00010		mg/L		0.0001	12-DEC-17
Tin (Sn)-Total			<0.00010		mg/L		0.0001	12-DEC-17
Titanium (Ti)-Total			<0.00030		mg/L		0.0003	12-DEC-17
Tungsten (W)-Total			<0.00010		mg/L		0.0001	12-DEC-17
Uranium (U)-Total			<0.00001	0	mg/L		0.00001	12-DEC-17
Vanadium (V)-Total			<0.00050		mg/L		0.0005	12-DEC-17

		Workorder: L2032761			Report Date: 18-DEC-17		Page 6 of 8	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-WT	Water							
Batch R3908668								
WG2680772-1 MB								
Zinc (Zn)- I otal			<0.0030		mg/L		0.003	12-DEC-17
Zirconium (Zr)-Total			<0.00030		mg/L		0.0003	12-DEC-17
NH3-WT	Water							
Batch R3909902								
WG2681901-14 LCS			400.0		04			
Ammonia, Total (as N)			108.2		%		85-115	11-DEC-17
WG2681901-13 MB			.0.000					
Ammonia, Totai (as N)			<0.020		mg/L		0.02	11-DEC-17
P-T-COL-WT	Water							
Batch R3913002								
WG2683842-2 LCS			04.0		0/			
Phosphorus, Total			94.2		%		80-120	14-DEC-17
WG2683842-1 MB			-0.0020		ma/l		0.000	
Filosphorus, Totai			<0.0030		ilig/L		0.003	14-DEC-17
PH-WT	Water							
Batch R3907997								
WG2680965-2 LCS								
рН			6.99		pH units		6.9-7.1	09-DEC-17
SOLIDS-TDS-WT	Water							
Batch R3912544								
WG2681641-2 LCS								
Total Dissolved Solids			96.3		%		85-115	11-DEC-17
WG2681641-1 MB								
Total Dissolved Solids			<10		mg/L		10	11-DEC-17
SOLIDS-TSS-WT	Water							
Batch R3912174								
WG2682153-2 LCS								
Total Suspended Solids			101.6		%		85-115	13-DEC-17
WG2682153-1 MB					~			
Total Suspended Solids			<2.0		mg/L		2	13-DEC-17
TKN-WT	Water							
Batch R3913273								
WG2683103-2 LCS			104.0		0/		75 105	
			104.2		/0		75-125	14-DEC-17
WG2683103-1 MB								

			Workorder:	L203276	1	Report Date: 18	3-DEC-17	Pa	age 7 of 8
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TKN-WT		Water							
Batch WG26831 Total Kjel	R3913273 03-1 MB dahl Nitrogen			<0.15		mg/L		0.15	14-DEC-17

Workorder: L2032761

Report Date: 18-DEC-17

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

ALS	Chain of Cust Re Environmental <u>www.alsglobal.com</u> Canada To	tody (COC) / quest Form Il Free: 1 800 66	Analytical , 8 9878		- L2032	761-	COF	c				coc	Numb	er: 15 Page	i- (51: 	19	01
Report To	Contact and company name below will appear on the final report	[Report Format	/ Distribution		Select 8	ervice Le	vei Betov	v - Please	confirm a	II CAP TA	Ts with	your AM -	surcharge	s will appl	¥		
Company:	Palmer En vironmental	Select Report Fo	rmat: 🔲 PDF [EDO (DIGITAL) 🖡	ŀ.	Re	gular ([R]]	<u>X) s</u>	tandard 1	TAT If n	eceived b	ny3pm ∙b	usiness o	ays no	surcharg	jes apply
Contact;	Jasin Cole	Quality Control (C) Report with Repo	ort 🖓 🗋 YES [NO	٦	· 4	day (P	4]	\Box		Ş	1 8	Busines	s day [E1]		
Phone:	per account"	Compare Resi	ults to Criteria on Report -	provide details below if	box checked		' 3	day (P	3]			·8	Same	Day, We	ekend	or Staf	lutory	0
	Company addross below will appear on the final report	Select Distributio	in; EMAIL		FAX	81	2	day (P	2]			3	-	hol	iday [E	0]	-	U,
Street		Email 1 or Eav	· ·			<u> </u>	· Date	and Tim	e Requi	red for al	E&P TA	Ts:			da-	minim-y	y hh.rr	
City/Province:	Le account	Email 2				For test	s that car	oot be p	enformed	eccordin	g to the st	ervice le	vel select	ed, you wil) be conta	cted.	·	
Bostol Cado		Email 3										Analy	sis Rec	uest				·
Postal Code.			Invetes Ol				-	Indicato	Etherod		mad (P)	or Eiter	and and P		F/P) helo	~		-
		<u> </u>				• •	<u> </u>		r interioù y		100107		100.00	10201001	1			•
	Copy of Invoice with Report	Select Involce Di					ŀ		•-			·				\vdash		•
Company:		Email 1 or Fax			•	4		Ψ.			···*			4	·	·	.	
Contact:		Email 2	· ,		<u></u>		·		15	•		· •		. I	*		1	r g
	Project Information	2 · C	oil and Gas Require	d Fields (client us	e)		5			V	' <u> </u>	.		1		4,		aine
ALS Account # /	Quote #:	AFE/Cost Center:	•	PO#						3	È.	•					ľ l	Ë
Job #:	narfild Phase 3.	Major/Minor Code:		Routing Code:			16	5	3	$\langle \cdot \rangle$:					(·	2
PO/AFE:		Requisitioner:	·		÷	1	8	ア	A	-:: Ž								- La
LSD:		Location:			•	1.	21	. 3	i de la	1.2							1	E E
			······ · · · · · · · · · · · · · · · ·	·	•	1.1	2	2	3:	0		•						ź
ALS Lab Wo	irk Order # (lab use only) L2032761 8	ALS Contact:		Sampler: J-	MQ	ğ	.9	12	*	N.		۳			ľ		'	
ALS Sample #	Sample Identification and/or Coordinates		Date	Time	Sample Type	V	Q.	२	6	12				1				
(lab use only)	(This description will appear on the report) .		(dd-mmm-yy)	(hh:mm)						<u> </u>			<u> </u>		,		L	
•	mulle		D6/DEC/17	10:00 m	Water	10	$ \mathcal{P} $	∖ ⊘	XO.	X								13
·. · ·									•								·	
		· · · · · · · · · · · · · · · · · · ·				1										<u> </u>		
' <u> </u>	· · · · · · · · · · · · · · · · · · ·		P.				<u> </u>	-		ļ							\square	ļ
	· · · · · · · · · · · · · · · · · · ·	· · · ·	<u>!</u>					- 4	•	L	···					[_]		
			e .			1	1			-			-	ł				
	· · ·	· · · · ·	· ·		· ·		•	_,			~							
· · · · · · · · · · · · · · · · · · ·					·	+	<u> </u>				-,				-	+		
			· · · ·	1	· · · · ·	<u> </u>										<u> </u>		l
-	· · ·					·												•
	· · · · ·	·····		· -	-		- u			•		•		י				
			•						<u> </u>			•	-			+,		
·		<u> </u>	· · · · · · · · · · · · · · · · · · ·			+	<u> </u>		<u> </u>	· ·			┈╌╺┞╸	<u> </u>	+ .	+		
	<u> </u>	·	·				ļ			I					<u> </u>	┥───		<u> </u>
		•	•		. <u>.</u>													
	Special Instructions	Specify Criteria to	add on report by clic	king on the drop-de	wn list below	J			SA	MPLE (CONDI		AS RE	CEIVED	(lab us	e only)		
Drinkin	ig Water (DW) Samples: (client use)	(ele	etronic COC only)		£.	Froze	n	\mathbf{v}		.'		SIF C	bserva	tions	Yes		No	
Aro somples take	n from a Regulated DW System? NO Sur	mples	have.	bur	$+\overline{i}$	Ice P Cooli	acks + ng Initi	ated	X	Cubes		Çusto	dy sea	l intact	' Yes		No *	
Are samples for h	numan drinking water use?	14 1			- N /		IN	TIAL CO	DOLER	EMPERA	TURES	÷C		F	INAL CO	OLER TE	MPERA	TURES °C
		(leved.	•	•		-7	$\overline{\mathbf{O}}$		— • • •	-	-			C :	7	T		
[_] □ [™]		<u>,</u>	INSTATIONIONE	NTRECEPTION			ŝ					7	· ·			<u> </u>	<u></u>	L
Released by:	SHIPMENT RELEASE (Client US9)	Received MV	A SHIFME	Date:		Time		Rece	ivert h	<u>}</u>	INAL S	2 UIL	ncivi H T	Date:		use or	<u>my)</u>	Time:
Jak	Emplus 06/Dec/17- 3:50	h ch	(IX)	Dec 6	117 1	35	501	1			VL.	r		Ve	(`-0`	711	+	116:02
REEP TO BACK	PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION	<u>. </u>	WHI	TE · LABORATORY	COPY YELLO	W - CLI	ENTCO	PY -				<u> </u>				<u></u>	<u> </u>	OCTOBER 2015 PM
Fallure to complete at 1, if any water sample	a portions of this form may detay analysis. Please 58 in this form LEGIBLY. By the use of this es are token from a Regulated Drinking Water (DW). System, please submit using an Aut	torm the usor acknow horized DW COC form	ledges and agrees with the n.	Torms and Conditions :	as specified on the bar r	ck page o	n the whi	te - repo	nt copy.						-			

٤.

- 1

*

PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) ATTN: MATT GILLMAN 374 Wellington Street West, Suite 3 Toronto ON M5E 1B5 Date Received: 10-JAN-18 Report Date: 19-JAN-18 08:57 (MT) Version: FINAL

Client Phone: 647-795-8153

Certificate of Analysis

Lab Work Order #: L2044112 Project P.O. #: NOT SUBMITTED Job Reference: MAYFIELD 3 C of C Numbers: 17-637702 Legal Site Desc:

Amanda Faseba

Amanda Fazekas Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 95 West Beaver Creek Road, Unit 1, Richmond Hill, ON L4B 1H2 Canada | Phone: +1 905 881 9887 | Fax: +1 905 881 8062 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🔪

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

MAYFIELD 3

CRITERIA REPORT

L2044112 CONTD.... Page 2 of 4 19-JAN-18 08:58:12

Sample Details/Parameters	Result	Qualifier	D.L.	Units	Criteria Spec	cific Limits	Analyzed	Batch
L2044112-1 MW6								
Sampled By: CLIENT on 10-JAN-18 @ 08:	50							
Matrix: WATER					STANDARDS	GUIDELINES		
Anions in Water by IC								
Bromide (Br)	<0.10		0.10	mg/L			12-JAN-18	R3935479
Chloride (Cl)	5.21		0.50	mg/L		250	12-JAN-18	R3935479
Orthophosphate-Dissolved (as P)	<0.0030		0.0030	mg/L			11-JAN-18	R3933344
Fluoride (F)	0.126		0.020	mg/L	1.5		12-JAN-18	R3935479
Nitrate (as N)	<0.020		0.020	mg/L	10		12-JAN-18	R3935479
Nitrite (as N)	<0.010		0.010	mg/L	1		12-JAN-18	R3935479
Sulfate (SO4)	54.0		0.30	mg/L		500	12-JAN-18	R3935479
Individual Analytes								
Acidity (as CaCO3)	30.0		5.0	mg/L			18-JAN-18	R3939148
Alkalinity, Total (as CaCO3)	234		10	mg/L		30-500	12-JAN-18	R3935472
Colour, Apparent	232		2.0	CU			11-JAN-18	R3933347
Redox Potential	350	PEHR	-1000	mV			12-JAN-18	R3933928
Turbidity	>4000		0.10	NTU		5	12-JAN-18	R3933749

* Detection Limit for result exceeds Criteria Specific Limit. Assessment against Criteria Limit cannot be made.

** Analytical result for this parameter exceeds Criteria Specific Limit listed on this report.

MAYFIELD 3

Reference Information

Sample Parameter Qualifier key listed:

Qualifier D	escription			
PEHR P	arameter Exceede	ed Recommended Holding	Time On Receipt: Proceed With Analysis As Re	equested.
Methods Listed	(if applicable):			
ALS Test Code	Matrix	Test Description	Preparation Method Reference(Based On)	Analytical Method Reference(Based On)
ACIDITY-ED	Water	Acidity (as CaCO3)		APHA 2310 B - Potentiometric Titration
Acidity is the cap usually 8.3. If the titration to pH 8.3	bacity of a water sa e sample is colorle 3 is performed.	ample to react with strong t ss and clear, titration with I	base. It can be measured by titration with a stro base to the phenolphthalein endpoint is used. F	ng base to a designated pH endpoint, or dark or turbid samples, potentiometric
ALK-WT	Water	Alkalinity, Total (as Ca	CO3)	EPA 310.2
This analysis is colourimetric me	carried out using p ethod.	rocedures adapted from El	PA Method 310.2 "Alkalinity". Total Alkalinity is	determined using the methyl orange
BR-IC-N-WT	Water	Bromide in Water by IC	;	EPA 300.1 (mod)
Inorganic anions CL-IC-N-WT	are analyzed by I Water	on Chromatography with co Chloride by IC	onductivity and/or UV detection.	EPA 300.1 (mod)
Inorganic anions	are analyzed by I	on Chromatography with co	onductivity and/or UV detection.	
Analysis conduc Protection Act (J	ted in accordance luly 1, 2011).	with the Protocol for Analy	tical Methods Used in the Assessment of Prope	erties under Part XV.1 of the Environmental
COLOUR-APPARE	NT-WT Water	Colour		APHA 2120
Apparent Colour decanting. Colo adjustment. Cor	is measured spec ur measurements ncurrent measuren	trophotometrically by comp can be highly pH dependen nent of sample pH is recon	parison to platinum-cobalt standards using the s nt, and apply to the pH of the sample as receive nmended.	single wavelength method after sample ed (at time of testing), without pH
F-IC-N-WT	Water	Fluoride in Water by IC		EPA 300.1 (mod)
Inorganic anions	are analyzed by I	on Chromatography with co	onductivity and/or UV detection.	
NO2-IC-WT	Water	Nitrite in Water by IC		EPA 300.1 (mod)
Inorganic anions NO3-IC-WT	are analyzed by l Water	on Chromatography with con Nitrate in Water by IC	onductivity and/or UV detection.	EPA 300.1 (mod)
Inorganic anions PO4-DO-COL-WT	are analyzed by l Water	on Chromatography with con Diss. Orthophosphate i by Colour	onductivity and/or UV detection. n Water	APHA 4500-P PHOSPHORUS
This analysis is colourimetrically	carried out using p on a sample that	rocedures adapted from Al has been lab or field filtered	PHA Method 4500-P "Phosphorus". Dissolved (d through a 0.45 micron membrane filter.	Drthophosphate is determined
REDOX-POTENTIA	L-WT Water	Redox Potential		APHA 2580
This analysis is a reported as obse	carried out in acco erved oxidation-rec	rdance with the procedure luction potential of the plati	described in the "APHA" method 2580 "Oxidation num metal-reference electrode employed, in m	on-Reduction Potential" 2012. Results are V.
It is recommend	ed that this analys	is be conducted in the field		
SO4-IC-N-WT	Water	Sulfate in Water by IC		EPA 300.1 (mod)
Inorganic anions TURBIDITY-WT	are analyzed by l Water	on Chromatography with co Turbidity	onductivity and/or UV detection.	APHA 2130 B
Sample result is by a standard re	based on a compa ference suspensio	arison of the intensity of the nunder the same condition	e light scattered by the sample under defined cons. Sample readings are obtained from a Nephe	onditions with the intensity of light scattered elometer.
			Laboratory Methods employed follow in- generally based on nationally or interna	-house procedures, which are tionally accepted methodologies.
Chain of Custor	ly numbers:			
17-637702				
The last two lett	ers of the above te	est code(s) indicate the lab	oratory that performed analytical analysis for th	at test. Refer to the list below:
Laboratory Def	finition Code L	aboratory Location	Laboratory Definition Code	Laboratory Location

		Eaboratory Dominion Codo	
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA	ED	ALS ENVIRONMENTAL - EDMONTON, ALBERTA, CANADA

Reference Information

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there. mg/kg - milligrams per kilogram based on dry weight of sample mg/kg wwt - milligrams per kilogram based on wet weight of sample mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of criteria limits is provided as is without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information.

Report Date: 19-JAN-18

Page 1 of 5

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 374 Wellington Street West, Suite 3 Toronto ON M5E 1B5

Workorder: L2044112

Contact: MATT GILLMAN

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ACIDITY-ED Batch R39 WG2700808-3	Water 039148	1 2041817-1						
Acidity (as CaCC)3)	11.0	10.0		mg/L	9.5	20	18-JAN-18
WG2700808-2 Acidity (as CaCC	LCS D3)		88.0		%		85-115	18-JAN-18
WG2700808-1 Acidity (as CaCC	MB 03)		<5.0		mg/L		5	18-JAN-18
ALK-WT	Water							
Batch R39	35472							
WG2697663-3 Alkalinity, Total (CRM as CaCO3)	WT-ALK-CRN	1 99.2		%		80-120	12-JAN-18
WG2697663-4 Alkalinity, Total (a	DUP as CaCO3)	L2044112-1 234	227		mg/L	2.8	20	12-JAN-18
WG2697663-2 Alkalinity, Total (a	LCS as CaCO3)		93.6		%		85-115	12-JAN-18
WG2697663-1 Alkalinity, Total (a	MB as CaCO3)		<10		mg/L		10	12-JAN-18
BR-IC-N-WT	Water							
Batch R39	35479							
WG2697537-14 Bromide (Br)	DUP	WG2697537-1	5 ∽0 10		ma/l	NI/A	20	10 1411 10
WG2697537-12	105	<0.10	<0.10	KFD-NA	iiig/L	IN/A	20	12-JAIN-10
Bromide (Br)	200		97.5		%		85-115	12-JAN-18
WG2697537-11 Bromide (Br)	МВ		∠ 0 10		ma/l		0.1	12 1411 19
WG2697537-13	MS	WG2697537-1	15				0.1	12-JAN-10
Bromide (Br)		102007007	98.2		%		75-125	12-JAN-18
CL-IC-N-WT	Water							
Batch R39	35479							
WG2697537-14 Chloride (Cl)	DUP	WG2697537-1 5.21	5.25		mg/L	0.7	20	12-JAN-18
WG2697537-12 Chloride (Cl)	LCS		99.0		%		90-110	12-JAN-18
WG2697537-11 Chloride (Cl)	МВ		<0.50		mg/L		0.5	12-JAN-18
WG2697537-13 Chloride (Cl)	MS	WG2697537-1	100.4		%		75-125	12-JAN-18

COLOUR-APPARENT-WT Water

Report Date: 19-JAN-18

Page 2 of 5

PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) Client: 374 Wellington Street West, Suite 3 Toronto ON M5E 1B5

Workorder: L2044112

Contact: MATT GILLMAN

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
COLOUR-APPARENT Batch R3933	-WT Water 3347							
WG2697349-3 D Colour, Apparent	UP	L2044112-1 232	260		CU	11	20	11-JAN-18
WG2697349-2 L Colour, Apparent	cs		98.6		%		85-115	11-JAN-18
WG2697349-1 M Colour, Apparent	IB		<2.0		CU		2	11-JAN-18
F-IC-N-WT	Water							
Batch R393	5479							
WG2697537-14 D Fluoride (F)	UP	WG2697537- 0.125	15 0.129		mg/L	3.1	20	12-JAN-18
WG2697537-12 L Fluoride (F)	CS		99.3		%		90-110	12-JAN-18
WG2697537-11 M Fluoride (F)	IB		<0.020		mg/L		0.02	12-JAN-18
WG2697537-13 M Fluoride (F)	IS	WG2697537-	15 99.8		%		75-125	12-JAN-18
NO2-IC-WT	Water							
Batch R393	5479							
WG2697537-14 D Nitrite (as N)	UP	WG2697537- <0.010	15 <0.010	RPD-NA	mg/L	N/A	25	12-JAN-18
WG2697537-12 L Nitrite (as N)	cs		96.6		%		70-130	12-JAN-18
WG2697537-11 M Nitrite (as N)	IB		<0.010		mg/L		0.01	12-JAN-18
WG2697537-13 M Nitrite (as N)	IS	WG2697537-	15 96.8		%		70-130	12-JAN-18
NO3-IC-WT	Water							
Batch R393	5479							
WG2697537-14 D Nitrate (as N)	UP	WG2697537- <0.020	15 <0.020	RPD-NA	mg/L	N/A	25	12-JAN-18
WG2697537-12 L Nitrate (as N)	CS		99.0		%		70-130	12-JAN-18
WG2697537-11 M Nitrate (as N)	IB		<0.020		mg/L		0.02	12-JAN-18
WG2697537-13 M Nitrate (as N)	IS	WG2697537-	1 5 98.8		%		70-130	12-JAN-18
PO4-DO-COL-WT	Water							

Report Date: 19-JAN-18

Page 3 of 5

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 374 Wellington Street West, Suite 3 Toronto ON M5E 1B5

Workorder: L2044112

Contact: MATT GILLMAN

_

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PO4-DO-COL-WT Batch R393334	Water 4							
WG2697344-3 DUP Orthophosphate-Disso	olved (as P)	L2043701-1 <0.0030	<0.0030	RPD-NA	mg/L	N/A	30	11-JAN-18
WG2697344-2 LCS Orthophosphate-Disso	olved (as P)		106.0		%		70-130	11-JAN-18
WG2697344-1 MB Orthophosphate-Disso	olved (as P)		<0.0030		mg/L		0.003	11-JAN-18
WG2697344-4 MS Orthophosphate-Disso	olved (as P)	L2043701-1	105.5		%		70-130	11-JAN-18
REDOX-POTENTIAL-WT	Water							
Batch R393392 WG2697623-1 DUP Redox Potential	8	L2044112-1 350	348		mV	0.6	25	12-JAN-18
SO4-IC-N-WT	Water							
Batch R393547	9							
WG2697537-14 DUP Sulfate (SO4)		WG2697537-15 54.1	54.5		mg/L	0.8	20	12-JAN-18
WG2697537-12 LCS Sulfate (SO4)			98.7		%		90-110	12-JAN-18
WG2697537-11 MB Sulfate (SO4)			<0.30		mg/L		0.3	12-JAN-18
WG2697537-13 MS Sulfate (SO4)		WG2697537-15	100.9		%		75-125	12-JAN-18
TURBIDITY-WT	Water							
Batch R393374	9							
WG2697503-3 DUP Turbidity		L2044146-3 251	244		NTU	2.8	15	12-JAN-18
WG2697503-2 LCS Turbidity			103.0		%		85-115	12-JAN-18
WG2697503-1 MB Turbidity			<0.10		NTU		0.1	12-JAN-18

Workorder: L2044112

Report Date: 19-JAN-18

PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) Client: 374 Wellington Street West, Suite 3 Toronto ON M5E 1B5 MATT GILLMAN

Contact:

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L2044112

Report Date: 19-JAN-18

Client:	PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)
	374 Wellington Street West, Suite 3
	Toronto ON M5E 1B5
Contact:	MATT GILLMAN

Hold Time Exceedances:

		Sample									
ALS Product Description		ID [.]	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier			
Physical Tes	sts										
Redox Po	tential										
		1	10-JAN-18 08:50	12-JAN-18 19:00	0.25	58	hours	EHTR-FM			
Legend & Qu	ualifier Definitio	ns:									
EHTR-FM:	Exceeded ALS	recommende	ed hold time prior to san	nple receipt. Field Me	asurement	recommende	d.				
EHTR:	Exceeded ALS	recommende	ed hold time prior to san	nple receipt.							
EHTL:	Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.										
EHT:	Exceeded ALS recommended hold time prior to analysis.										
Rec. HT:	ALS recommen	ded hold tim	e (see units).								

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L2044112 were received on 10-JAN-18 16:55.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

ALS Environmental

Chain of Custody (COC) / Analytical Request Form

COC Number: 17 - 637702

Page of

Canada Toll Free: 1 800 668 9878

	www.alsglobal.com										-										
Report To	Contact and company name below will appear on the final report		Report Format	t / Distribution		Select Service Level Below - Contact your AM to confirm all E&P TATs (surcharges may apply)															
Company:	Palmer	Select Report Fo	ormat: 🕱 PDF	🚰 excel B	DD (DIGITAL)	Regular [R] X Standard TAT If received by 3 pm - business days - no surcharges apply															
Contact:	Matt Gillman	Quality Control (QC) Report with Report YES NO				2 4 day [P4-20%]															
Phone: 519 373-6249		Compare Resu	ults to Criteria on Report -	provide details below li	f box checked	हु 🙀 3 day [P3-25%] 🔲 🚆 Same Day, Weekend or Statutory holiday [E2-200% ा															
Company address below will appear on the final report		Select Distribution: 🔀 EMAIL MAIL 📋 FAX				2 day [P2-50%]															
Street:	374 Wellington St.	Email 1 or Fax marte peca. Co						Date and Time Required for all E&P TATs:													
City/Province:	ToronHo, ON	Email 2 For tests that can not be performed according to the service level selected, you will be contacted.																			
Postal Code:		Email 3				Analysis Request															
Invoice To	Same as Report To	Invoice Distribution				Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below															
	Copy of Invoice with Report K YES NO	Select Invoice Distribution: 🔀 EMAIL MAIL FAX																			
Company:		Email 1 or Fax															ŧ	1			
Contact:		Email 2				17			ă	1.3				S	10	7				efu	
	Project Information	Oil and Gas Required Fields (client use)				13			J	R		~.		<u> </u> <	, Q	4				ovid 1	
ALS Account #	/ Quote #:	AFE/Cost Center: PO#			6			$ \gamma $		1	-]!	とい	ЛX	18	: 5				prd e		
Job #:	vfleld 3	Major/Minor Code: Routing Code:				00	10	17	<u> </u>	-2	P	5	10		ي-ج	: <u>Q</u>				ease	RS
PO/AFE:	1	Requisitioner:			6		-	7	2			۹ 6	داد	2		6			<u> </u>	N.	
LSD:		Location:			1 ^	X	4			6-	3	212	2	21.	: 5			L L	p	È.	
	cus				15	2	ق	*-	-	Š.	5	z		티스	s			HN	azar	١ ٢	
ALS Lab Wo	nk Order # (lab use only): L2044112 Jan 1	ALS Contact:		Sampler:		Ó	8		14/2	22	0.	2	21		14	<u></u>			E	h si	N N
ALS Sample #	Sample Identification and/or Coordinates		Date	Time	Sample Tune	0	à	Ť	J	S	â	<u>با</u> بہ		2<	2.2	: 3			MPL	hple	HEN I
(lab use only)	(This description will appear on the report)		(dd-mmm-yy)	(hh:mm)	Sample Type	0		Ĩ		X			<i>-</i>	-	10	<u>יין א</u>			SAL	Sar	Ñ
1	Mwc		10-500-11	8 8:50	GW	1	V	5	r J	1		7	イ	7.	10	77					3
														1							
						-								+	+	+			+		
							+	-			\rightarrow	-+-		+	+	+	\vdash		+		<u> </u>
							$\left \right $					_		+-	+	+			+-		<u> </u>
														_	—			\rightarrow	4		<u> </u>
the second																					
1						1															
														1							
NU U					1	-								+	+	+			+-		
			· · · ·				$\left \right $				-+-	-		+		+	\vdash	+	+		
							+							+-	+	+'	\vdash	+	+		<u> </u>
					ļ									\perp	—	+	\vdash	\perp		ļ	
and the second second																					
Drinking Water (DW) Samples ¹ (client use)							_		-	SA	MPLE	OND	ITION A	S REC	CEIVER) (lab u	ise only)	-		
(electronic COC only)						Froze	eri	_	Ц		S	F Obs	servatio	15	Yes	L L	4	No	1	L.	4
					ice Packs ice Cubes Custody seal intact Yes No /																
Are samples for	Numan consumption/ use/											TEMPERA	IURES 9	T							
YES X NO)						0110004	14	20		**	- 1.4		<u> </u>	
SHIPMENT RELEASE (client use) INITIAL SHIPMENT RECEPTION (lab use only) Released by: A Date: The State						Time	_	Rece	eved to	V .	F	NAL	SHIPME	to RE	CEPT	ION (la	D USE 0		Time		
I CICASCU DY.		Contractor	H	10/115	3	14	ice			1	11	4			1	1.	11	X	1	C IL	L
DEEEE TA AAK BAGE EOD ALS LOCATIONS AND SAMDLING INCOMPTION					W CI	ENT CO	DPV				_		<u>~</u>	_	v	4 C	<u> </u>			ANT PRCAT	

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION WHITE - LABORATORY COPY YELLOW - CLIENT COPY
Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

Calibrated Levellogger Monitoring Data Palmer (2022)

