

REVISED FOUNDATION INVESTIGATION AND DESIGN REPORT

PRELIMINARY DESIGN OF PROPOSED BRIDGE OVER HIGHWAY 410 FOR THE ENTRY RAMP TO NORTHBOUND HIGHWAY 410 FROM HIGHWAY 10 TOWN OF CALEDON, ONTARIO

CONSULTING SERVICES FOR THE SCHEDULE 'C' CLASS ENVIRONMENTAL ASSESSMENT (EA) FOR WIDENING OF McLAUGHLIN ROAD AND CONSTRUCTION OF EAST-WEST SPINE ROAD (MAYFIELD WEST PHASE 2)

THE CORPORATION OF THE TOWN OF CALEDON 2016-62

GEOCRES 30M12-442

Submitted to:

The Corporation of the Town of Caledon 6311 Old Church Road Caledon, Ontario L7C 1T6

<u>Submitted by:</u>

Wood Environment & Infrastructure Solutions a Division of Wood Canada Limited 50 Vogell Road, Unit Nos. 3 & 4 Richmond Hill, Ontario L4B 3K6

May 2019

Wood Reference Number: TPB166090

TABLE OF CONTENTS

Page

1.0	INTRO	DUCTIO	ON	1
2.0	SITE A	ND PRO	OJECT DESCRIPTION	2
3.0	GEOL	OGY		2
4.0	INVES	STIGATIC	ON PROCEDURES	3
	4.1	Field I	nvestigation	3
	4.2	Labora	atory Tests	6
5.0	SUB-S	SURFACE	E CONDITIONS	6
	5.1	Surfici	ial Cover	7
		5.1.1	Asphaltic Concrete	7
		5.1.2	Topsoil	7
	5.2	Fill Soi	ils	7
		5.2.1	Granular Fill	7
		5.2.2	Clayey Silt / Silty Clay Fill	8
	5.3	Clayey	y Silt / Silty Clay Till	9
	5.4	Sandy	/ Silt / Sand and Silt / Silt	11
	5.5	Sandy	/ Silt Till	12
	5.6	Groun	ndwater Conditions	13
6.0	DISCU	JSSIONS	S AND RECOMMENDATIONS	15
	6.1	Found	dation	16
		6.1.1	Shallow Foundation	19
		6.1.2	Deep Foundation	19
		6.1.2.1	Driven Piles	19
		6.1.2.2	2 Caissons	20
	6.2	Geote	chnical Parameters for Design	21
	6.3	Wing	Wall / Retaining Wall	23
	6.4	Appro	bach Embankment	24
	6.5	Soil Co	orrosivity	24
	6.6 C 7	Earthq	quake Considerations	
	6.7	Gener	rai Construction Comments	
		0.7.1	Site Preparation	
		6.7.2	Excavation and Dewatering	27
		6.7.3	Construction Inspection	29
7.0	LIMIT	ED SOIL	CHEMICAL ANALYSIS	29
	7.1	Limite	ed Soil Sampling Program	29
	7.2	Regula	atory Framework	29
	7.3	Analyt	tical Results	
		1.3.1	Petroleum Hydrocarbons and BTEX	30

		7.3.2	Metals and Inorganics	30
		7.3.3	Polycyclic Aromatic Hydrocarbons	31
		7.3.4	Ontario Regulation 347/90	31
	7.4	Conclu	isions and Recommendations	31
8.0	CLOSI	JRE		32

LIMITATIONS OF REPORT

LIST OF CONSTRUCTION SPECIFICATIONS AND DRAWINGS

DRAWINGS

Drawing No. 1	Borehole Locations and Soil Strata
Drawing No. 2	Soil Strata - Cross-Sections

RECORD OF BOREHOLES

Explanation of Boreholes Record of Boreholes (BH 1 to BH 10)

APPENDICES

- APPENDIX A: Overall Plan, Highway 410 Interchange, New Construction (Sheet P1, prepared by Wood (formerly Amec Foster Wheeler) and Preliminary General Arrangement for E/W-N Ramp Flyover (Proposed Bridge, dated November 2018, prepared by Wood)
- APPENDIX B: Site Photographs
- APPENDIX C: Laboratory Test Results (Figure Nos. C1 to C9)
- APPENDIX D: Analytical Results for Soils (Tables 1 to 3)
- APPENDIX E: Certificates of Analyses for Soil Chemical Analysis

1.0 INTRODUCTION

Wood Environment & Infrastructure Solutions, a Division of Wood Canada Limited ("Wood"), was retained by The Corporation of the Town of Caledon ("Town") to provide Consulting Services for Schedule 'C' Class Environmental Assessment ("EA") for the "project" of the proposed widening of McLaughlin Road (from Mayfield Road to approximately 1700 m north) and Construction of East-West Spine Road (Hurontario Street (Hwy 10) to Chinguacousy Road, Ontario), as per the Town's '*Mayfield West Phase 2 – Transportation Master Plan*'.

As part of the Class EA, a foundation investigation was carried out by Wood's Richmond Hill Office ("Wood – Foundation Group") to support the preliminary (30 %) design of a proposed new bridge planned to be constructed over Highway 410, as shown in the plan and the preliminary general arrangement attached in Appendix A.

As the planned bridge will be located within the Right-of-Way ("RoW") of Ministry of Transportation Ontario ("MTO"), this report has been prepared as per requirements of MTO.

This report is the Foundation Investigation and Design Report for the proposed bridge over Highway 410, presenting the factual results of foundation investigation together with design discussion and recommendations. The investigation findings and recommendations for other aspects of the project (i.e., widening of McLaughlin Road and construction of east-west Spine Road, and related work) are not within the scope of this report and they are presented in a separate Wood report (titled "*Final Report - Geotechnical Investigation (Mayfield West – Phase 2), Widening of McLaughlin Road and Construction of East-West Spine Road*", Wood Reference TPB166090.6000, dated 12 April 2018).

The purpose of the foundation investigation was to obtain information on the subsurface conditions at the proposed bridge location by means of boreholes, in-situ tests and laboratory tests on selected soil samples. The number, location depths of the boreholes for the bridge were selected after discussion with and approval from Town of Caledon / MTO. Based on Wood's interpretation of the data obtained in the investigation, recommendations are provided on the geotechnical aspects of the bridge and approach ramp to the bridge. The site for the proposed bridge, along with the borehole locations, are shown in Drawing No. 1.

The factual results of the soil conditions for the proposed bridge as encountered in the boreholes and laboratory tests (without design discussion and recommendations) are also presented in a separate report titled "Foundation Investigation Report", as per requirement of MTO.

2.0 SITE AND PROJECT DESCRIPTION

Based on the available information, a new bridge and the approach ramps leading to the new bridge are proposed to be constructed over the existing five (5) lanes of Highway 410, and located at the north of an existing bridge (carrying Highway 10 / Valleywood Boulevard over Highway 410), as shown in Sheet P1 (and Appendix A). It is understood that the proposed new bridge is planned to be a two-span bridge with the abutments located at the north and south of Highway 410, and a centre pier located at the existing median area, and total length of the bridge will likely be about 75 m. The bridge will be aligned generally in the north-south direction. Details of the proposed bridge were not available at the time of preparation of this report.

At the site of the proposed bridge, the existing Highway 410 is generally aligned in the east – west direction. At the time of investigation, the site consisted of three northbound lanes and two southbound lanes, separated by a concrete barrier. Wide paved shoulders were located at both sides along both the northbound and the southbound lanes. Most areas in either side of the highway were covered with vegetation. A high earth berm (about 10 m high and 250 m long) was present at the north side of the highway.

The alignment of the proposed south approach to the bridge will pass through the vegetated area beside the existing highway and the existing off-ramp from southbound Highway 410 to existing Highway 10. The proposed north approach to the bridge is aligned along the existing berm.

Four photographs taken during the field investigation showing the existing site conditions are included in Appendix B.

3.0 GEOLOGY

Based on Map 2223 – *Quaternary Geology, Brampton Area* prepared by Ontario Geological Survey (2005), the site is located in an area where the overburden comprises "red to brown, gritty to clayey silt till (Halton Till).

Based on Map 2179 – *Brampton Area, Southern Ontario, Drift Thickness Sheet* - prepared by Ontario Geological Survey, the overburden thickness in the area at the vicinity of the proposed bridge site is more than 30 m below ground surface.

4.0 INVESTIGATION PROCEDURES

4.1 Field Investigation

A total of ten (10) boreholes (BH 1 to BH 10) were drilled at the proposed bridge site and along the proposed alignment of bridge approaches. Locations of boreholes are described below.

- Borehole BH 1 was drilled at the proposed south approach;
- Boreholes BH 2 and BH-3 were drilled at the proposed south abutment area;
- Borehole BH 4 was drilled at the proposed central pier;
- Boreholes BH 5 and BH-6 were drilled at the proposed north abutment area;
- Borehole BH 7 was drilled at the proposed north approach area;
- Boreholes BH 8 to BH 10 were drilled along the north approach area to investigate the soil condition of the existing earth berm.

Detailed locations of each borehole are summarized in Table 4.1. The site of the proposed bridge and borehole locations are presented in Drawing Nos. 1 and 2, respectively.

Component	Borehole No.	Appx. Chainage on the new alignment	Depth (m)	Top / Termination Elevation ⁽¹⁾ (m)	GPS Coordinates (MTM, NAD83, Zone 10 (CSRS, 2010)	Latitude / Longitude (°)	Location
South Approach	BH 1	20+230	9.8	262.7 / 252.9	N:4844617; E:277898	N:43.74101842N / E:79.83399240W	Left shoulder of existing southbound off-ramp to Hwy 10
South	BH 2	20+250	20.1	261.3 / 241.2	N:4844640; E:277911	N:43.74123134N / E:79.83383318W	Right shoulder of the southbound Hwy 410 (east end of proposed abutment)
Abutment	BH 3	20+265	20.0	261.6 / 241.5	N:4844646; E:277889	N:43.74128319N / E:79.83410623W	Right shoulder of the southbound Hwy 410 (west end of proposed abutment)
Central Pier	BH 4	20+280	20.2	261.1 / 240.8	N:4844662; E:277884	N:43.74142377N / E:79.83416456W	Left shoulder of the southbound Hwy 410 (mid area of proposed pier)
	BH 5	20+320	20.1	260.3 / 240.3	N:4844700; E:277876	N:43.74176712N / E:79.83427521W	Right shoulder of the northbound Hwy 410

Table 4.1: Details of Boreholes drilled for Proposed Bridge

The Corporation of the Town of Caledon (2016-62) Revised Foundation Investigation and Design Report – GEOCRES 30M12-442 Proposed Bridge over Highway 410 for the Entry Ramp to Northbound Highway 410 from Highway 10 Wood Reference Number: TPB166090 May 2019

Component	Borehole No.	Appx. Chainage on the new alignment	Depth (m)	Top / Termination Elevation ⁽¹⁾ (m)	GPS Coordinates (MTM, NAD83, Zone 10 (CSRS, 2010)	Latitude / Longitude (°)	Location
							(east end of proposed abutment)
South Abutment	BH 6	20+335	20.3	260.7 / 240.5	N:4844697; E:277849	N:43.74173764N / E:79.83461241W	Right shoulder of the northbound Hwy 410 (west end of proposed abutment)
	BH 7	20+355	9.8	259.6 / 249.9	N:4844709; E:277835	N:43.74184448N / E:79.83477644W	Left shoulder of the northbound Hwy 410
North Approach	BH 8	20+370	5.2	263.8 / 258.6	N:4844722; E:277833	N:43.74196148N / E:79.83481215W	
	BH 9	20+395	5.0	265.3 / 260.2	N:4844735; E:277807	N:43.74207539N / E:79.83513157W	On the slope of existing berm
	BH 10	20+430	6.6	267.0 / 260.4	N:4844754; E:277777	N:43.74224763N / E:79.83550194W	

⁽¹⁾ Discrepancies, if any, between borehole depth and elevation, are due to rounding-off of the numbers.

After acquiring all necessary permits for road occupancy, and obtaining clearance for the underground utilities, the fieldwork was performed between October 16th and November 14th, 2018. Traffic control during the field investigation was provided by TCI Field Services located in Brooklyn, Ontario, a licensed traffic control company. The elevations of the ground surface at borehole locations were surveyed by MacKay, MacKay and Peters Limited (MMP), Land Surveyors and Mapper of Burlington, Ontario, a member of The Association of Ontario Land Surveyors ("OLS"), using a Trimble R10 GPS unit referencing the CAN-NET network resolutions. The as-drilled borehole locations were recorded as northing and easting coordinates using a NAD83-CSRS MTM Zone 10 datum.

The drilling, sampling and in-situ testing operations were conducted by using hollow-stem / solidstem augers, from truck- and/or track-mounted drilling rigs equipped with automatic hammers and/or Big Beaver auger drill rig, equipped with manual hammer, owned and operated by Terra Firma Environmental Services of Toronto, Ontario, and were overseen full-time by Wood geotechnical personnel.

Soil samples were generally taken at regular intervals of 0.75 m (2.5 ft) up to a depth of 3.0 m and at intervals of 1.5 m (5 ft) thereafter, while performing the Standard Penetration Test (SPT) in accordance with ASTM D1586. This consisted of freely dropping a 63.5 kg (140 lb) hammer for a vertical distance of 0.76 m (30 inches) to drive a 51 mm (2 inch) diameter O.D. split-barrel (split spoon) sampler into the ground. The number of blows of the hammer required to drive the sampler into the relatively

undisturbed ground by a vertical distance of 0.30 m (12 inches) was recorded as SPT 'N' value of the soil which indicated the consistency of cohesive soils or the compactness of non-cohesive soils.

Groundwater conditions were observed in the boreholes during sampling and upon completion of drilling. The measured groundwater depths, wherever groundwater was encountered, are presented in the Record of Boreholes.

A monitoring well was installed in each of two borehole locations (BH 2 and BH 6) for monitoring groundwater levels and hydrogeological investigation (including slug testing). Groundwater levels measured subsequently in the monitoring wells are shown in the Record of Boreholes. The findings of the hydrogeological investigation are presented in separate report prepared by Wood (*Hydrogeological Investigation Report, Preliminary Design of Proposed Bridge over Highway 410 for the Entry Ramp to Northbound Highway 410 from Highway 10, dated February 2019*).

Upon completion of drilling, the boreholes not equipped with a monitoring were backfilled in accordance with the general requirements of Regulation 903 issued by the Ministry of the Environment and Climate Change Resources, Ontario. At time of preparation of this report, monitoring wells had not yet been decommissioned, as it may be used for groundwater monitoring during detail design. If they are not required, the wells may be decommissioned in accordance to Ontario Regulation 903.

Soil samples were collected for each soil layer exposed in the boreholes for laboratory inspection and testing. The soil samples collected during the field investigation were transported to Wood's Advanced Soil Laboratory in Richmond Hill for further examination and laboratory soil testing. The program of laboratory testing included, where applicable, grain size analysis, liquid and plastic limit tests, and in-situ water content determination.

The results of the in-situ, groundwater measurements and laboratory tests are presented in the corresponding Record of Boreholes and Laboratory Test Results (Appendix C).

The soil samples will be retained for a period of one (1) year after submission of the final report, unless otherwise advised in writing by the Town.

Upon recovery, all soil samples were screened to assess for evidence of potential contamination, which included visual inspection as well as vapour screening for combustible organic vapours, using a portable hand-held hydrocarbon surveyor (RKI Eagle 2). The results are presented on the Record of Boreholes.

Soil chemical analyses were carried out on selected soil samples from boreholes for assessment of potential contamination and soil disposal options. Two selected soils samples were analyzed for corrosive potential of soil with respect to concrete and steel. The soil chemical analyses were

The Corporation of the Town of Caledon (2016-62) Revised Foundation Investigation and Design Report – GEOCRES 30M12-442 Proposed Bridge over Highway 410 for the Entry Ramp to Northbound Highway 410 from Highway 10 Wood Reference Number: TPB166090 May 2019

performed by Maxxam Analytics, an accredited CAEL laboratory located in Mississauga, Ontario. As per project requirement, two asphaltic concrete samples were tested for presence of asbestos. The asbestos test was carried out by Maxxam Analytics.

4.2 Laboratory Tests

The following tests were conducted in the laboratory:

- Water content determination;
- Grain size distribution analyses;
- Atterberg Limit tests;
- Soil Chemical Analyses; and
- Soil corrosivity Analyses.

The results of laboratory tests presented in the Record of Boreholes are included in Appendix C (grain size distribution curves and plasticity charts). Tables summarizing the analytical test results are included in Appendix D. The Certificates of Analyses of Chemical Tests are included in Appendix E.

5.0 SUB-SURFACE CONDITIONS

Boreholes BH 1 to BH 10 were drilled at the proposed bridge approaches and abutments/central pier foundations, as listed in Table 4.1. Based on the investigation results, the soil profile at the borehole locations generally consisted of surficial cover (i.e. asphaltic concrete or topsoil) and/or sand and gravel/gravelly sand fill underlain by clayey silt / silty clay fill overlying native soils (in descending order - stiff to hard clayey silt / silty clay till, compact to very dense sandy silt / sand and silt / silt and very dense sandy silt till). The inferred groundwater level, based on change is soil colour (brown to grey), varied at depths from about 4.1 m to 7.8 m (Elevations 255.5 m to 253.8 m) below grade. Groundwater levels measured in the monitoring wells installed in Boreholes BH 2 and BH 6 were at depths of 10.3 m below ground surface (Elevation 250.9 m) and 6.8 m (Elevation 253.9 m).

The stratigraphic units and groundwater conditions at the borehole locations (BH 1 to BH 10) are discussed in the following sections. Additional information is provided in the Record of Boreholes. The longitudinal profile along the road alignment (within the investigation area) and two cross-sections at locations of the proposed new bridge abutments, presenting the interpolated soil strata, are presented in Drawing Nos. 1 and 2.

It should be noted that the soil and groundwater conditions may vary between and beyond the borehole locations.

5.1 Surficial Cover

5.1.1 Asphaltic Concrete

Asphaltic concrete thicknesses observed in the boreholes drilled through the paved shoulders are shown in Table 5.1.

Borehole No.	Thickness (mm)	Location		
BH 1	100	Left shoulder, adjacent to the off-ramp from the southbound Hwy 410 to Hwy 10		
BH 4	120	Left shoulder, Hwy 410 the eastbound lanes		

Asphaltic concrete samples were obtained at two boreholes locations (BH 1 and BH 4) to carry out tests for presence of asbestos. Asbestos was not detected in both samples. The certificates of analyses for the asbestos tests are attached in Appendix E.

5.1.2 Topsoil

Topsoil was observed in Boreholes BH 5, and BH 7 to BH 10 drilled out of the adjacent pavement/shoulders as shown in Table 5.2.

Borehole No.	Thickness (mm)	Location			
BH 5	600	Vegetated area at the north side of Hwy 410			
BH 7	200	Beside the north ditch of Hwy 410			
BH 8	100				
BH 9	75	On the mid-slope of the existing berm at north side of Hwy 410			
BH 10	100				

Table 5.2: Topsoil Thickness in Boreholes

5.2 Fill Soils

5.2.1 Granular Fill

Exposed granular fill, consisting of sand and gravel to gravelly sand, was observed at the ground surface at locations of Boreholes BH 2, BH 3 and BH 6, which were drilled at the unpaved shoulders of Highway 410.

The granular fill (sand and gravel / gravelly sand) was exposed at the surface or encountered below the surficial cover at locations of Boreholes BH1 to BH 6 and extended to depths varying from about

0.6 m to 1.1 m below the existing ground / road surface (Elevations 261.8 m to 259.6 m), as shown in Table 5.3.

SPT 'N' values measured in the granular fill ranged from 7 to 29 blows per 0.3 m penetration. Water contents measured in the samples varied between 3 % and 13 %.

Component	Borehole No.	Depth (from-to) (m)	Elevation (from-to) (m)	SPT 'N' (blows per 0.3 m)	Water Content (%)
South Approach	BH 1	0.1 – 0.9	262.6 - 261.8	13, 29	3, 4
Couth Abutmont	BH 2	0.0 – 1.1	261.3 – 260.2	9	-
South Abutment	BH 3	0.0 – 1.1	261.6 - 260.5	14	5
Central Pier	BH 4	0.1 – 0.6	261.0 - 260.5	-	3
	BH 5	0.6 – 0.7	259.7 – 259.6	-	13
North Abutment	BH 6	0.0 - 0.9	260.7 – 259.8	7, 10	5

Table	5.3:	Granular	Fill

5.2.2 Clayey Silt / Silty Clay Fill

A layer of the clayey silt / silty clay fill was encountered in all boreholes underlying the surficial cover and / or the granular fill, and extended to depths of about 0.8 m to 5.6 m below existing ground surface as shown in Table 5.4.

The clayey silt / silty clay fill was described as brown / grey / dark grey in colour, some sand to sandy, and trace gravel. Rootlets and organic matter was observed in some of the samples of clayey silt / silty clay.

SPT 'N' values measured in the clayey silt / silty clay fill ranged from 8 to 24 blows per 0.3 m indicating stiff to very stiff consistency. Water contents measured in the samples varied from 11 % to 24 %.

Component	Borehole No.	Depth (from-to) (m)	Elevation (from-to) (m)	SPT 'N' (blows per 0.3 m)	Water Content (%)
South Approach	BH 1	0.9 – 4.1	261.8 – 258.6	10 - 13	12 - 21
Couth Abutmont	BH 2	1.1 – 3.2	260.2 – 258.1	9 - 16	11 - 19
South Abutment	BH 3	1.1 – 4.0	260.5 – 257.5	11 - 15	11 - 18
Central Pier	BH 4	0.6 – 2.0	260.5 – 259.0	10, 18	11

Table 5.4: Clayey Silt / Silty Clay Fill

The Corporation of the Town of Caledon (2016-62) Revised Foundation Investigation and Design Report – GEOCRES 30M12-442 Proposed Bridge over Highway 410 for the Entry Ramp to Northbound Highway 410 from Highway 10 Wood Reference Number: TPB166090 May 2019

Component	Borehole No.	Depth (from-to) (m)	Elevation (from-to) (m)	SPT 'N' (blows per 0.3 m)	Water Content (%)
North Abutment	BH 5	0.7 – 2.2	259.6 – 258.1	10, 24	10, 12
North Abutment	BH 6	0.9 - 1.8	259.8 – 258.9	10, 15	13
	BH 7	0.2 – 0.7	259.4 – 259.0	9	14
North Approach	BH 8	0.1 – 4.1	263.7 – 259.7	9 - 18	13 - 24
	BH 9	0.1 – 4.0	265.2 – 261.2	9 - 24	12 - 23
	BH 10	0.1 – 5.6	266.9 – 261.4	8 - 21	11 - 21

The results of grain size analyses and Atterberg Limit tests carried out on selected samples of the clayey silt / silty clay fill are presented in Table 5.5.

Table 5.5:	Results of Grain Size Distribution Analyses and Atterberg Limit Tests
	(Clayey Silt / Silty Clay Fill)

				Grain Size Distribution				Atte	NTC		
Borehole	Sample	mple Depth	Elevation	Crowal	Cond	Fines					Group
No.	No.	(m)	(m)	(%)	(%)	Silt (%)	Clay (%)	LL	PL	PI	Symbol
		1.0				(70)	(70)	<u> </u>	4.6		~
BH 1	SS 3	1.8	260.9	9	32	43	16	25	16	9	CL
BH 3	SS 2	1.8	259.7	6	30	45	19	25	16	9	CL
BH 9	SS 4	3.3	262.0	3	23	46	28	36	23	13	CI
BH 10	SS 3	1.8	265.2	9	28	44	19	15	8	7	CL-ML

LL = Liquid Limit; PL = Plastic Limit; PI = Plasticity Index

The plasticity chart is presented in Figure Nos. C1 to C4, and the grain size distribution curves are presented in Figure No. C5, in Appendix C.

5.3 Clayey Silt / Silty Clay Till

The clayey silt / silty clay till deposit was encountered below the fill soils at locations of all boreholes, and extended to the termination depths of Boreholes BH 1 and BH 7 to BH 10) at depths ranging from 5.0 m to 9.8 m below existing ground surface (Elevations 260.4 m to 252.9 m). In the remaining boreholes (BH 2 to BH 6), the clayey silt / silty clay till deposit, underlying the clayey silt / silty clay fill, extended to depths ranging from 8.7 m to 11.7 m below existing ground surface (Elevations 251.6 m to 249.5 m) as shown in Table 5.6.

The clayey silt / silty clay till deposit was described as brown to grey in colour, trace to some sand, or sandy, and trace to some gravel. Cobbles / boulders were encountered at some locations.

SPT 'N' values measured in the clayey silt / silty clay till ranged from 11 to 52 blows per 0.3 m, indicating stiff to hard consistency. Measured water contents in the clayey silt / silty clay till ranged from 9 % to 20 %.

Component	Borehole No.	Depth (from-to) (m)	Elevation (from-to) (m)	SPT 'N' (blows per 0.3 m)	Water Content (%)
South Approach	BH 1	4.1 – 9.8*	258.6 – 252.9	19 to 42	10 - 18
South Abutmont	BH 2	3.2 – 11.6	258.1 – 249.7	11 – 31	9 - 18
South Abuthent	BH 3	4.0 – 11.7	257.5 – 249.9	26 - 52	9 - 16
Central Pier	BH 4	2.0 –11.6	259.0 – 249.5	18 – 43	9 - 15
North Abutmont	BH 5	2.2 – 8.7	258.1 – 251.6	14 - 27	9 - 15
North Abuthent	BH 6	1.8 – 10.1	258.9 – 250.6	16 - 49	10 - 20
	BH 7	0.7 – 9.8*	259.0 - 249.9	16 - 63	10 - 18
North Approach	BH 8	4.1 – 5.2*	259.7 – 258.6	23	12
	BH 9	4.0 - 5.0*	261.2 - 260.2	36	14
	BH 10	5.6 - 6.6*	261.4 - 260.4	27	15

Table 5.6: Clayey Silt / Silty Slay Till

* Termination depth of borehole

The results of grain size analyses and Atterberg Limit tests carried out on selected samples of the clayey silt / silty clay till are presented in Table 5.7.

Table 5.7:	Results of Grain Size Distribution Analyses and Atterberg Limit Tests
	(Clayey Silt / Silty Clay Till)

				Grai	Grain Size Distribution				Atterberg Limit			
Borehole	Sample	Depth	Elevation	Current	Cond	Fir	nes				Group	
No.	No.	(m)	(m)	(%)	(%)	Silt (%)	Clay (%)	LL	PL	PI	Symbol	
	SS 6	4.8	257.9	5	25	51	19	26	17	9	CL	
BH 1	SS 7	6.3	256.4		Not	tested		20	13	7	CL-ML	
	SS 8	7.9	254.8	9	33	44	14	18	12	6	CL-ML	
BH 2	SS 5	4.8	256.5	6	27	46	21	25	16	9	CL	
BH 3	SS 9	10.9	250.7	1	5	53	31	26	16	10	CL	
BH 4	SS 7	7.9	253.2	3	7	64	26	23	15	8	CL	
BH 5	SS 4	2.6	257.7	6	29	48	17	22	15	7	CL-ML	

The Corporation of the Town of Caledon (2016-62) Revised Foundation Investigation and Design Report – GEOCRES 30M12-442 Proposed Bridge over Highway 410 for the Entry Ramp to Northbound Highway 410 from Highway 10 Wood Reference Number: TPB166090 May 2019

				Grai	n Size	Distribu	tion	Atterberg Limit			
Borehole	Sample No.	Depth	Depth Elevation (m) (m)	Current	Cond	Fines					Group
No.		(m)		(%)	(%)	Silt (%)	Clay (%)	LL	PL	PI	Symbol
	SS 4	2.5	258.2	4	27	51	18	23	15	8	CL
рн о	SS 7	6.3	254.5	12	29	42	17	19	13	6	CL-ML
	SS 2	1.0	258.6	3	27	50	20	25	16	9	CL
BH 7	SS 5	3.3	256.3	7	27	47	19	21	14	7	CL-ML
	SS 9	9.4	250.2	0	3	80	17	23	18	5	CL-ML
BH 8	SS 5	4.8	259.0	6	23	47	24	26	16	10	CL

LL = Liquid Limit; PL = Plastic Limit; PI = Plasticity Index

The plasticity chart is presented in Figure Nos. C1 to C4, and the grain size distribution curves are presented in Figure Nos. C6 and C7, in Appendix C.

5.4 Sandy Silt / Sand and Silt / Silt

The natural sandy silt / sand and silt / silt deposit was encountered below the clayey silt / silty clay till deposit in Boreholes BH 2 to BH 6 and extended to depths of about 14.7 m to 16.2 m below existing ground / road surface (Elevations 246.0 m to 244.9 m), as shown in Table 5.8.

The sandy silt / sand and silt / silt deposit was described as grey in colour and included trace to some clay and trace to some gravel.

SPT 'N' values measured in the sandy silt / sand and silt / silt ranged from 10 to 57 blows per 0.3 m, indicating compact to very dense compactness. Measured water contents in the sandy silt / sand and silt / silt ranged from 9 % to 27 %.

Component	Borehole No.	Depth (from-to) (m)	Elevation (from-to) (m)	SPT 'N' (blows per 0.3 m)	Water Content (%)
South Abutmont	BH 2	11.6 – 16.2	249.7 – 245.0	26 - 44	9 - 16
South Abutment	BH 3	11.7 – 16.2	249.9 – 245.3	10 - 18	17 - 27
Central Pier	BH 4	11.6 – 16.2	249.5 – 244.9	12 - 39	13 - 20
North Abutmont	BH 5	8.7 – 14.8	251.6 – 245.5	11 - 57	9 - 26
	BH 6	10.1 – 14.7	250.6 - 246.0	14 - 33	10 - 22

Table 5.8: Sandy Silt / Sand and Silt / Silt

The results of grain size analyses and Atterberg Limit tests carried out on selected samples of the sandy silt / sand and silt / silt are presented in Table 5.9.

			-								
	-	nple Depth lo. (m)		Grai	n Size l	Distribu	tion	Atterberg Limit			MTG
Borehole No.	Sample No.		Elevation (m)		C	Fines					Group
				(%)	(%)	Silt (%)	Clay (%)	LL	PL	PI	Symbol
BH 2	SS 10	12.4	248.9	11	42	40	7	Non-plastic		SM/ML	
BH 3	SS 11	13.9	247.7	1	39	58	2	Not tested		ML	
BH 4	SS 10	12.4	248.7	8	31	55	6	No	on-plas	tic	ML
DILE	SS 8	9.4	250.9	1	2	88	9	19	17	2	ML
SS 11		14.0	246.3	4	76	17	3	Non-plastic		SM	
BLLC	SS 10	10.8	249.9	-	2	83	15	21	18	3	ML
рцр	SS 11	12.4	248.3	8	37	48	7	13	12	1	ML

Table 5.9: Results of Grain Size Distribution Analyses and Atterberg Limit Tests(Sandy Silt / Sand and Silt / Silt)

LL = Liquid Limit; PL = Plastic Limit; PI = Plasticity Index

The plasticity chart is presented in Figure Nos. C1 to C4, and the grain size distribution curves are presented in Figure No. C8, in Appendix C.

5.5 Sandy Silt Till

The sandy silt till deposit was encountered below the native sandy silt / sand and silt / silt in Boreholes BH 2 to BH 6 and extended to the termination depths of these boreholes at about 20.0 m to 20.3 m below existing ground / road surface (Elevations 241.5 m and 240.3 m), as shown in Table 5.10.

The sandy silt till was grey in colour and included trace to some clay and gravel. Clayey silt samples were observed with the till in Boreholes BH 5 and BH 6.

SPT 'N' values measured in the sandy silt till were all more than 50 blows per 0.3 m, indicating very dense compactness. Measured water contents in the sandy silt till ranged from 9 % to 13 %.

Component	Borehole No.	Depth (from-to) (m)	Elevation (from-to) (m)	SPT 'N' (blows per 0.3 m)	Water Content (%)
	BH 2	16.2 – 20.1	245.0 – 241.2	> 50	9 - 11
South Abutment	BH 3	16.2 – 20.0	245.3 – 241.5	> 50	10 - 11
Central Pier	BH 4	16.2 – 20.2	244.9 - 240.8	> 50	9 - 13
North Abutmont	BH 5	14.8 – 20.1	245.5 – 240.3	> 50	11 - 12
North Abutment	BH 6	14.7 – 20.3	246.0 - 240.5	> 50	10 - 12

Table	5.10:	Sandv	Silt Till	
10010		Janay	0	

The results of grain size analyses and Atterberg Limit tests carried out on selected samples of the sandy silt till are presented in Table 5.11.

				Grain	n Size I	Distrib	ution	Atte			
Borehole No.	Sample No.	Depth	Elevation (m)	Gravel (%)	Canal	Fines					Group
		(m)			(%)	Silt (%)	Clay (%)	LL	PL	PI	Symbol
BH 2	SS 14	18.5	242.8	7	33	53	7	14	13	1	ML
BH 3	SS 13	16.9	244.7	17	30	46	7	14	13.6	0.4	ML
BH 4	SS 13	17.0	244.1	27	26	41	6	14	13.9	0.1	ML
	SS 12	15.3	245.0	3	35	55	7	14	13	1	ML
с па	SS 14	18.5	241.8	5	7	70	18	21	16	5	CL-ML
BH 6	SS 15	18.5	242.2	2	17	66	15	18	14	4	CL-ML

Table 5.11: Results of Grain Size Distribution Analyses and Atterberg Limit Tests(Clayey Silt / Silty Clay Till)

LL = Liquid Limit; PL = Plastic Limit; PI = Plasticity Index

The plasticity chart is presented in Figure Nos. C1 to C4, and the grain size distribution curves are presented in Figure No. C9, and, in Appendix C.

5.6 Groundwater Conditions

Groundwater conditions in the open boreholes were observed during and on completion of drilling. Groundwater was not encountered upon completion of in most boreholes. The inferred groundwater levels, where observed, were estimated based on the change in soil colour (i.e. from brown to grey) and groundwater measurements in the monitoring wells (i.e. BH 2 and BH 6) are shown in Table 5.12.

Parabala	During / Upor	n completion	of boreholes	In Monitoring Wells					
No.	Date	Depth Elevation (m) (m)		Date	Depth (m)	Elevation (m)			
BH 1	16 Oct 2018	-	-	Not installed					
BH 2	17 Oct 2018	-	-	1 Nov 2018	10.3	251.0			
BH 3	17 Oct 2018	7.8*	253.8						
BH 4	18 Oct 2018	5.6*	255.5	Not installed					
BH 5	1 Nov 2018	5.6*	254.7						
BH 6	16 Oct 2018	-	-	2 Nov 2018	6.8	253.9			
BH 7	2 Nov 2018	4.1*	255.5						
BH 8	14 Nov 2018	-	-		Not installed				
BH 9	14 Nov 2018	_	-	NOT INSTALLED					
BH 10	14 Nov 2018	-	-						

Table 5.12: Groundwater Measurement

* Inferred groundwater level based on change in soil colour (brown to grey).

It should be noted that the groundwater levels at the site would fluctuate seasonally and can be expected to be somewhat higher during the spring months and in response to major weather events.

6.0 DISCUSSIONS AND RECOMMENDATIONS

A proposed new bridge is planned cross over existing Highway 410, just at the north of the existing bridge (Highway 10 / Valleywood Boulevard Underpass). The new bridge would carry a planned entry ramp from Highway 10 to the northbound Highway 410. The new entry ramp, along with the other Highway 410 / Highway 10 improvements, is proposed as part of the Town of Caledon's planned project for widening of McLaughlin Road and construction of new East-West Spine Road, for which Wood is conducting a Class EA. The planned improvements at and in the vicinity of the proposed new bridge is shown in the drawing Sheet P1 attached in Appendix A. This report has been prepared only for the preliminary design (30 %) of the proposed new bridge and its immediate approach areas to the new bridge. Other improvements shown in Appendix A, are not within the scope of this report.

Based on available information, the proposed new bridge will likely be a two-span bridge. Other details of the proposed bridge (length, width, height, abutment / pier details, etc.) and the approach area (height / width of embankment, etc.) were not available at the time of preparation of this report.

A total of ten boreholes (BH 1 to BH 10) were drilled at the proposed bridge location and the associated north / south approaches to the new bridge. Two boreholes (BH 1 and BH 7) were drilled along (or in the vicinity of) the approaches, four boreholes (BH 2, BH 3, BH 5 and BH 6) were drilled at the proposed abutment locations and one borehole (BH 4) was drilled at the proposed central pier location. Boreholes BH 8 to BH 10 were drilled along (or in the vicinity of) the planned north approach to investigate the soil types / conditions of the existing berm, and were, therefore, drilled only to about 1 m below the bottom of clayey silt/silty clay fill.

At the borehole locations, the surficial cover (asphaltic concrete or topsoil or exposed granular fill) was underlain by fills (consisting of sand and gravel, gravelly sand and/or clayey silt / silty clay), which was in turn underlain by natural soils (in descending order - stiff to hard clayey silt / silty clay till, compact to very dense sandy silt / sand and silt / silt deposit and very dense sandy silt till). The very dense sandy silt deposit was encountered at the borehole locations (i.e. BH 2 to 6) at Elevations ranging from 244.9 m to 246.0 m).

Groundwater levels measured in the two monitoring wells were at Elevations 250.9 m (BH 2) and 253.9 m (BH 6). The inferred groundwater levels (based on the change in colours of the soil (brown to grey) observed in the remaining boreholes, where present, from Elevations 253.8 m to 255.5 m. As such, the groundwater levels increased from south side (BH 2) to north side (BH 6), as measured in the monitoring wells installed at the borehole locations.

Based on soil conditions observed at the borehole locations, the shallow foundations or the deep foundations (i.e. with driven piles or augered cast-in-place caissons) are feasible, depending on design requirements. Deep foundations should be constructed at least 1.5 m into the very dense

sandy silt till deposit. If driven piles are selected, they should be equipped with proper shoe to penetrate the stiff to hard clayey silt / silty clay till, compact to very dense sandy silt / sand and silt/ silt deposit and the very dense sandy silt till deposit.

Approach embankments will be required at both sides of the bridge approaches. The existing stiff to very stiff clayey silt / silty clay fill, at the approaches (including in the existing berm), immediately underlain by stiff to hard clayey silt / silty clay till, may be suitable to be used as the subgrade for the approaches and / or approach embankments, depending on heights of the new approach embankments and pavement design requirements. Settlement analyses should be carried out during the detailed design, or when the details are available, to assess the settlements induced by the grade raise of embankment (including immediate, long-term, total and differential settlement) to address MTO Embankment Settlement Criteria for Design (2010).

The new side slopes under the new bridge and / or at the approach areas should be constructed by the compacted engineered fill per OPSS.PROV 1010 or equivalent. Deep-seated slope stability should be analyzed for the slopes once the details are available.

As the new construction site is located within the existing operational lanes and ramps of Highway 410, temporary detours may be required, especially for the off-ramp from southbound Highway 410, during construction of the new bridge and approaches. Site investigation for the potential temporary detours is not within the scope of this investigation and is not discussed herein.

Based on the groundwater levels observed and inferred, dewatering could be not required for construction of the proposed shallow foundation as discussed in Section 6.1.1. For the caisson construction, presence of groundwater should be considered. For dewatering requirements, findings of Wood's hydrogeological investigation and recommendations provided in the separate hydrogeological report (*as noted in Section 4.1*) should considered.

The presence of existing underground utilities at the site should be considered during design and construction. Based on the utility clearances carried out during the investigation, the underground utilities present in the areas include the watermain, bell cables, cables for the high-mast poles and storm sewers.

6.1 Foundation

Results of the investigation indicate that the use of shallow foundations (spread/strip footings) or deep foundations (using driven piles or augered cast-in-place caissons) are feasible to support the bridge foundations. The selection of the foundation type will depend on the design and performance requirements and constructability. Feasible foundations are discussed in the following sections. Comparison of the feasible foundations is listed in Table 6.1.

Foundation	Description	Advantages	Disadvantages	Risks /	Cost
Туре	Description	Advantages	Disadvantages	Consequences	Comparison
Deep foundation with driven steel piles	Steel H piles driven down to the specified depth or till the specified capacity is achieved	 Steel H piles are stronger and require less soil displacement during pile driving than other driven pile types (steel pipe, timber, and concrete). No dewatering required during pile driving. Geotechnical resistance of pile can be confirmed by pile driving records or pile driving analyzer. Low post- construction settlement. 	 Driving piles may encounter cobbles/boulders which may obstruct pile advance and/or damage piles. Variation in pile lengths could be high if the main pile driving criterion is based on the design pile resistance. 	 Risks of encountering possible cobbles/boulders in till deposits, which may require relocating piles, adding more piles, pre-augering prior to/during driving piles, etc. Risks of accurate pile length due to variation in subsurface conditions and possible presence of cobbles/boulders in till deposits, which may require some pile cutting or splicing an additional pile section during pile driving 	- Medium to high. Steel price could change significantly in a short period.
Deep foundation with augered, cast-in-place caissons	Caissons installed by augering soil, installing temporary steel casing, and filling the augered hole with re-bars and concrete to form caissons.	 Augering may allow for removing cobbles/boulders, depending on the sizes of rock fragments, if encountered. Caisson lengths can be specified. 	 For the same axial geotechnical resistance, caisson cross-sectional areas would typically be larger than those of driven steel piles. Temporary steel casing will be required to stabilize the sidewalls of the augered holes. Dewatering may be required, otherwise the tremie concrete under groundwater is necessary. Difficult to clean the bottom of the 	 Risks of borehole collapse, bottom heave / disturbance due to groundwater, which would result in reducing the side and the end bearing resistances. Risks of "necking" in caissons during pulling out the steel casing while pouring concrete, resulting in weak zones in the constructed caisson. 	- Medium to high.

Table 6.1 - Comparison of Alternative Foundation Types for Bridge Replacement

The Corporation of the Town of Caledon (2016-62) Revised Foundation Investigation and Design Report – GEOCRES 30M12-442 Proposed Bridge over Highway 410 for the Entry Ramp to Northbound Highway 410 from Highway 10 Wood Reference Number: TPB166090 May 2019

Foundation	oundation Description Advantages Disadvan		Disadvantages	Risks /	Cost
Туре	Description	Auvantages	Disadvantages	Consequences	Comparison
Foundation Type Shallow foundation	Description Support the bridge	Advantages	Disadvantages caisson, prior to installing re-bars and pouring the concrete. - Geotechnical resistance cannot be confirmed during drilling, although the exposed soil conditions during augering can confirm the soil conditions considered in the design. - The base of the footing may baye	Risks / Consequences	Cost Comparison
foundation Spread / strip footings	bridge structure by spreading its load onto ground surface.	adequate excavator to excavate the existing soils to the footing founding level during construction. - The soil conditions at the founding level can be inspected and confirmed.	footing may have to be relatively large to provide sufficient bearing resistance. - The native subgrade may be disturbed during construction. - May require significant dewatering during construction, depending on foundation and groundwater levels. -Long term settlement may exceed the design criteria, if soft cohesive soils exist below the founding level	may require significant dewatering, thereby increasing construction cost and time. -Long term settlement of the shallow foundation may become issues if difficult ground conditions are encountered.	medium.

Foundations should be designed in accordance with the latest versions of applicable design codes, manuals and guidelines (Canadian Highway Bridge Design Code (CHBDC), Canadian Foundation Engineering Manual (CFEM), etc.) using the soil parameters provided in Section 6.2.

6.1.1 Shallow Foundation

Based on the soil conditions encountered at the borehole locations, the stiff to hard clayey silt / silty clay till are present up to approximate Elevation 249.5 m (about 11.6 m below the existing ground surface at location of BH 4), below which the compact to very dense sandy silt / sand and silt / silt deposit was encountered, which was further underlain by the very dense sandy silt till deposit. As such, for preliminary design, a geotechnical reaction at Serviceability Limit States (SLS) of 175 kPa and the factored geotechnical resistance at Ultimate Limit States (ULS) of 250 kPa may be considered for design of the proposed shallow foundations founding at Elevation 257 m or below. The SLS value provided should correspond to not more than 25 mm of settlement without considering any grade raise at the approach areas. Such ULS / SLS values should be confirmed by the detailed foundation analyses once the design foundation loads and grade raises are known.

6.1.2 Deep Foundation

Based on the soil conditions encountered at the borehole locations, the proposed new bridge foundations can be supported by the deep foundations using driven piles or augered cast-in-place caissons. Construction of deep foundation should be in accordance to OPSS.PROV 903 (Construction Specification for Deep Foundations). The bearing values provided for the piles / caissons are based on semi-empirical soil parameters provided in Table 6.3. The detailed foundation analyses should be conducted during the detailed design.

Depending on the anticipated settlement induced by the designed grade raise at the bridge approaches, the potential downdrag (negative friction) should be evaluated on the piles. For design of piles, two loading cases should be considered: (i) permanent load plus downdrag (no live load), and (ii) permanent load plus live load (not downdrag).

6.1.2.1 Driven Piles

The driven steel piles (e.g., HP 310 x 110) may be considered using the following proposed axial geotechnical resistances:

Factored downward axial geotechnical resistance at Ultimate Limit States = 900 kN (applied resistance factor = 0.4)

Axial downward reaction at Serviceability Limit States = 600 kN

The SLS value provided should correspond to not more than 25 mm of settlement of the pile group without considering any grade raise. If necessary, the pile group settlement should be calculated based on the design pile group configuration.

The steel piles should be driven sufficiently into the very dense sandy silt till, preferably a minimum of 1.5 m or more. The pile tips should be equipped with adequate piles shoes to avoid potential damage during driving through the stiff to hard till. Pile driving shoes should be in accordance with relevant MTO Standard, i.e. OPSD 3000.100 (*Foundation, Piles, Steel H-Pile Driving Shoe*).

It should be noted that the possible presence of cobbles / boulders could cause shallow pile refusal. Pile driving shoes and hard driving should be planned. The vibration caused by pile driving could impact the existing structures (e.g. the existing bridge). Vibration can also be caused by other construction activities, such as excavation. Therefore, a monitoring program, including vibration monitoring, should be developed prior to start of construction to monitor settlement / movement of nearby existing structures. The monitoring program should include pre-construction, during construction and post-construction monitoring. Vibration monitoring should evaluate the impacts induced by pile driving, if any, on the nearby structures and services, especially the existing bridge.

Table 6.2 summarizes the recommended approximate pile tip elevations for preliminary design purposes. Pile capacities should be verified during pile driving at the site.

Construction of the driven piles should comply with the requirements of OPSS.PROV 903 (*Construction Specifications for Deep Foundations*).

Structure	Borehole No.	Founding Stratum	Approximate Pile Depth below Existing Ground Surface (m)	Approximate Geodetic Elevation (m)
South Abutment	BH 2		18.2±	243±
	BH 3		18.1±	243.5±
Central Pier	BH 4	Very dense sandy silt till	18.1±	243±
North	BH 5		16.3±	244±
Abutment	BH 6	-	16.3±	244.5±

Table 6.2: Pile Founding Stratum and Approximate Pile Tip Levels

6.1.2.2 Caissons

For caissons founded at the depths recommended in Table 6.2, an end bearing value of 700 kPa at SLS and the factored end bearing value of 1000 kPa at ULS may be used for the preliminary design. The SLS value provided should correspond to not more than 25 mm of settlement without

considering any grade raise. The resistance of the proposed caisson will depend on its founding depth, diameter of caisson, side friction and end bearing. The detailed foundation analyses should be conducted to estimate the adequate capacity of a group of caissons.

The coefficient of friction between the concrete and the native soils provided in Section 6.2 should be used for calculation of the skin friction values for design of caissons. For conservative design, frictional resistances from the existing fill soils and the soils within the frost penetration depth (refer to Section 6.2) should not be considered.

The spacing of the caissons should not be closer than 2.5 times the caisson diameter.

It should be noted that drilling for installing the caissons will likely encounter groundwater and cobbles / boulders at some locations. A temporary steel liner will likely be required to prevent sloughing of the surrounding soil. After inserting reinforcing steel cage and well cleaning the bottom in the caisson hole, concrete should be placed by tremie method, while pulling the steel liner out. Dewatering may be required prior to pouring concrete into the caisson, if the caisson is constructed below the groundwater levels, depending on the construction method and equipment. For concreting by the tremie method, relatively high (minimum 100 mm) slump concrete is recommended for the caissons and the liner should be withdrawn at a slow rate to prevent "necking" (intrusion of the soil from the sides of the caisson-hole into the shaft of the caisson). Use of liner will increase cost of installation of caisson, but will prevent the risk of sloughing / necking of surrounding soil during construction, and thereby, reduce the risk of construction delays, which in turn would affect construction schedule and total cost. An experienced caisson contractor should be engaged to construct caissons.

Construction of the caissons should comply with the requirement of OPSS.PROV 903 (*Construction Specifications for Deep Foundations*).

6.2 Geotechnical Parameters for Design

For the preliminary design, the unfactored soil parameters listed in Table 6.3 may be used for design the proposed retaining structures and piles, as applicable.

	Total	Stress	Effectiv	e Stress	Static	Earth P	ressure		Coefficient
	Analysis		Analysis		Coefficients ⁽¹⁾			Bulk	of Friction
Material	C (kPa)	Φ (deg)	c' (kPa)	Φ΄ (deg)	Active Ka	At- Rest K₀	Passive K _p	Unit Weight (kN/m³)	/ Adhesion between Concrete and Soil
Existing Fill	25	0	0	26	0.39	0.56	2.6	18	0.31
Stiff clayey silt / silty clay	50	0	0	28	0.36	0.53	2.8	18	0.33
Very stiff to hard clayey silt / silty clay	100	0	0	30	0.33	0.50	3.0	19	0.36
Compact to dense sandy silt / sand and silt / silt	0	30	0	30	0.33	0.50	3.0	20	0.36
Very dense sandy silt / sand and silt / silt	0	33	0	33	0.29	0.46	3.4	21	0.40
Very dense sandy silt till	0	33	0	33	0.29	0.46	3.4	21	0.40
Engineered Fill ⁽²⁾									
Granular A (OPSS.PROV 1010)	0	35	0	35	0.27	0.43	3.7	24	0.40
Granular B Type I (OPSS.PROV 1010)	0	32	0	32	0.31	0.47	3.3	23	0.40

Table 6.3 - Unfactored Static Soil Parameters for Design

Notes: ⁽¹⁾ Values based on semi-empirical relationships. For SLS, K_p values should be reduced to 1/3 of indicated value to limit lateral movement.

⁽²⁾ All engineered fill should be compacted to at least 100% SPMDD for supporting foundations.

A frost penetration depth of 1.4 m should be used of design, as per OPSD 3090.101 (Foundation Frost Penetration Depths for Southern Ontario).

Below the frost penetration depth, a modulus of horizontal subgrade reaction of 10 MN/m³ for the fill and 30 MN/m³ for the natural soils may be considered for pile design. Soil resistances within the 1.4 m frost penetration depth should not be considered.

For the preliminary design of the proposed bridge foundation, a groundwater level at Elevation 254.9 m (i.e., approximately 1 m higher than the highest groundwater level measured at BH 6) should be considered.

For assessment of soil corrosivity potential, the results of corrosivity tests provided in Section 6.5 should be considered.

Recommendation for earthquake considerations are provided in Section 6.6.

6.3 Wing Wall / Retaining Wall

To support the new approach embankments, stable slopes and / or retaining wall structures can be used. Soil retaining wall structures typically used are for the integral / semi-integral abutments with wing walls and the conventional abutments (where the superstructure is not directly connected to the substructure) with retaining wall structures (e.g., reinforced-concrete retaining wall, retained soil system (RSS), etc.). The retaining wall structures are required to support the approach embankment typically in two directions – one where the retaining wall structure is underneath the bridge deck and the other where length of the retaining wall structure is parallel to the road alignment. Where space is available, slopes can be constructed.

If the retained soil system (RSS) wall is used, the design of the RSS wall should be carried out as per the Ministry of Transportation's (MTO) RSS Design Guidelines, including the Standard Special Provisions OPSS - SSP 599S22 (March 2018) and OPSS - SSP 599S23 (August 2018), should be used for the design, supply and construction of the RSS, in addition to any contract requirements and RSS manufacturer's standards.

Backfill materials behind abutments and wing (retaining) walls should consist of non-frost susceptible, free-draining granular materials (i.e., Granular 'A' or Granular 'B' per OPSS.PROV 1010), along with the drain pipes and the weep holes, etc., to prevent build-up of the hydrostatic pressure acting behind the wall. Backfilling for RSS wall should conform to RSS Design Guidelines. Backfilling and drains for the proposed retaining walls and abutments should be constructed in accordance with OPSS 902 (*Construction Specifications for Excavating and Backfilling of Structures*), OPSD 3101.150 (*Walls, Abutments, Backfill, Minimum Granular Requirements*), OPSD 3102.100 (*Walls, Abutments, Backfill, Drain*), OPSD 3121.150 (*Walls, Retaining, Backfill, Minimum Granular Requirements*). and OPSD 3190.100 (*Walls, Retaining and Abutment, Wall Drain*). Computation of earth pressures should be in accordance with Section 6.12 – Ground Pressures of Canadian Highway Bridge Design Code (CAN / CSA-S6-14).

The wing walls or retaining structures should consider using the soil parameters provided in Table 6.3 (Section 6.2) for design. It should be noted that the design parameters provided assume relatively-level ground surface and backfill behind the retaining structure.

Slope stability analyses should be carried out for the abutments / retaining walls during the detailed design.

6.4 Approach Embankment

The proposed south approach to the new bridge will be aligned through the vegetated area beside the existing highway and the existing off-ramp from the southbound Highway 410 to the existing Highway 10. The proposed north approach to the bridge will be aligned along the existing berm. The proposed bridge and approach alignments are shown in Sheet P1 in Appendix A.

Based on the boreholes drilled at the approach areas to the new bridge, the native stiff to hard clayey silt / silty clay till was present at an elevation of about 258.6 m at location of the borehole (BH 1) drilled at the proposed south approach, and at elevation of about 259.0 m to 261.4 m at locations of the boreholes (BH 7 to BH 10) drilled at the proposed north approach. The existing clayey silt / silty clay fill overlying the native till consisted of generally very stiff to hard clayey silt / silty clay till, encountered in the existing berm located at the north of the highway. The existing fill may be suitable to be used as the subgrade for construction of the new approaches and / or the approach embankments, depending on the heights of the proposed approaches and associated pavement design requirements. Suitability of the subgrade should be confirmed by proof-rolling on site.

The design grades of the proposed new approach embankments were not available at the time of this report. The embankments should be constructed with a side slope of 2H : 1V or flatter. Based on existing sub-surface condition, settlement in the approach embankment should not be significant with the limited grade raises.

Settlement estimation and slope stability analyses should be carried out for the proposed new embankments once the details of the slopes are available.

Depending on the height of grade raise and associated long term settlement, preventive measures for reducing long-term settlement and/or improving stability (such as, pre-loading, use of light-weight fill) may be considered.

6.5 Soil Corrosivity

To determine the soil corrosivity potential with respect to concrete and steel, two selected soil samples were submitted to Maxxam Analytics Laboratory in Mississauga, and tested for pH, soluble chloride, sulphate, electrical conductivity and resistivity. The test results are summarized in Table 6.4. The Certificate of Analysis is included in Appendix E.

The Corporation of the Town of Caledon (2016-62) Revised Foundation Investigation and Design Report – GEOCRES 30M12-442 Proposed Bridge over Highway 410 for the Entry Ramp to Northbound Highway 410 from Highway 10 Wood Reference Number: TPB166090 May 2019

Soil Sample No.	рН	Electrical Conductivity µmho/cm	Resistivity (ohms-cm)	Chloride (µg/g)	Sulphate (µg/g)
BH 2 - SS 11	8.01	138	7200	<20	33
BH 6 - SS 4	7.84	176	5700	24	38

As per Table 3 "Additional Requirements for concrete subjected to sulphate attack", Clause 4.1.1.6 of CSA Standards Specification A23.1-09, any soil with a sulphate content below 0.1 % (i.e., 1,000 ppm or μ g/g) is below "moderate degree of exposure" with respect to the concrete. As such, in accordance with Table 6 of CSA A23.1-09, Type GU (general use) cement can be used for the concrete.

Based on the results of soil resistivity of analyzed soil samples, the soil corrosivity calls is considered as "*Low*" for exposed metallic structures, as per Table 3 of STP 1000, ASTM (Corrosion Testing and Evaluation: Silver Anniversary Volume, 1990).

A corrosion specialist should be retained, if necessary, to review the test results and provide relevant recommendation.

6.6 Earthquake Considerations

In conformance with the criteria in Table 4.1 (Section 4.4.3.2 – Site Properties) of the Canadian Highway Bridge Design Code S6-14 ("CHBDC S6-14"), the project site may be classified as Site Class D (Stiff Soil), based on the available borehole information.

The design values of site coefficients F(T), F(PGA) and F(PGV) should conform to Tables 4.2 to 4.9 (Section 4.4.3.3 – Site Coefficients) of CHBDC S6-14, and the design spectral acceleration, S (T) should be determined as per Section 4.4.3.4 (Design Spectral Acceleration and Displacement Values) of CHBDC S6-14.

For design of bridge, seismic performance category of the bridge should be based on the spectral acceleration, as per Section 4.4.4 of CHBDC S6-14.

The project site is located in the Southern Great Lakes Seismic Zone, as categorized by the Natural Resources Canada. According to the information provided in the website, this region has a low to moderate level of seismicity compared to the more active seismic zones to the east, along the Ottawa River and in Quebec. Over the past 30 years, on average, 2 to 3 magnitude 2.5 or larger earthquakes have been recorded in the southern Great Lakes region. Three moderate-sized (magnitude 5) events have occurred in the 250 years of European settlement of this region, all of them in the United States.

Importance category of the bridge may be designated as "major-route bridges" or as specified by the Region of Peel and/or MTO. For "major-route bridges", a consequence factor of 1.0 may be used together with a resistance factor of unity used for the foundation strengths per Section 4.6.3 of CHBDC S6-14.

Geotechnical resistance factors should be selected as per Table 6.2 of CHBDC S6-14. Geotechnical resistance factors of 0.5 for bearing and 0.8 for sliding may be used for the shallow foundation. The geotechnical resistance factors of 0.4 for axial load and 0.5 for lateral Load may be used for the deep foundation.

As per Section 4.6.5 of CHBDC S6-14. the lateral soil pressures due to seismic ground motions should be used in design of bridge abutment and retaining wall. Minimum lateral earthquake force should be calculated at the base of the structure as per Section 4.4.7.4 of CHBDC S6-14.

According to the latitude and longitude (43.741943° N and -79.835610° W) at the proposed bridge location, the estimated peak horizontal ground acceleration (PHGA) is 0.095g as obtained from the NRCan website for a 2 % probability of exceedance in 50 years as required by the CHBDC S6-14. Based on experiences for the subsurface conditions at this site, a 25 percent amplification of the ground motion may occur, resulting in an increase in the ground surface acceleration to approximately 0.12g.

Based on the sub-surface condition observed at borehole location, the liquefaction potential can be considered negligible.

In accordance with Section 4.6.5 of the CHBDC S6-14 and Section C4.6.5 of Commentary S6.1-14, the seismic horizontal coefficient (k_h) equal to 0.12 is considered in calculation of the seismic lateral earth pressure coefficients for structures which do not allow lateral yielding (i.e. the abutment walls for this structure). For structures which allow lateral yielding (i.e. the wing walls for this structure), the seismic horizontal coefficient (k_h) equal to 0.06 is considered in calculation of the seismic lateral earth pressure coefficients. The seismic active pressure coefficients (K_{AE}) and the seismic passive pressure coefficients (K_{FE}) shown in Table 6.5 may be used in design. It should be noted that these seismic earth pressure coefficients assume that the back of the wall is vertical and the ground surface behind the wall is flat. Where sloping backfill is present above the top of the wall, the lateral earth pressures under seismic loading conditions should be calculated by treating the weight of the backfill located above the top of the wall as a surcharge.

		Seismic Earth Pressure Coefficients (1)					
	Effective	Ac	tive	Passive			
Matorial	Friction Angle Φ΄ (deg)	К	AE	Кре			
Wateria		Yielding Wall	Non- yielding Wall	Yielding Wall	Non- yielding Wall		
Existing Fill	26	0.4	0.45	3.58	3.35		
Stiff clayey silt / silty clay	28	0.37	0.42	4.1	3.84		
Very stiff to hard clayey silt / silty clay	30	0.34	0.39	4.72	4.43		
Compact to dense sandy silt / sand and silt / silt	30	0.34	0.39	4.72	4.43		
Very dense sandy silt / sand and silt / silt	33	0.30	0.35	5.93	5.64		
Very dense sandy silt till	33	0.30	0.35	5.93	5.64		
Granular A (OPSS.PROV 1010)	35	0.28	0.32	7.0	6.67		
Granular B Type I (OPSS.PROV 1010)	32	0.32	0.36	5.48	5.21		

Table 6.5 - Unfactored Soil Parameters for Seismic Design

Note: All engineered fill should be compacted to at least 100% SPMDD for supporting foundations.

6.7 General Construction Comments

6.7.1 Site Preparation

Site preparation should include stripping of asphalt / topsoil, existing fill (where required), organic matter, deleterious materials and soft/loose spots, if and where encountered. The exposed subgrade should be proof-rolled to identify the weak areas. Any weak or excessively wet zones identified during proof-rolling should be sub-excavated and replaced with engineered fill per OPSS.PROV 1010 (or similar). Excavation, backfilling and compaction should be in accordance with OPSS 902 (*Construction Specification for Excavating and Backfilling*).

6.7.2 Excavation and Dewatering

All excavations should be carried out in accordance with the Ontario Health and Safety Regulations. The soils to be excavated can be classified as follows:

Fill soils	Type 3
Stiff clayey silt / silty clay	Туре 3
Compact sandy silt / sand and silt / silt	Туре 3

Very stiff to hard silty clay	Type 2
Dense to very dense sandy silt / sand and silt / silt	Type 2
Very dense sandy silt till	Type 2

Accordingly, a temporary slope not steeper than 2H:1V is required for excavations in accordance with the Ontario Health and Safety Regulations. For Type 2 soils, a 1.2 m high vertical cut at the bottom of excavation may generally be constructed. However, soils under the groundwater table, if encountered, may not be stable and flatter slopes may be required, depending on requirements of global slope stability.

Near the ground surface, occasional 3H:1V slopes may be required if any loose, surficial (Type 4) soils are encountered. If open cut cannot be carried out, a temporary shoring system may be used to limit the extent of excavations, subject to engineering design and approval. Design soil parameters are provided in Table 6.3 in Section 6.2.

Stockpiles of excavated materials and heavy construction equipment should be kept at least the same horizontal distance from the edge of excavation as the depth of the excavation to prevent slope instability, subject to confirmation by the geotechnical engineer. Care should also be taken to avoid overloading of any underground services / structures induced by stockpiles.

No major excavation difficulties are foreseen but allowance should be made for removing cobbles and possible boulders. Normal excavation equipment will likely be suitable for excavation, although special equipment may be required (e.g., impact hammer, rippers, etc.) if the rock fragments of cobbles/boulders are encountered. The terms describing the relative density (very loose, loose, compact, dense, very dense) or consistency (very soft, soft, firm, stiff, very stiff, hard) of soil strata give indications of the effort needed for excavation.

Based on the groundwater levels observed and inferred, dewatering may not be required, especially for construction of the proposed shallow foundation as discussed in Section 6.1.1. For the caisson construction, presence of groundwater should be considered. Dewatering, if required, should conform OPSS.PROV 517 (*Construction Specifications for Dewatering*), Special Provision SP 517F01 - Amendment to OPSS 517 (*Dewatering System and Temporary Flow Passage System*, dated July 2017), OPSS 902 (*Construction Specification for Excavating and Backfilling – Structures*) and Special Provision SP FOUN0003 – Amendment to OPSS 902 (*Dewatering of Structure Excavation*, dated 21 January 2019). Findings and recommendations of the hydrogeological investigation carried out by Wood, which are presented under a separate cover (*as noted in Section 4.1*), should be considered for dewatering.

6.7.3 Construction Inspection

The Contract Administrator should ensure that a quality control programme of inspection and testing is carried out during the construction phase of the project to confirm that the ground conditions encountered are consistent with design assumptions; and to confirm that the various project specifications and material requirements and handling are followed.

7.0 LIMITED SOIL CHEMICAL ANALYSIS

7.1 Limited Soil Sampling Program

Some limited soil sampling and chemical analyses was carried out during the geotechnical investigation to provide a preliminary assessment of soil quality.

Soil samples recovered from selected geotechnical boreholes were initially placed on zip bags and screened with a hand-held organic vapour surveyor (RKI Eagle 2 Gas Detector) for combustible organic vapours (COV) and total organic vapours (TOV).

The COV measurements were ranged from non-detect to 55 parts per million (ppm). TOV readings ranged from non-detect to 1 ppm. The soil samples did not demonstrate any evidence of environmental concern (i.e., staining, odours, unusual soil conditions).

Selected soil samples were submitted to Maxxam Analytics of Mississauga, Ontario ("Maxxam") for chemical analyses:

- Five (5) soil samples, plus one (1) field duplicate sample for Quality Analysis/Quality Control (QA/QC) purposes, were analyzed for selected metals and general inorganic parameters (including pH, electrical conductivity (EC), and sodium adsorption ratio (SAR)), petroleum hydrocarbons (PHCs), benzene, toluene, ethylbenzene and xylenes (BTEX);
- Four (4) soil samples, plus one (1) field duplicate sample for QA/QC purposes, were analyzed for polycyclic aromatic hydrocarbons (PAHs); and
- One (1) soil sample was analyzed for Ontario Regulation 347/90 as amended (O.Reg. 347/90) parameters including: inorganics, VOCs, benzo(a)pyrene, and PCBs for waste characterization purposes. Flammability and ignitability tests were also conducted on the soil sample.

7.2 Regulatory Framework

The chemical analyses results were evaluated with respect to the following references:

- "Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", Ontario Ministry of the Environment, Conservation and Parks (MECP), 15 April 2011:
 - Table 1 Full Depth Background Site Condition Standards (SCS) for all types of property use (Table 1 SCS).
 - Table 2 Full Depth Generic SCS in a potable groundwater condition for industrial/commercial/community property use and coarse textured soils (Table 2 SCS).
- Table 3 Full Depth Generic SCS in a non-potable groundwater condition for industrial/commercial/community property use and coarse textured soils (Table 3 SCS).
 O.Reg.347/90 analyses were compared to Schedule 4 Leachate Quality Criteria to determine if the waste would be considered leachate toxic (i.e., hazardous waste) for disposal purposes at MOECC approved receiving facilities (such as landfills).

7.3 Analytical Results

Soil samples recovered from boreholes BH3, BH5, BH7, BH9, and BH10 were analyzed for BTEX, PHCs, metals and inorganics; soil samples recovered from boreholes BH3, BH5, BH7, and BH9 were also analyzed for PAHs, as below detailed.

7.3.1 Petroleum Hydrocarbons and BTEX

As shown in Table 1 (Appendix D), BTEX and PHCs were not detected in the analyzed soil samples. Therefore, BTEX and PHC concentrations would meet the applicable SCS.

7.3.2 Metals and Inorganics

The results of the metals and inorganics analysis are summarized in Table 2 (Appendix D).

The analyzed soil samples met the applicable SCS with the following exception:

- SAR exceeded the Table 1/2/3 SCS in the soil sample recovered from BH7 SS1 (surface 0.6 mbgs).
- EC exceeded the Table 1 SCS soil samples BH7 SS1 (surface 0.6 mbgs) and BH10 SS5 (4.6-5.0 mbgs).

7.3.3 Polycyclic Aromatic Hydrocarbons

As shown in Table 3 (Appendix D), the analyzed soil samples met the applicable SCS for PAHs.

7.3.4 Ontario Regulation 347/90

Soil sample (ID – TCLP-410/10 was analyzed using the TCLP for inorganics, metals, VOCs, benzo(a)pyrene, PCBs, and ignitability.

The results of the O. Reg. 347/90 TCLP analyses and their respective Schedule 4 Leachate Quality Criteria are summarized in Table 4 (Appendix D).

Based on the analytical results, the tested parameters were determined to be within the Schedule 4 Leachate Quality Criteria for inorganics, metals, VOCs, benzo(a)pyrene, PCBs.

7.4 Conclusions and Recommendations

Based on the limited soil chemical analyses results obtained during this geotechnical investigation, the following conclusions and recommendations are made:

- 1. The management of excess soil should be based on the requirements of the MECP's Management of Excess Soil: A Guide to Best Management Practices or any other excess soils regulations that may be in place at the time of construction. These requirements would include the preparation of soil management plans and fill management plans (FMPs).
- 2. Excess soils with SAR values exceeding the Table 3 SCS can be reused at the site, with certain restrictions, including:
 - Placement below a depth of 1.5 metres below final grade or
 - Placement within roadways, except any portions located within 30 m of a surface water body or other environmentally sensitive areas
- 3. Excess soils with EC values exceeding the Table 1 SCS may not be suitable for offsite management at un-regulated receiver sites without additional characterization and management unless otherwise confirmed by the receiver site (i.e. quarries, re-use under roads, etc.). Alternatively, unsaturated, excess soils could likely be transported to MECP approved facilities for non-hazardous wastes.
- 4. The quality of excess soils generated during the widening of McLaughlin Road and the construction of east-west Spine Road is expected to be variable, and as such, soil conditions

will need to be monitored during excavation. If stockpiling of soil is not permitted during construction, additional sampling and chemical analysis should be conducted prior to initiating the construction activities.

5. This characterization was based on Wood's limited understanding of soil quality and available information at the time of the geotechnical investigation. Further assessment and/or chemical analyses may be needed depending on the soil management options and/or receiver's requirements that would be specified in a FMP authored by a Qualified Person, as defined under Ontario Regulation 153/04, as amended.

8.0 CLOSURE

The sub-soil information contained in this report should be used solely for the purpose of the preliminary foundation assessment for the proposed new bridge to be constructed over existing Highway 410, just at the north of Highway 10 / Valleywood Drive Underpass, under The Corporation of the Town of Caledon contract for Class EA for widening of McLaughlin Road and construction of East-West Spine Road.

A list of applicable construction specifications and drawings is attached.

The Limitations of Report is an integral part of this report.

This report was prepared by Shami Malla, M.Civ.Eng., P. Eng. and Alessandro Pellerito, Ph.D. C.Chem.; and was reviewed by Ian Powell, B.E.S. P.Geo., QP_{ESA} and Sen Hu, M. Sc., P. Eng.

Sincerely,

Wood Environment & Infrastructure Solutions, a Division of Wood Canada Limited

Mami Golle

Shami Malla, M.Civ. Eng., P. Eng. Senior Geotechnical Engineer

Sen Hu, M.Sc., P.Eng. Senior Associate Geotechnical Engineer Designated Key Personnel of MTO

LIMITATIONS TO GEOTECHNICAL REPORTS

- 1. The work performed in the preparation of this report and the conclusions presented herein are subject to the following:
 - a) The contract between Wood and the Client, including any subsequent written amendment or Change Order dully signed by the parties (hereinafter together referred as the "Contract");
 - b) Any and all time, budgetary, access and/or site disturbance, risk management preferences, constraints or restrictions as described in the contract, in this report, or in any subsequent communication sent by Wood to the Client in connection to the Contract; and
 - c) The limitations stated herein.
- 2. **Standard of care:** Wood has prepared this report in a manner consistent with the level of skill and are ordinarily exercised by reputable members of Wood's profession, practicing in the same or similar locality at the time of performance, and subject to the time limits and physical constraints applicable to the scope of work, and terms and conditions for this assignment. No other warranty, guaranty, or representation, expressed or implied, is made or intended in this report, or in any other communication (oral or written) related to this project. The same are specifically disclaimed, including the implied warranties of merchantability and fitness for a particular purpose.
- 3. **Limited locations:** The information contained in this report is restricted to the site and structures evaluated by Wood and to the topics specifically discussed in it, and is not applicable to any other aspects, areas or locations.
- 4. **Information utilized:** The information, conclusions and estimates contained in this report are based exclusively on: i) information available at the time of preparation, ii) the accuracy and completeness of data supplied by the Client or by third parties as instructed by the Client, and iii) the assumptions, conditions and qualifications/limitations set forth in this report.
- 5. Accuracy of information: No attempt has been made to verify the accuracy of any information provided by the Client or third parties, except as specifically stated in this report (hereinafter "Supplied Data"). Wood cannot be held responsible for any loss or damage, of either contractual or extra-contractual nature, resulting from conclusions that are based upon reliance on the Supplied Data.
- 6. **Report interpretation:** This report must be read and interpreted in its entirety, as some sections could be inaccurately interpreted when taken individually or out-of-context. The contents of this report are based upon the conditions known and information provided as of the date of preparation. The text of the final version of this report supersedes any other previous versions produced by Wood.
- 7. **No legal representations:** Wood makes no representations whatsoever concerning the legal significance of its findings, or as to other legal matters touched on in this report, including but not limited to, ownership of any property, or the application of any law to the facts set forth herein. With respect to regulatory compliance issues, regulatory statutes are subject to interpretation and change. Such interpretations and regulatory changes should be reviewed with legal counsel.
- 8. **Decrease in property value:** Wood shall not be responsible for any decrease, real or perceived, of the property or site's value or failure to complete a transaction, as a consequence of the information contained in this report.
- 9. No third party reliance: This report is for the sole use of the party to whom it is addressed unless expressly stated otherwise in the report or Contract. Any use or reproduction which any third party makes of the report, in whole or in part, or any reliance thereon or decisions made based on any information or conclusions in the report is the sole responsibility of such third party. Wood does not represent or warrant the accuracy, completeness, merchantability, fitness for purpose or usefulness of this document, or any information contained in this document, for use or consideration by any third party. Wood accepts no responsibility whatsoever for damages or loss of any nature or kind suffered by any such third party as a result of actions taken or not taken or decisions made in reliance on this report or anything set out therein. including without limitation, any indirect, special, incidental, punitive or consequential loss, liability or damage of any kind.

wood.

LIMITATIONS TO GEOTECHNICAL REPORTS

- 10. **Assumptions**: Where design recommendations are given in this report, they apply only if the project contemplated by the Client is constructed substantially in accordance with the details stated in this report. It is the sole responsibility of the Client to provide to Wood changes made in the project, including but not limited to, details in the design, conditions, engineering or construction that could in any manner whatsoever impact the validity of the recommendations made in the report. Wood shall be entitled to additional compensation from Client to review and assess the effect of such changes to the project.
- 11. **Time dependence**: If the project contemplated by the Client is not undertaken within a period of 18 months following the submission of this report, or within the time frame understood by Wood to be contemplated by the Client at the commencement of Wood's assignment, and/or, if any changes are made, for example, to the elevation, design or nature of any development on the site, its size and configuration, the location of any development on the site and its orientation, the use of the site, performance criteria and the location of any physical infrastructure, the conclusions and recommendations presented herein should not be considered valid unless the impact of the said changes is evaluated by Wood, and the conclusions of the report are amended or are validated in writing accordingly.

Advancements in the practice of geotechnical engineering, engineering geology and hydrogeology and changes in applicable regulations, standards, codes or criteria could impact the contents of the report, in which case, a supplementary report may be required. The requirements for such a review remain the sole responsibility of the Client or their agents.

Wood will not be liable to update or revise the report to take into account any events or emergent circumstances or facts occurring or becoming apparent after the date of the report.

- 12. **Limitations of visual inspections:** Where conclusions and recommendations are given based on a visual inspection conducted by Wood, they relate only to the natural or man-made structures, slopes, etc. inspected at the time the site visit was performed. These conclusions cannot and are not extended to include those portions of the site or structures, which were not reasonably available, in Wood's opinion, for direct observation.
- 13. **Limitations of site investigations**: Site exploration identifies specific subsurface conditions only at those points from which samples have been taken and only at the time of the site investigation. Site investigation programs are a professional estimate of the scope of investigation required to provide a general profile of subsurface conditions.

The data derived from the site investigation program and subsequent laboratory testing are interpreted by trained personnel and extrapolated across the site to form an inferred geological representation and an engineering opinion is rendered about overall subsurface conditions and their likely behaviour with regard to the proposed development. Despite this investigation, conditions between and beyond the borehole/test hole locations may differ from those encountered at the borehole/test hole locations and the actual conditions at the site might differ from those inferred to exist, since no subsurface exploration program, no matter how comprehensive, can reveal all subsurface details and anomalies.

Final sub-surface/bore/profile logs are developed by geotechnical engineers based upon their interpretation of field logs and laboratory evaluation of field samples. Customarily, only the final bore/profile logs are included in geotechnical engineering reports.

Bedrock, soil properties and groundwater conditions can be significantly altered by environmental remediation and/or construction activities such as the use of heavy equipment or machinery, excavation, blasting, pile-driving or draining or other activities conducted either directly on site or on adjacent terrain. These properties can also be indirectly affected by exposure to unfavorable natural events or weather conditions, including freezing, drought, precipitation and snowmelt.

During construction, excavation is frequently undertaken which exposes the actual subsurface and groundwater conditions between and beyond the test locations, which may differ from those encountered at the test locations. It is recommended practice that Wood be retained during construction to confirm that the subsurface conditions throughout the site do not deviate materially from those encountered at the test locations, that construction work has no negative impact on the geotechnical aspects of the design, to adjust recommendations in accordance with conditions as additional site information is gained and to deal quickly with geotechnical considerations if they arise.

LIMITATIONS TO GEOTECHNICAL REPORTS

Interpretations and recommendations presented herein may not be valid if an adequate level of review or inspection by Wood is not provided during construction.

14. **Factors that may affect construction methods, costs and scheduling**: The performance of rock and soil materials during construction is greatly influenced by the means and methods of construction. Where comments are made relating to possible methods of construction, construction costs, construction techniques, sequencing, equipment or scheduling, they are intended only for the guidance of the project design professionals, and those responsible for construction monitoring. The number of test holes may not be sufficient to determine the local underground conditions between test locations that may affect construction costs, construction techniques, sequencing, equipment, scheduling, operational planning, etc.

Any contractors bidding on or undertaking the works should draw their own conclusions as to how the subsurface and groundwater conditions may affect their work, based on their own investigations and interpretations of the factual soil data, groundwater observations, and other factual information.

- 15. **Groundwater and Dewatering**: Wood will accept no responsibility for the effects of drainage and/or dewatering measures if Wood has not been specifically consulted and involved in the design and monitoring of the drainage and/or dewatering system.
- 16. **Environmental and Hazardous Materials Aspects**: Unless otherwise stated, the information contained in this report in no way reflects on the environmental aspects of this project, since this aspect is beyond the Scope of Work and the Contract. Unless expressly included in the Scope of Work, this report specifically excludes the identification or interpretation of environmental conditions such as contamination, hazardous materials, wild life conditions, rare plants or archeology conditions that may affect use or design at the site. This report specifically excludes the investigation, detection, prevention or assessment of conditions that can contribute to moisture, mould or other microbial contaminant growth and/or other moisture related deterioration, such as corrosion, decay, rot in buildings or their surroundings. Any statements in this report or on the boring logs regarding odours, colours, and unusual or suspicious items or conditions are strictly for informational purposes
- 17. **Sample Disposal**: Wood will dispose of all uncontaminated soil and rock samples after 30 days following the release of the final geotechnical report. Should the Client request that the samples be retained for a longer time, the Client will be billed for such storage at an agreed upon rate. Contaminated samples of soil, rock or groundwater are the property of the Client, and the Client will be responsible for the proper disposal of these samples, unless previously arranged for with Wood or a third party.

Wood Environment & Infrastructure Solutions, a Division of Wood Canada Limited

List of Relevant Construction Specifications and Drawings

SPECIFICATION / DRAWING	TITLE
	STANDARD SPECIFICATIONS
OPSS 180.PROV (Nov/16)	General Specification for the Management and Disposal of Excess Materials
OPSS.PROV 206 (Nov/14)	Construction Specification for Grading
OPSS.PROV 209 (Nov/14)	Construction Specification for Embankments over Swamps and Compressible Soils
OPSS.PROV 501 (Nov/14)	Construction Specification for Compacting
OPSS. PROV 517 (Nov/16)	Construction Specifications for Dewatering
OPSS 539. PROV (Nov/14)	Construction Specification for Temporary Protection Systems
OPSS 802 (Nov/10)	Construction Specification for Topsoil
OPSS 803 (Apr/18)	Construction Specification for Sodding
OPSS 804 (Nov/14)	Construction Specification for Seed and Cover
OPSS 902 (Nov/10)	Construction Specifications for Excavating and Backfilling - Structures
OPSS.PROV 903 (Apr/16)	Construction Specifications for Deep Foundation
OPSS.PROV 904 (Nov/14)	Construction Specification for Concrete Structures
OPSS.PROV 905 (Nov/14)	Construction Specification for Steel Reinforcement for Concrete
OPSS.PROV 1010 (Apr/13)	Material Specifications for Aggregates – Base, Subbase, Select Subgrade, and Backfill Material
OPSS.PROV 1004 (Nov/12)	Material Specifications for Aggregates - Miscellaneous
OPSS.PROV 1860 (Apr/18)	Material Specification for Geotextiles
	STANDARD DRAWINGS
OPSD 208.010	Benching of Earth Slopes
OPSD 3000.100	Foundation, Piles, Steel H-Pile Driving Shoe
OPSD 3000.150	Foundation, Piles, Steel H-Pile Splice
OPSD 3001.100	Foundation, Piles, Steel Tube Pile Driving Shoe
OPSD 3001.150	Foundation, Piles, Steel Tube Pile Splice
OPSD 3090.101	Foundation Frost Penetration Depths for Southern Ontario
OPSD 3101.150	Walls, Abutment, Backfill, Minimum Granular Requirement
OPSD 3102.100	Walls, Abutment, Backfill, Drain
OPSD 3121.150	Walls, retaining, Backfill, Minimum Granular Requirement
OPSD 3190.100	Walls, Retaining and Abutment, Wall Drain

DRAWINGS

Drawing No. 1 Drawing No. 2 Borehole Locations and Soil Strata Soil Strata - Cross-Sections

PROPOSED SOUTH ABUTMENT

FILL

SOIL STRATIGRAPHY

SANDY SILT / SAND AND SILT / SILT

	_										
	l₿										
	문										
	DE	SIGN	-	CH	K	-	CODE	-	-	DATE	NOV. 2018
	DF	RAWN	KW	CH	K	SH	SITE	HWY 410	BRIDGE	DWG	2
_											

RECORD OF BOREHOLES

Explanation of Boreholes Record of Boreholes (BH 1 to BH 10)

EXPLANATION OF BOREHOLE LOG

This form describes some of the information provided on the borehole logs, which is based primarily on examination of the recovered samples, and the results of the field and laboratory tests. Additional description of the soil/rock encountered is given in the accompanying geotechnical report.

GENERAL INFORMATION

Project details, borehole number, location coordinates and type of drilling equipment used are given at the top of the borehole log.

SOIL LITHOLOGY

Elevation and Depth

This column gives the elevation and depth of inferred geologic layers. The elevation is referred to the datum shown in the Description column.

Lithology Plot

This column presents a graphic depiction of the soil and rock stratigraphy encountered within the borehole.

Description

This column gives a description of the soil stratums, based on visual and tactile examination of the samples augmented with field and laboratory test results. Each stratum is described according to the *MTC Soil Classification Manual*.

The compactness condition of cohesionless soils (SPT) and the consistency of cohesive soils (undrained shear strength) are defined as follows (*Ref. MTC Soil Classification Manual*):

Compactness of		Consistency of	Undrained Shear Strength
Cohesionless Soils	SPT N-Value*	Cohesive Soils	<u>kPa</u>
Very loose	0 to 5	Very soft	0 to 12
Loose	5 to 10	Soft	12 to 25
Compact	10 to 30	Firm	25 to 50
Dense	30 to 50	Stiff	50 to 100
Very Dense	> 50	Very stiff	100 to 200
		Hard	Over 200

* For penetration of less than 0.3 m, N-values are indicated as the number of blows for the penetration achieved (e.g. 50/25: 50 blows for 25 centimeter penetration).

Soil Sampling

Sample types are abbreviated as follows:

SS	Split Spoon	TW	Thin Wall Open (Pushed)	RC	Rock Core	GS	Grab Sample
AS	Auger Sample	TP	Thin Wall Piston (Pushed)	WS	Washed Sample	AR	Air Return Sample

Additional information provided in this section includes sample numbering, sample recovery and numerical testing results.

Field and Laboratory Testing

Results of field testing (e.g., SPT, pocket penetrometer, and vane testing) and laboratory testing (e.g., natural moisture content, and limits) executed on the recovered samples are plotted in this section.

Instrumentation Installation

Instrumentation installations (monitoring wells, piezometers, inclinometers, etc.) are plotted in this section. Water levels, if measured during fieldwork, are also plotted. These water levels may or may not be representative of the static groundwater level depending on the nature of soil stratum where the piezometer tips are located, the time elapsed from installation to reading and other applicable factors.

Comments

This column is used to describe non-standard situations or notes of interest.

Wood Environment & Infrastructure Solutions, a Division of Wood Canada Limited www.woodplc.com

							Bas	MTC SOIL (sed on MTC So	CLASSIFICATIC	DN n Ma	nual		E	Ontario
			MAJC	OR DIVISION		GROUP SYMBOL	TYPI	CAL DESCRIPTION	INFORMATION REQUIRED FOR DESCRIBING SOILS				LABORATORY CLASSIFICATION CRIT	ERIA
IAN 75µm)	F THE	R THAN	CLEAN GRAVELS	WIDE RANGE IN AMOUNTS OF ALL	GRAIN SIZE & SUBSTANTIAL INTERMEDIATE PARTICAL SIZE	GW	WELL GRADED MIXTURES, LITT	GRAVELS, GRAVEL-SAND LE OR NO FINES	GIVE TYPE, NAME, IF NECESSARY, INDICATE APPROX % OF SAND & GRAVEL - MAX SIZE:				C _u = D ₆₀	
ARGER TH	THAN HAL	DN LARGE	(LITTLE OR NO FINES)	PREDOMINANTLY C WITH STONE IN	ONE SIZE OF A RANGE OF SIZES TERMEDIATE SIZES MISSING	GP	POORLY GRADE MIXTURES, LITT	ED GRAVELS, GRAVEL-SAND "LE OR NO FINES	ANGULARITY, SURFACE CONDITION, & HARDNESSOF THE				GR D ₁₀	EATER THAN 4;
WEIGHT L/	FI S MORE	SE FRACTIO	GRAVEL WITH FINES (APPLICABLE	NON PLASTIC F PROCEDI	FINES (FOR IDENTIFICATION URES SEE ML BELOW)	GM	SILTY GRAVELS SAND- SILT MIX	5, POORLY GRADED GRAVEL- TURES	COARSE GRAINS, LOCAL OR GEOLOGICAL NAME & OTHER PERTINENT DESCRICTIVE				C _C = (D ₃₀) ² BET	WEEN 1 AND 3
HALF BY	GRAV	COARS	AMOUNT OF FINES)	PLASTIC FIN PROCEDI	ES (FOR IDENTIFICATION URES SEE CL BELOW)	GC	CLAYEY GRAVE GRAVEL-SAND-(LS, POORLY GRADED CLAY MIXTURES	INFORMATION, & SYMBOL IN PARENTHESIS.				D ₁₀ X D ₆₀	
ORE THAN	F THE	ER THAN	CLEAN SANDS	WIDE RANGE IN AMOUNT OF ALL IN	I GRAIN SIZE & SUBSTANTIAL NTERMEDIATE PARTICLE SIZES	SW	WELL GRADED LITTLE OR NO F	SANDS, GRAVELLY SANDS, FINES	FOR UNDISTURBED SOILS ADD INFORMATION ON				NOT MEETING ALL	RADATION REQUIREMENTS FOR GW
SOILS (MG	THAN HAL	DN SMALLE	(LITTLE OR NO FINES)	PREDOMINANTLY C WITH SOME IN	DNE SIZE OR A RANGE OF SIZES TERMEDIATE SIZE MISSING	SP	POORLY GRADE	ED SANDS, GRAVELLY OR NO FINES	STRATIFICATION, DEGREE OF COMPACTNESS, CEMENTATION, MOISTURE	IFICATION				
GRAINED	- MORE	E FRACTIO	NON PLASTIC FINES (FOR IDENTIFIC PROCEDURES SEE ML BELOW (APPLICABLE AMOUNT OF FINES) DENTIFICATION PROCEDURE ON FRACTION SMALLER THAN 425µr			SM	SILTY SANDS, P MIXTURES	POORLY GRADED SAND-SILT	CONDITION & DRAINAGE CHARACTERISTICS	ELD IDENT			ATTERBERG LIMITS BELO	W A-LINE
COARSE	SANI	COARS	Image: Constraint of the second state of the seco			SC	CLAYEY SANDS	, POORLY GRADED SAND- S		UNDER FIE			OR Ip LESS THAN	4 ABOVE A-LINE WITH Ip BETWEEN 4 AND 7 ARE BORDERLINE CASES
		IDENTIFICATION PROCEDURE ON FRACTION SMALLER THAN 425µm DRY STRENGTH (CRUSHING (CRUSHING CHARACTERISTICS) CHARACTERISTICS) CHARACTERISTICS								GIVEN	DETERMINE & SAND FROM	PERCENTAGE OF GRAVEL M GRAIN SIZE CURVE.	- ATTERBERG LIMITS ABOV	REQUIRING USE OF DUAL E A- LINE SYMBOLS
(u		N 35	BRY STRENGTH (CRUSHING CHARACTERISTICS) DILATANCY (REACTION TO SHAKING) TOUGHNESS (CON NEAR PLASTIC NONE QUICK NONE							CTORS AS	FINES (FRAC µm) COARSE CLASSIFIED	GRAINED SOILS ARE AS FOLLOWS:	WITH Ip GREATER TH	AN 7
THAN 75µr		LESS THA	Image: CRUSHING CHARACTERISTICS (REACTION TO SHAKING) NEAR PLASTIC I NONE QUICK NONE MEDIUM TO HIGH NONE TO VERY SLOW MEDIUM			ML	INORGANIC SILT SLIGHTLY PLAS	TS & SANDY SILTS OR TICITY, ROCK FLOUR	GIVE TYPE, NAME, IF NECESSARY, INDICATE DEGREE AND CHARACTER OF PLASTICITY AMOUNT	IG THE FA	LESS THAN S MORE THAN TO 12%	5% GW, GP, SW, SP 12% GM, GC, SM, SC 5% BORDER LINE	$C_u = D_{60}$	
SMALLER -			NONE QUICK NONE MEDIUM TO HIGH NONE TO VERY SLOW MEDIUM			CL	SILTY CLAYS (IN CLAYS, SANDY (NORGANIC), GRAVELLY CLAYS, LEAN CLAYS	AND MAXIMUM SIZE OF COURSE GRAINS, COLOUR IN WET CONDITION,	DENTIFYIN		CASES REQUIRE USE OF DUAL SYMBOL.	GR D ₁₀	EATER THAN 6;
WEIGHT 8		LIG	MEDIUM TO HIGH NONE TO VERY SLOW MEDIUM SLIGHT TO MEDIUM SLOW SLIGHT		SLIGHT	OL	ORGANIC SILT O ORGANIC SAND	DF LOW PLASTICITY, Y SILTS	ODOUR, IF ANY, LOCAL OR GEOLOGIC NAME & OTHER PERTINENT DESCRICTIVE INFORMATION & SYMBOL IN	URVE IN II			C _C = (D ₃₀) ² BET	WEEN 1 AND 3
N HALF BY) CLAYS	WEEN 35	NONE TO SLIGHT	SLOW TO QUICK	SLIGHT	МІ	INORGANIC CON SILT WITH CLAY CLAYEY SILTS	MPRESSIBLE FINE SANDY (OF MEDIUM PLASTICIT,	PARENTHESIS.	AIN SIZE C			D ₁₀ X D ₆₀	
ORE THA	SILT ANI	LIMIT BET AND 50	HIGH	NONE	MEDIUM TO HIGH	СІ	SILTY CLAYS (IN PLASTICITY	NORGANIC) OF MEDIUM	FOR UNDISTURBED SOILS AND INFORMATION ON STRUCTURE,	USE GR/			NOT MEETI	NG ALL GRADATION FOR SW
N) SOILS (N		LIQUID	SLIGHT TO MEDIUM	VERY SLOW	SLIGHT	OI	ORGANIC SILTY PLASTICITY	CLAYS OF MEDIUM	STRATIFICATION, CONSISTANCY IN UNDISTURBED AND					
E-GRAINED		IER THAN	SLIGHT TO MEDIUM	SLOW TO NONE	MEDIUM	МН	INORGANIC SILT MICACEOUS OR SANDY SILTS, E	TS, HIGHLY COMPRESSIBLE R DIATOMECACOUS FINE ELASTIC SILTS	MOISTURE & DRAINAGE CONDITION.				ATTERBERG LIMITS BELOV	V A- LINE
EIN		MIT GREA ⁻ 50	HIGH TO VERY HIGH	NONE	HIGH	СН	CLAYS (INORGA FAT CLAYS	NIC) OF HIGH PLASTICITY,					OR Ip LESS THAN 4	ABOVE A-LINE WITH IP BETWEEN 4 AND 7 ARE BORDERLINE CASES
		LIQUID LI	MEDIUM TO HIGH	NONE TO VERY SLOW	SLIGHT TO MEDIUM	ОН	ORGANIC CLAY	S OF HIGH PLASTICITY					ATTERBERG LIMITS ABOVE	E A- LINE REQUIRING USE OF DUAL SYMBOLS
HIGH (JRGAN	GANIC SOILS READILY IDENTIFIED BY COLOUR, ODOUR, SPONGY FEEL & FREQUEI BY FIBROUS TEXTURE		SPONGY FEEL & FREQUENTLY	Pt	PEAT AND OTH	ER HIGHLY ORGANIC SOILS					WITH IP GREATER THAN 7		
										⁶⁰ 1				
Ff	FRACTION U.S STANDARD SIEVE SIZE			ANDARD SIEVE SIZE			DEFINING RANG WEIGHT OF M	ES OF PERCENTAGE E IINOR COMPONENTS	BY	Ĭ		NA 50		
	PASSING			PASSING	RE		PERCENT	DESCRIPTOR			50			
	GRAVEL			\UL	75 mm	2	26.5 mm					40		CH 20
	۲۶ mm ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳			26.5 mm	4	.75 mm	40-50	AND		lex, lp		W _L = 35	S S S S S S S S S S S S S S S S S S S	

Ontario

MTC SOIL CLASSIFICATION MANUAL ENGINEERING PROPERTIES OF SOIL

TYPICAL NAMES OF SOIL GROUPS	GROUP SYMBOLS	PERMEABILITY WHEN COMPACTED	STRENGTH WHEN COMPACTED	COMPRESSIBILITY WHEN COMPACTED	WORKABILITY AS A CONSTRUCTION MATERIAL	SCOUR RESISTANCE	SUSCEPTIBI LIIY TO SURFICIAL EROSION	SUSCEPTIBILI TY TO FROST ACTION	DRAINAGE CHARACTERISTICS
WELL-GRADED GRAVELS, GRAVEL-SAND MIXTURES, LITTLE OR NO FINES	GW	PERVIOUS	EXCELLENT	NEGLIGIBLE	EXCELLENT	MEDIUM	NEGLIGIBLE	NEGLIGIBLE	EXCELLENT
POORLY GRADED GRAVELS, GRAVEL-SAND MIXTURES, LITTLE OR NO FINES	GP	VERY PERVIOUS	GOOD	NEGLIGIBLE	GOOD	MEDIUM	NEGLIGIBLE	NEGLIGIBLE	EXCELLENT
SILTY GRAVELS, POORLY GRADED GRAVEL- SAND-SILT MIXTURES	GM	SEMI-PERVIOUS TO IMPERVIOUS	GOOD	NEGLIGIBLE	GOOD	LOW TO MEDIUM	SLIGHT	SLIGHT	FAIR TO SEMI IMPERVIOUS
CLAYEY GRAVELS, POORLY GRADED GRAVEL-SAND-CLAY MIXTURES	GC	IMPERVIOUS	GOOD TO FAIR	VERY LOW	GOOD	MEDIUM	SLIGHT	NEGLIGIBLE TO SLIGHT	PRACTICALLY IMPERVIOUS
WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES	SW	PERVIOUS	EXCELLENT	NEGLIGIBLE	EXCELLENT	LOW TO MEDIUM	SLIGHT	NEGLIGIBLE	EXCELLENT
POORLY GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES	SP	PERVIOUS	GOOD	VERY LOW	FAIR TO GOOD	LOW TO MEDIUM	MODERATE	NEGLIGIBLE TO SLIGHT	EXCELLENT
SILTY SANDS, POORLY GRADED SAND-SILT MIXTURES	SM	SEMI-PERVIOUS TO IMPERVIOUS	GOOD	LOW	FAIR	LOW	MODERATE	SLIGHT TO MODERATE	FAIR TO SEMI IMPERVIOUS IMPERVIOUS
CLAYEY SANDS, POORLY GRADED SAND WITH SOME CLAY MIXTURES	SC	IMPERVIOUS	GOOD TO FAIR	LOW	GOOD	VERY LOW TO LOW	MODERATE TO SLIGHT	NEGLIGIBLE	PRACTICALLY IMPERVIOUS
INORGANIC SILTS AND SANDY SILTS OF SLIGHT PLASTICITY, ROCK FLOUR	ML	SEMI-PERVIOUS TO IMPERVIOUS	FAIR	MEDIUM	FAIR	VERY LOW	SEVERE	SEVERE	FAIR TO POOR
INORGANIC CLAYEY SILTS OF LOW PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, LEAN CLAYS	CL	IMPERVIOUS	FAIR	MEDIUM	GOOD TO FAIR	LOW TO MEDIUM	SLIGHT TO MODERATE	MODERATE TO SEVERE	PRACTICALLY IMPERVIOUS
ORGANIC SILTS OF LOW PLASTICITY	OL	SEMI-PERVIOUS TO IMPERVIOUS	POOR	MEDIUM	FAIR TO POOR	VERY LOW TO LOW	SEVERE	SEVERE	POOR
INORGANIC COMPRESSIBLE SILTS OF MEDIUM PLASTICITY	МІ	SEMI-PERVIOUS TO IMPERVIOUS	FAIR	MEDIUM TO HIGH	FAIR TO POOR	LOW	MODERATE	MODERATE TO SEVERE	FAIR TO POOR
INORGANIC SILTY CLAYS OF MEDIUM PLASTICITY	CI	IMPERVIOUS	FAIR TO POOR	HIGH	FAIR	LOW TO MEDIUM	SLIGHT	MODERATE TO SEVERE	SEMI IMPERVIOUS TO PRACTICALL Y
ORGANIC SILTY CLAY OF MEDIUM PLASTICITY	OI	SEMI-PERVIOUS TO IMPERVIOUS	POOR	HIGH	POOR	VERY LOW TO LOW	SEVERE	MODERATE TO SEVERE	POOR TO PRACTICALLY IMPERVIOUS
INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SANDY OR SILTY SOILS, ELASTIC SILTS	МН	SEMI-PERVIOUS TO IMPERVIOUS	FAIR TO POOR	HIGH	POOR	VERY LOW	MEDIUM	SEVERE	POOR
INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS	СН	IMPERVIOUS	POOR	HIGH	FAIR TO POOR	LOW TO MEDIUM	SLIGHT TO NEGLIGIBLE	NEGLIGIBLE	PRACT I.CALL Y IMPERVIOUS
ORGANIC CLAYS OF HIGH PLASTICITY	ОН	IMPERVIOUS	POOR	HIGH	POOR	LOW	MODERATE	NEGLIGIBLE TO SLIGHT	PRACTICALLY
PEAT AND OTHER HIGHLY ORGANIC SOILS	Pt	-	-	-	-	LOW	SEVERE	-	FAIR TO GOOD

wood

G.W.P	D	oach t	o bridge (N:484461	7 E:27	7898)		1 (DF 1	OR	RIGINA	TED E	Y MS							
DIST	Caledon HWY 410 / 10	BOF	EHO	LE TY	'PE <u>2</u> (00 mm	i diam	eter b	orehole (h	ollow ster	n)					CO	MPILE	DBY	SM	
DATUN		DAT	E	10		ber 201	18 - 16 // 1		ber 2018							— CHI	ECKE) BY		166000
PROJE	ECT Foundation investigation, Br	lage over F	iwy 4	10 for	Entry	kamp	(Hwy	10 to 1			ION, OF	N.		-		JOI	B NO.	~		100090
	SOIL PROFILE		S	SAMPL	ES	IS TER		Z	RESISTA	NCE PLOT				PLASTI	C NAT	URAL		POUF	REMA	RKS
ELEV DEPTH (m) 262 7	DESCRIPTION	STRAT PLOT	NUMBER	түре	"N" VALUES	GROUND WA CONDITION	з рертн	3 ELEVATIO	20 SHEAR ○ UNC ● QUIC 20	40 STRENG ONFINED K TRIAXIA 40	50 8 TH kPa + L × 50 8	30 1 9 FIELD LAB V/ 30 1	00 VANE ANE 00	WA1			W _L → T (%)	8 d Soll VA 8 d Soll VA	GRAIN DISTRIE (%	SIZE SUTION
262.7 262.9	100 mm Asphaltic Concrete						E											(ppm)		
0.1	brown Sand and Gravel FILL dry to wet		1	SS	29									³ 0				0/ 0		
<u>261.8</u> 0.9	brown/grey Clayey Silt / Silty Clay FILL	- vel	2	SS	13		- - - - 1 -	262 -						⁴ 0 ¹⁴ 0				0/ 0		
	some sand to sandy, trace gra	Vei				-	-	261 -						10						
			3	SS	12	-	- - 2 -	201						¹² 0	H			0/ 1	9 32 4	43 16
			4	SS	10			260 -						¹⁸ c				0/ 0		
	dark grey		5	SS	11	-	- 3 - - -							21	o			0/ 0		
258.6							- 4	259 -												
4.1	brown CLAYEY SILT / SILTY CLAY T some sand to sandy, trace gra very stiff to hard	ILL vel				-		258 -						17	26					
			6	SS	19	-	- - - 5 -							¹⁴ O				0/ 1	5 25 5	51 19
								257 -												
						-	6													
			7	SS	42	-	-							1320 ¹¹ 0				0/ 0	LL=20, PI	L=13
							- - - 7 - 7	256 -												
						-		2EF												
			8	SS	38		- - - 8 -	255 -						1218 ¹⁸ 1				55/ 1	9 33 4 LL=18, Pl	14 14 L=12
								254 -												
							- 9													
252 0			9	SS	33			252						¹⁰ O				0/ 0		
9.8	End of Borehole							200-												

+ ³, \times ³. Numbers refer to Sensitivity \circ ^{3%} STRAIN AT FAILURE

15	>
Q	Ontario

wood

G.W.P. LOCATION Vicinity of south abutment, east end (N:4844640 E:277911) 1 OF 3 DIST Caledon HWY 410 / 10 BOREHOLE TYPE 200 mm diameter borehole (hollow stem) COMPILED BY SM DATUM Geodetic DATE 17 October 2018 - 17 October 2018 CHECKED BY SH														DBY MS	
DIST	CaledonHWY 410 / 10	BOR	REHC	DLE TY	'PE _2	00 mn	n diam	eter b	orehole (hollow st	em)			C	OMPILED I	BY SM
DATU	M_Geodetic	DAT	E	17	' Octob	ber 20	18 - 17	7 Octo	ber 2018				C	HECKED B	Y <u>SH</u>
PROJ	ECT Foundation Investigation, Bridge	over H	lwy 4	10 for	Entry I	Ramp	(Hwy	10 to 1	NB Hwy 410), Cal	edon, ON.			J(OB NO.	TPB166090
,	SOIL PROFILE		s	SAMPL	.ES	Ë,		z	DYNAMIC CONE RESISTANCE PLO		TION	PLASTIC			ଅ REMARKS
ELEV DEPTH (m)	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	GROUND WAT	DEPTH	ELEVATIO	20 40 SHEAR STREN O UNCONFINEI QUICK TRIA 20 40	60 80 GTH kPa D + F (IAL × L 60 80) 100 FIELD VANE AB VANE) 100		ER CONTE 0 40		GRAIN SIZE DISTRIBUTION (%) U CR SA SI CI
0.0	brown Sand and Gravel FILL moist					Ž	/- /- /- -	261 -							
<u>260.2</u> 1.1	brown/dark grey Clayey Silt / Silty Clay FILL some sand trace gravel		1	SS	9	-	- - - - - - -	260 -				¹¹ 0		0/	0
			2	SS	16		- - - - - 2	250 -				¹² 0		0/	0
050.4	dark grey		3	SS	13	-	- - - - - - 3	-				¹⁹ 0		0/	o
3.2	brown to grey CLAYEY SILT / SILTY CLAY TILL some sand to sandy, trace to some gravel, cobbles/boulders stiff to hard		4	SS	11		-	258 -				¹⁸ 0		0/	0
			-		21		4 - - - - -	257 –				16 2 120	5		0 0 07 40 04
			5		31		- - 5 - - -	256 -					• 		0 6 27 46 21
	cobbles/boulders		6	SS	23		- - - 6 - -	255 -				⁹ 0		0/	0
							- - - - - 7 - - -	254							
			7	SS	25	-	- - - - - - 8 -					¹⁰ 0		0/	0
	grey						- - - - - - - - 9	253 -							
			8	SS	30		-	252 -				¹³ 0		0/	0
	Continued Next Page	UM.H	1		1		+ 3,	× ³ :	Numbers refer to	03%	STRAIN AT I	AILURE			

Pon	itario		F	REC	ORI	00	FΒ	OR	EHC	DLE	No.	BH	2						V	vood
G.W.P)	LOC	ATIC	DN Vi	cinitv o	f sout	h abut	ment.	east e	nd (N:4	84464	0 E:27	7911)		2 0)F 3	OF	RIGINA	TED F	AY MS
DIST	Caledon HWY 410 / 10	BOF	REHC	LE TY	(PE 20	00 mn	n diam	eter b	orehole	e (hollo	w stem	1)								SM
DATU	M Geodetic	- _ DAT	E	_ 17	7 Octob	oer 20	18 - 17	7 Octo	ber 20	18							— сн — сн	ECKE	D BY	SH
PROJE	ECT Foundation Investigation, Bridge of	over H	łwy 4	10 for	Entry I	Ramp	(Hwy	10 to I	NB Hw	y 410),	Caled	on, ON	۱.				JO	B NO.		TPB166090
	SOIL PROFILE		6		FS	~			DYNA	MIC CO	DNE PE	NETRA	TION					-	۲ ۲	
		F				ATEF		NO	RESI	20 4	10 6	<u> </u>	0 10	00	PLASTI LIMIT	C NAT WA	URAL TER TENT	Liquid Limit		REMARKS &
ELEV	DECODIDEION	- PLO	BER	Ш	TUE		EPT 1	EVAT	SHE	AR STR	RENGT	TH kPa	i	<u> </u>	W _P		w 0	WL	OIL V REA	GRAIN SIZE
DEPTH (m)	DESCRIPTION	TRAT	NUN	≽	∧ "N	ROU			0 U	NCONF UICK T	INED RIAXIAI	+ L ×	FIELD	VANE ANE	WAT	ER CO	ONTEN	T (%)	o COV/	(%)
	brown to grov				-	Ċ	m	m	:	20 4	40 6	8 0	0 10	00	2	0 4	40 6 	50 	(ppm)	GR SA SI CL
	CLAYEY SILT / SILTY CLAY TILL						Ē	251 -												
	some sand to sandy, trace to some gravel, cobbles/boulders					É	_		-											Groundwater level measured
	stiff to hard		<u>}</u>				_		-											in the monitoring on 1 Nov. 2018.
			9	SS	28		- 		-						¹⁶ 0				0/ 0	
							-	250 -												
249.7							-		-											
11.6	SAND AND SILT						:- 		-											
	compact to dense					· · ·	-12		-											
	wet		10	22	26	18	Ē	249 -	-						13				0/0	11 42 40 7
				- 55	20	∎ I			-						Ŭ				0/0	Non-plastic
							Ē		-											
							-13		-											
							÷	248 -	-											
									-											
			11	SS	33		;		-						⁹ 0				0/ 0	
							-14	0.47	-											
							E	247 -	-											
							÷		-											
							-15		-											
			<u> </u>					246 -												
			12	SS	44		_		-						¹⁶ 0				0/ 0	
						-	-		-											
							- 16		-											
2 <u>45.0</u> 16.2	grey	$\frac{1}{1}$					_	245 -	-											
	SANDY SILT TILL trace clay, trace gravel,	Y					-		-											
	cobbles/boulders verv dense		-		50/150		_								11.					
	wet to moist	ľþ	13	SS	mm		17 17		-						0				0/0	
							_	244 -	-											
							-		-											
							_		-											
		Гю					—18 _		-											
		0 0				-	_	243 -	-						<u>_</u> 1134_					
			14	SS	92		Ē		-						°°,				0/0	7 33 53 7 LL=14, PL=13
		þ					- 19	240												
		φ.					Ē	242-	1											
		0					È		-											
		6	15	SS	50/127		_								¹⁰ O				0/0	
	Continued Next Page						+ 3,	× ³ :	Numbe Sensit	ers refer vity	to	0 ^{3%}	STRAI	N AT F	AILURE	Ξ				

G.W.PLOCATION Vicinity of south abutment, east end (N:4844640 E:277911) ORIGINATED BYORIGINATED BYORIGNATED BYORIGINATED BYOR														BY MS						
DIST	Caledon	0 10 BOREHOLE TYPE 200 mm diameter borehole (hollow stem) COMPILED BY DATE 17 October 2018 - 17 October 2018 CHECKED BY DATE 17 October 2018 - 10 to NB Huy 410). Colodon ON CHECKED BY														SM				
DATU	M_Geodetic		ΓE	17	Octob	oer 201	8 - 17	Octob	oer 201	8							— СН	ECKEI) BY	SH
PROJE	ECT Foundation Investigation, Bridge	over H	Hwy 4	10 for	Entry F	Ramp	(Hwy 1	0 to N	IB Hwy	410),	Caledo	on, ON	l.				JO	B NO.		TPB166090
	SOIL PROFILE		5	SAMPL	ES	и Ши		7	DYNAN RESIS	IC CO	NE PE PLOT		TION			C NAT	URAL		our G	REMARKS
ELEV DEPTH (m)	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	GROUND WATI CONDITIONS	З DEPTH	B ELEVATION	20 SHEA ○ UN ● QL 20) 4 R STF ICONF IICK TF) 4	0 6 RENGT INED RIAXIAI 0 6	0 8 TH kPa + ×	0 10 FIELD LAB VA 0 10	VANE	UMIT WP WAT		TER TENT % O ONTEN 40 {	LIMIT WL T (%)	tip SOIL VAP dd A A A	& GRAIN SIZE DISTRIBUTION (%) GR SA SI CL
^{241.2} 20:1	End of Borehole				mm			-												
241.7	End of Borehole 50 mm dia. monitoring well with flushmound protective casing installed (depth below ground surface): Concrete: 0.0 - 0.3 m Bentonite: 0.3 - 11.6 m Sand Filter: 11.6 - 15.2 m Screen: 12.2 - 15.2 m Bentonite: 15.2 - 20.1 m				mm															

5	>
Q	Ontario

G.W.F	D	LOC	ATIC	DN <u>Vi</u>	cinity o	f south	n abut	ment,	west	end	(N:4	84464	46 E:2	27788	9)	1	OF :	3 OI	RIGINA	TED E	BY MS
DIST	CaledonHWY 410 / 10	BOF	REHC	DLE TY	/PE _2	00 mm	i diam	eter b	oreho	ole (ł	nollov	<i>w</i> ster	n)					C0	OMPILE	ED BY	SM
DATU	M Geodetic	_ DAT	E	17	7 Octob	ber 201	18 - 17	7 Octo	ber 2	018								CH	IECKEI) BY	SH
PROJ	ECT Foundation Investigation, Bridge	over H	lwy 4	10 for	Entry I	Ramp	(Hwy	10 to I	NB H	wy 4	10),	Caled	lon, C	N.		_		JC	OB NO.		TPB166090
	SOIL PROFILE		5	SAMPL	.ES	ER N		z	RES	IAMI SIST/	C CO ANCE	PLOT		ATIO >	-	PLAS	FIC NA	ATURAL	LIQUID	POUR	REMARKS
ELEV DEPTH (m) 261 6	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	GROUND WAT CONDITION	З DEPTH	3 ELEVATIC	SHE ○ ●	20 EAR UNC QUI0 20	4 STF ONF CK TF 4	0 0 RENG INED RIAXIA 0 0	50 TH kF + L × 50	80 Pa FIEL LAB 80	100 D VANE VANE 100		.TER (20		LIMIT WL IT (%)	ACCONTRACTION	& GRAIN SIZE DISTRIBUTION (%) GR SA SI CL
0.0	brown Sand and Gravel FILL moist						-	261 -													
<u>260.5</u> 1.1	brown/grey Clayey Silt / Silty Clay FILL some sand to sandy, trace gravel		1	SS	14	-	- - - - - -									⁵ 0 ¹¹ 0				0/ 0	
			2	SS	11	-	- - - - - 2	260 -								16 ¹¹ 0	25			0/ 0	6 30 45 19
			3	SS	11	-		259 -	-								>			0/0	
			4	SS	15	_		258 -	-							18	¹ 0			0/ 0	
2 <u>57.5</u> 4.0	CLAYEY SILT / SILTY CLAY TILL trace sand, trace gravel very stiff to hard						- 4 - 4 	257 -													
			5	SS	52	-	- - - - 5 -									¹³ O				0/ 0	
								256 -	-												
			6	SS	46	_		255 -	-							¹¹ 0				0/ 0	
							- 7 - - -	254 -	-												
	grey		7	SS	27	Į ⊻	- - - 8 - -									⁹ 0				0/ 0	Inferred groundwater level based on change in soil colour.
							- - - - - 9	253 -	-												
			8	SS	29		- - -	252 -							_	¹⁴ 0				0/0	
	Continued Next Page						E3	<u> </u>	Num	bers	refer	to		/							

			F	REC	ORI	D O	FΒ	OR	EHC	DLE	No.	BH	3								
G.W.F	0.	LOC	ATIC	N_Vi	cinity o	f south	n abut	ment,	west e	nd (N:4	184464	6 E:27	7889)		2 (DF 3	OR	IGINA	TED E	BY MS	
DIST	Caledon HWY <u>410 / 10</u>	BOF	REHC	DLE TY	'PE _2	00 mm	diam	eter b	orehole	e (hollo	w sten	ו)					CO	MPILE	D BY	SM	
DATU	M Geodetic	DAT	E	17	Octob	oer 201	18 - 17	7 Octo	ber 20	18							— CHI	ECKEL) BY	SH	
PROJ	ECT Foundation Investigation, Bridge	over H	łwy 4	10 for	Entry I	Ramp	(Hwy	10 to I	NB Hw	/ 410),	Caled	on, ON	۱.				JOE	3 NO.		TPB16	6090
	SOIL PROFILE		s	SAMPL	ES	r			DYNA		DNE PE	NETRA	TION						RU (DEMAR	
ELEV DEPTH (m)	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	GROUND WATEF CONDITIONS	DEPTH	ELEVATION	SHEA O U • Q	AR STF NCONF UICK T	IO E RENGT INED RIAXIA	20 E F H kPa + L × δ0 δ	30 1 FIELD LAB V/	00 VANE ANE 00	PLASTI LIMIT W _P I WAT		URAL ATER ITENT W OMTEN ONTEN	LIQUID LIMIT W _L T (%)	A SOIL VAPO	GRAIN S DISTRIBU (%)	IZE
	brown to grey CLAYEY SILT / SILTY CLAY TILL trace sand, trace gravel very stiff to hard						m - - - -	 251 –											(ppm)	GR SA S	SI UL
			9	SS	26	-	- - 11 - -								16 ¹⁶ ¢	26			0/ 0	1 5 53	31
2 <u>49.9</u> 11.7	grey SANDY SILT trace clay, trace gravel						- - - - - - - - - 12	250 -													
	wet		10	SS	10	-	-	249 -								27 _O			0/ 0		
							- 13 - -														
			11	SS	10	-	- - - 	248 -							¹⁸ c	>			0/ 0	1 39 58	2
								247 -													
						_	- - 15 - -														
			12	SS	18	-	- - - - -	246 -	-						¹⁷ 0				0/ 0		
2 <u>45.3</u> 16.2	grey SANDY SILT TILL trace clay, some gravel	0						245 -													
	very dense moist	20	13	SS	50/100 mm	-	- - 17 - -								14 ¹⁰ 0				0/ 0	17 30 46 LL=14, PL=	5 7 =13.6
							- - - - -	244 -													
		0	14	SS	50/75 mm	-		243 -							¹¹ 0				0/ 0		
		0					- - 														
		9	15	SS	50/75	_		242 -							¹¹ 0				0/ 0		
	Continued Next Page						+ 3,	× ³ :	Numbe	ers refer	to	0 ^{3%}	STRA	IN AT F	AILURE						

Ontario

35	>
V	Ontario

													-		2.0					
G.W.P		LOC	ATIC	ON <u>Vic</u>	<u>cinity o</u>	f south	abutn	nent, v	west er	nd (N:4	84464	6 E:27	7889)		30	0⊢ 3		GINA	TED E	Y MS
DIST	Caledon HWY 410 / 10	BOF	REHC	DLE TY	PE _20	00 mm	diame	eter bo	orehole	(hollo	<i>w</i> stem	ו)					_ co	MPILE	D BY	SM
DATUN	A_Geodetic	DAT	E	17	Octob	er 201	8 - 17	Octob	oer 201	8							— CH	ECKED) BY	SH
PROJE	ECT Foundation Investigation, Bridge of	over H	łwy 4	10 for	Entry F	Ramp ((Hwy 1	0 to N	IB Hwy	v 410),	Caledo	on, ON	I.				_ JOI	B NO.		TPB166090
	SOIL PROFILE		5	SAMPL	ES	ĸ		_	DYNA RESIS	MIC CO	NE PE PLOT		TION			o NATI	JRAL		OUR IG	REMARKS
		DT.	۲		ES	WATE	臣	NOITA	2	0 4	06	60 8	0 10	00	LIMIT	CON	TER TENT	LIQUID	. VAP(EADIN	& GRAIN SIZE
	DESCRIPTION	AT PL	JMBE	ΓΥΡΕ	VALU		DEP	ELEV	SHEA O UI	R STF	RENGT	TH kPa +	FIELD	VANE	vv _P		>		SOIL	DISTRIBUTION
(m)		STR	z		z	GRO			• Q			L X		NE	WAT		NTEN 0 6	T (%)	COV/ TOV	(%)
220.5	End of Borehole				mm		_m	m	2		0 0				2				(ppm)	GR SA SI CL

13	>
V	Ontario

wood

OWF LOCATION LOCATION Control for direction (N454402 E2728b)				-		• • •			••••					<u> </u>		1 (
DET	G.W.P). 	LOC	CATIC	ON <u>Vi</u>	<u>cinity c</u>	of pier l	ocatio	on (N:4	18446	62 E:27	7884)				10		OF	RIGINA	TED E	3Y_MS
DATUM feeded	DIST	Caledon HWY 410 / 10	BOF	REHO	DLE TY	/PE _2	00 mm	n diam	eter b	oreho	le (holle	ow ster	n)					cc	OMPILE	ED BY	SM
PROJECT Foundation involupion. Bindp. over Hwy 40 for Erry fam; (Hey 10 to NH Hwy 40, Calced on, N) NOR NO PERMEMENDATION Soll PROFILE	DATU	M Geodetic	_ DAT	E	18	3 Octob	ber 20	18 - 18	3 Octo	ber 2	018							C⊦	IECKE) BY	SH
SOIL PHOFILE SAMPLES End of the second seco	PROJE	ECT Foundation Investigation, Bridge	over H	-lwy 4	10 for	Entry	Ramp	(Hwy	10 to I	NB H	vy 410)	, Caled	lon, Ol	N.				JC	B NO.		TPB166090
Stand and Growel FLL content log grow Stand and Growel FLL content log growel FLL content log grow Stand and Growel		SOIL PROFILE			SAMPL	ES	щ			DYN RES	AMIC C	one pe E plot		ATION			- NA			DUR G	REMARKS
IPUC DisaccaP10N 0 <td></td> <td></td> <td>Ы</td> <td>~</td> <td></td> <td>S</td> <td>VATE</td> <td>Ŧ</td> <td>NOIT</td> <td></td> <td>20</td> <td>40</td> <td>60</td> <td>80</td> <td>100</td> <td>LIMIT</td> <td>C W</td> <td>ATER</td> <td>LIQUID</td> <td>VAPC</td> <td>&</td>			Ы	~		S	VATE	Ŧ	NOIT		20	40	60	80	100	LIMIT	C W	ATER	LIQUID	VAPC	&
upper international state isolation internation internation internation international state is	ELEV	DESCRIPTION	T PL(ABEF	PE	ALUE		DEPT	EVA	SHE	AR ST	RENG	TH kP	a		W _P		w -o	WL	SOL	GRAIN SIZE DISTRIBUTION
22111 120 mm Asphaltic Concetto m m m 20 40 00 1000 64 6.4 5 Sende 1000000000000000000000000000000000000	DEPTH (m)		STRA	D Z	F	> Z	SROL CO			•	JNCON QUICK ⁻	FINED FRIAXIA	+ L ×	FIELC) VANE /ANE	WAT	FER C	ONTEN	NT (%)	COV/	(%)
2010 10 2000 See and Grevel File and Grevel File See and Grevel File	261.1	120 mm Apphaltic Concrete	0,				0	m	m		20	40	60	B0 ·	100	2	20	40	60	(ppm)	GR SA SI CI
2005 Sand and Green Fill 1 <t< td=""><td>0.1</td><td>brown</td><td>_</td><td></td><td></td><td></td><td></td><td>E</td><td>201-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td></t<>	0.1	brown	_					E	201-	-										1	
200 Image: standy, ince gravel, ince	260.5	Sand and Gravel FILL cobbles						-		-											
Clayey Sit / Sit Cay FILL some same same same, and same same same same same same same same	0.6	brown/grev					1	-		_											
250 2 35 10 1°0 0°0 20 CLAYED SILT SILT OF GAVE 4 35 10 20 CLAYED SILT OF GAVE 4 4 5 10 4 85 10 1°0 0°0 0°0 9 20 10 1°0 0°0 0°0 9 20 10 1°0 0°0 1°0 0°0 10 10 1°0 0°0 1°0 0°0 10 10 1°0 0°0 0°0 10 10 1°0 0°0 10 10 1°0 0°0 10 10 1°0 0°0 10 10 1°0 0°0 10 10 1°0 0°0 10 10 1°0 0°0 10 10 1°0 0°0 10 10 10 1°0 0°0 10 10 10 10 1°0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 <		Clayey Silt / Silty Clay FILL		1	SS	18		- 1	260 -	-						¹¹ 0				0/ 0	
250 20 20 20 20 20 20 20 20 20 2		trace organics						Ē	200												
2200 200 CLAYE VICUATION Very stiff to hard							-	F		-											
2890 brown to gev CAYEY SILT VILT TOLATILL Very slift to hard grey grey Contract Marge				2	SS	10		E		-						¹¹ 0				0/ 0	
2.1 CLAVEY SULT (1) HYCAV TILL troes and, Tice gradeling 1	259.0	brown to grou		-				- 2	259 -												
urace sand, trace grave 3 8 23 4 55 13 258 10 10 0 0 0 4 55 13 4 55 13 4 257 10 10 0 0 0 9 9 5 28 10 10 10 0 0 0 1 4 55 18 10 10 10 0 0 1 4 55 28 10 10 10 0 0 1 4 257 10 10 0 0 0 1 1 1 1 1 10 10 0 1 1 1 1 1 10 10 0 1 1 1 1 1 10 10 0 1 1 1 1 1 10 10 10 1 1 1 1 1 10 10 10 1 1 1 1 1 10 10 10 1 1 1 1 1 1 10 10	2.0	CLAYEY SILT / SILTY CLAY TILL						-	200	-											
grey		very stiff to hard		3	SS	23		-								12 _O				0/ 0	
grey • • • • • • • • • • • • • • •								F		-											
Image: solution of the soluti								- 3	258 -	1											
Grinuel Net Page				4	SS	18		-		-						¹³ O				0/ 0	
grey								E]											
grey i								-		-											
grey								- 4	257 -]											
grey i								F		-											
grey improve				1				E		-											
grey				5	SS	28		F								¹² O				0/ 0	
grey						20		- 5	256 -	1	_							<u> </u>			
grey grey <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>E</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>								E		-											
grey 6 SS 20 6 255 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 25 9 9 9 25 9 9 25 9 9 25 9 9 25 9 9 25 9 9 25 9 9 25 9 9 25 9 9 25 9 9 25 9 9 25 9 9 25 9 9 25 9 9 25 9 9 25 9 25 9 25 9 25 9 25 9 25 9 25 9 25 9 25 9 25 9 25 9 25 9 25 9 25 10 10 10 10 10 10 10 10 10<							$\overline{\Delta}$	F		-											Inferred
Continued Next Page		grey						E													groundwater level based on
Continued Next Page								- 6	255 -	1	_										change in soil colour.
Continued Next Page +3, x3; Numbers refer 0,3% STEALNA LEALURE				6	SS	20		E		-						⁹ 0				0/ 0	
Continued Next Page				<u> </u>				F		-											
Continued Next Page								E		-											
Continued Next Page							1		254 -	1			-	-		-	-	+			
Continued Next Page							1	F		-											
Continued Next Page -3. × 3: Numbers refer to 0.3 × 64 × 26				1			-	È		-											
Continued Next Page Continued Next Page SS 24 Image: Stream of the s				7	SS	43		E		-						15 2 ¹² 0	в Н			0/ 0	3 7 64 26
Continued Next Page Continued Next Page SS 24 Image: Page				╞			-	E 8	253 -	1			-			-	-	+			
Continued Next Page + ³ , × ³ ; Numbers refer to 0,3% STRAIN AT FAILURE							1	F		1											
Continued Next Page							1	Ē		-											
$\begin{array}{ } \hline \\ \hline $							1	ŧ,		-											
Continued Next Page 8 SS 24 1 1 1 150 0/0 How Strain Next Page + 3. × 3: Numbers refer to 0.3% STRAIN AT FAILURE 0/0 0/0				-			-	E 9	252 -	1								+		1	
Continued Next Page + 3. × 3: Numbers refer to 0.3% STRAIN AT FAILURE				8	SS	24	1	F		-						¹⁵ 0				0/ 0	
Continued Next Page + 3 .× 3: Numbers refer to 0.3% STRAIN AT FAILURE				╞			-	E		-											
Continued Next Page + 3 . X 3. Numbers refer to O 3% STRAIN AT FAILURE								F		-						1					
	i	Continued Next Page						+ 3	× ³ :	Num	ers refe	er to	0 3%	STRA	ΝΑΤ		=				

G.W.P		LOC	ATIC	N <u>Vic</u>	<u>inity o</u>	f pier l	ocatio	n (N:4	844662 E:27788	34)		2 0	F 3	ORIGINA	TED E	BY MS
DIST	CaledonHWY 410 / 10	BOF	REHO	LE TY	PE _2	00 mm	diam	eter b	orehole (hollow s	stem)				COMPILE	D BY	SM
DATU	M_Geodetic	DAT	E	18	Octob	ber 201	18 - 18	3 Octo	ber 2018					CHECKE) BY	SH
PROJE	ECT Foundation Investigation, Bridge o	over H	lwy 4	10 for	Entry F	Ramp	(Hwy	10 to I	NB Hwy 410), Ca	aledon, ON				JOB NO.		IPB166090
	SOIL PROFILE	-	s	SAMPL	ES	IS TER		z	RESISTANCE PI			PLASTIC	NATUR WATE		POUR	REMARKS
ELEV DEPTH (m)	DESCRIPTION	STRAT PLOT	NUMBER	түре	"N" VALUES	GROUND WA	B DEPTH	B ELEVATIO	20 40 SHEAR STREM O UNCONFINE QUICK TRIA 20 40	60 80 NGTH kPa ED + F XIAL × L 60 80	FIELD VANE AB VANE 100	WATI	CONTE W CONTE CON ER CON	NT LIMIT WL TENT (%) 60	⊜ d Soll VA	& GRAIN SIZE DISTRIBUTION (%) GR SA SI CI
	brown to grey CLAYEY SILT / SILTY CLAY TILL trace sand, trace gravel very stiff to hard						-	251 -								
			9	SS	30	-	- 11	250 -				¹⁵ 0			0/0	
249. <u>5</u> 11.6	grey SANDY SILT trace clay, trace gravel compact to dense						- - - - - - - - - - - - - - - - - - -	249 -							-	
	wet		10	SS	12							¹⁸ 0			0/ 0	8 31 55 6 Non-plastic.
							13	248 -							-	
			11	SS	13	-	- - - 14	247 -				²⁰ c)		0/ 0	
							- - - - -									
			12	SS	39	-		246 -				¹³ O			0/ 0	
244.9	OTEV					-	- - 	245 -							-	
10.2	SANDY SILT TILL trace clay, trace to with gravel very dense moist	0	13	ss	51	-	- - - - -					14 ⁹ 0			0/ 0	27 26 41 6
		0				-	- - -	244 -								LL=14, PL=13.9
						-	- 	243 -							-	
		¥	14	SS	55		- - - - - - -	0.15				¹¹ 0			0/0	
		0						242 -								
							-									

ag

Ontario

+ ³, \times ³: Numbers refer to Sensitivity

 $^{\circ}$ 3% STRAIN AT FAILURE

WOOO

WOOD.

		1.00	·^			fniarl			24466		7004)		-		3 0)F 3				
G.W.P	Colodon			ля <u> </u>		$\frac{1}{1} \frac{\text{pier id}}{1}$	diamo	<u>1 (N:48</u>	<u>54400</u> 4	<u>(hollo)</u>	<u>(884)</u>	2)					OF	RIGINA	TEDE	SM SM
DIST	HWY 410 / 10	- ^{BUF}		۲۱ ⊐_لر 19	$PE \underline{2}$	or 201	ulaine 8 - 18		r = 101e		w sten	1)					CC	MPILE	DBY	
DATU		_ DAT	E				0 - 10										— CH	ECKE) BY	
PROJE	ECT Foundation Investigation, Bridge	over H	-lwy 4	10 for	Entry F	Ramp	(Hwy 1	0 to N	IB Hwy	v 410),	Caled	on, ON	l.				JO	B NO.		TPB166090
	SOIL PROFILE		S	SAMPL	ES	R		_	DYNA RESIS	MIC CO TANCE	NE PE		TION			o NAT	URAL		our IG	REMARKS
		ot	~		S	VATE	E	NOLE	2	0 4	0 6	8 0	0 10	00	LIMIT	C WA	TER ITENT	LIQUID	VAP(ADIN	&
ELEV	DESCRIPTION	TPLO	ABEF	Ä	ALUE		DEPI	EVA	SHEA	R STF	RENGT	TH kPa	l		W _P		w 0	WL	SOIL	GRAIN SIZE
DEPTH (m)	DESCRIPTION	TRA	Ŋ	F	> 	ROL CON			୦ UI • ହା	VCONF	INED RIAXIAI	+ L ×	FIELD	VANE ANE	WAT	ER CO	ONTEN	T (%)	cov/	(%)
, í		0	15		=	σ	m	m	2	0 4	0 6	8 0	0 10	00	13 13	0 4	40 (50 	TOV (ppm)	GR SA SI CL
240.8		φ[]	15	55	85/280 mm		-	241							0				0/0	
20.2	End of Borehole																			

Ontario	
---------	--

wood

DIST Caledon HWY 410 10 DBREHOLE TYPE 2000 mm diameter forchelle (tobby stem) COMPLED IN Selection DATUM Globalization DAT 11 November 2018 - 1 November 2018 -	G.W.P	·	LOC	ATIC	N <u>Vi</u>	cinity o	of north	abutr	nent, e	east e	nd (N:4	84470	0 E:27	<u>7876)</u>		1 0)F 3	OF	RIGINA	TED E	BY MS
UNUM recome. OH Inventional and introduce 2u/o OH Inventional and introduce 2u/o OH <	DIST	Caledon HWY 410 / 10	BOF	REHC	LE TY	'PE <u>2</u>	00 mm	diam	eter b	oreho	e (hollo	w sten	n)					_ CC	OMPILE	D BY	SM
Solid PROFILE Solid PROFILE<		CT Foundation Investigation. Bridge	_ DAT	E Iwv 4	10 for	Entry	Ramp	(Hwv	10 to N		2018 N 410)	Caled	on. ON	٨.				– CH) BY	<u></u> ТРВ166090
LLE Description Easy of the second s						====		1		DYN		DNE PE	NETRA					_ JO	BNU.	R	
0.0 600 mm Togool / Organic mixed soll 1A A8 4 2 95 0 <td>ELEV DEPTH (m) 260.3</td> <td>DESCRIPTION</td> <td>STRAT PLOT</td> <td>NUMBER</td> <td>ТҮРЕ</td> <td>"N" VALUES</td> <td>GROUND WATER CONDITIONS</td> <td>B DEPTH</td> <td>B ELEVATION</td> <td>SHE</td> <td>AR ST JNCONI QUICK T 20</td> <td>E PLOT</td> <td>50 8 TH kPa + L × 50 8</td> <td>30 A FIELC LAB V 30</td> <td>100 VANE (ANE 100</td> <td>PLASTI LIMIT W_P I WAT</td> <td></td> <td></td> <td>LIQUID LIMIT WL IT (%)</td> <td>B A SOIL VAPOL</td> <td>REMARKS & GRAIN SIZE DISTRIBUTION (%) GR SA SI CL</td>	ELEV DEPTH (m) 260.3	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	GROUND WATER CONDITIONS	B DEPTH	B ELEVATION	SHE	AR ST JNCONI QUICK T 20	E PLOT	50 8 TH kPa + L × 50 8	30 A FIELC LAB V 30	100 VANE (ANE 100	PLASTI LIMIT W _P I WAT			LIQUID LIMIT WL IT (%)	B A SOIL VAPOL	REMARKS & GRAIN SIZE DISTRIBUTION (%) GR SA SI CL
2294 1 some day most days FLL some day most days FLL some sand, trace gravel 10 AS 10	0.0	600 mm Topsoil / Organic mixed soil		1A	AS			-	260 -							18 _C				0/ 0	
2531 10000 16 grey 3 58 24 20 10000 16 grey 1522 10000 16 grey 0 <t< td=""><td>259.6 0.7</td><td>brown Silty Sand and Gravel FILL some clay moist</td><td></td><td>1B 2</td><td>AS SS</td><td>10</td><td></td><td>- - - - - 1 -</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>¹³0 ¹⁰0</td><td></td><td></td><td></td><td>0/ 0 0/ 0</td><td></td></t<>	25 9.6 0.7	brown Silty Sand and Gravel FILL some clay moist		1B 2	AS SS	10		- - - - - 1 -								¹³ 0 ¹⁰ 0				0/ 0 0/ 0	
2281		Clayey Silt / Silty Clay FILL some sand, trace gravel		3	SS	24	-		259 -							¹² O				0/ 0	
grey g	2 <u>58.1</u> 2.2	brown to grey CLAYEY SILT TILL trace to with sand, trace gravel stiff to very stiff		4	SS	27	-		258 -							152: ¹¹ 0	2			0/ 0	6 29 48 17 LL=22, PL=15
grey g								- 3	257 -												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								- - - - 4													
grey 6 SS 19 7 SS 20				5	SS	14	_	- - - - - - 5	230							⁹ 0				0/ 0	
6 SS 19 6 SS 19 7 SS 20		grey					Ţ		255 -	-										0/ 0	Inferred groundwater level based on
				6	SS	19		- 6 	254 -							⁹ O				0/ 0	change in soil colour.
								- - - - - -	253 -												
				7	SS	20	-	- - - - - 8 -								¹⁵ 0				0/ 0	
251.6	2 <u>51.6</u> 8.7	grey SANDY SILT / SILT						- - - - - 9	252 -												
compact to very dense moist to wet		compact to very dense moist to wet		8	SS	27			251 -							1179 ¹⁶ 4				0/ 0	1 2 88 9 LL=19, PL=17
Continued Next Page		Continued Next Page					<u> </u>	L 3	<u> </u>	Numt	ers refe	r to		010							

Por	itario		F	REC	ORI		FΒ	OR	EHO	OLE	No	. BH	5						V	vood
G.W.F)	_LOC	ATIC	N <u>Vi</u>	cinity o	f north	abutr	nent, e	east e	nd (N:4	84470	0 E:27	7876)		2 (DF 3	OF	RIGINA	TED E	BY MS
DIST	CaledonHWY 410 / 10	BOF	REHC	DLE TY	'PE _2	00 mm	diam	eter b	orehol	e (hollo	w ster	n)					CC	MPILE	D BY	SM
DATU	M Geodetic	DAT	Ē	_1	Novem	ber 20	18 - 1	Nove	mber	2018							— СН	ECKEI) BY	SH
PROJ	ECT Foundation Investigation, Bridge	e over H	Hwy 4	10 for	Entry I	Ramp	(Hwy	10 to I	NB Hw	y 410),	, Caled	lon, Ol	۱.				JO	B NO.		TPB166090
	SOIL PROFILE		5	Sampl	.ES	ATER NS		NO	DYN/ RESI	AMIC CO STANC	ONE PE E PLOT			00	PLASTI	C NAT	URAL			REMARKS
ELEV DEPTH (m)	DESCRIPTION	STRAT PLOI	NUMBER	ТҮРЕ	"N" VALUES	GROUND W/ CONDITIO	а рертн	3 ELEVATI	SHE ○ L ● (AR STI JNCONF QUICK T 20	RENG FINED RIAXIA	TH kPa + L ×	FIELD LAB V	VANE ANE 00	W _P WAT			w∟ T (%)	VV NOS COIL V VOO VOOL V	GRAIN SIZE DISTRIBUTION (%) GR SA SI CL
	grey SANDY SILT / SILT trace clay, trace gravel compact to very dense moist to wet		· · · ·			-		250 -												
	wet		9	SS	11	-	- 	249 -								260			0/ 0	
							- - - 													
			10	SS	57	-		248 -							90				0/ 0	
			•				-	247 -												
	sand		11	SS	42	-	- 	246 -							¹⁶ 0				0/ 0	4 76 17 3 Non-plastic.
2 <u>45.5</u> 14.8	grey SANDY SILT TILL trace to some clay, trace gravel				50/75		- - - - - - 15 -								1134					3 35 55 7
	very dense wet to moist		12		mm		-	245 -							"d				0/0	LL=14, PL=13
		0 \	•					244 –												
		0.0	13	SS	50/75 mm	-	- 17 	243							110				0/ 0	
							- - - - 													
	clayey silt	0 	14	SS	88			242 -							1621 ¹² 0	1			0/ 0	5 7 70 18 LL=21, PL=16
			v				- 19 	241 -												
	Continued Next Page	10	15	SS	50/100										¹² 0				0/ 0	

+³,×³: Numbers , Sensitivity

[%] STRAIN AT FAILURE 0

35	>
V	Ontario

wood

	G.W.P LOCATION Vicinity of north abutment, east end (N:4844700 E:277876) ORIGINATED BY_MS														3 C)F 3				
G.W.P		LOC	ATIC	N <u>Vic</u>	cinity of	f north	abutn	<u>ient, e</u>	ast en	<u>d (N:48</u>	344700) E:277	7876)				OR	RIGINA	TED E	Y MS
DIST	Caledon HWY 410 / 10	BOR	REHC	DLE TY	PE <u>20</u>)0 mm	diame	eter bo	rehole	(hollo	v stem)					_ CO	MPILE	DBY	SM
DATU	M_Geodetic	DAT	E	_11	Novem	ber 20	18 - 1	Nove	mber 2	:018							— CH	ECKE) BY	SH
PROJE	ECT Foundation Investigation, Bridge o	ver H	lwy 4	10 for	Entry F	Ramp (Hwy 1	0 to N	IB Hwy	410),	Caledo	on, ON					JO	B NO.		TPB166090
	SOIL PROFILE		5	SAMPL	ES	ц			DYNA RESIS	MIC CO TANCE	NE PEI PLOT		TION			- NAT	URAL		our G	REMARKS
		oT	~		ŝ	VATE ONS	Ξ	NOIL	2	04	06	0 8	0 10	00	LIMIT	WA CON	TER TENT	LIQUID	VAP(ADIN	&
ELEV	DESCRIPTION	T PL(ABEF	ΡE	ALUE		DEPI	-EVA	SHEA	R STF	RENGT	HkPa			W _P		• •——	WL	SOIL	GRAIN SIZE
DEPTH (m)		STRA	Ŋ	F	, z	SROL		Π	0 U1 ● Q1	JICK TE	INED RIAXIAL	+ . ×	FIELD LAB VA	VANE NE	WAT	ER CO	ONTEN	T (%)	COV/	(%)
<u> </u>					mm	0	m	m	2	0 4	06	0 8	0 10	00	2	0 4	10 E	50 	(ppm)	GR SA SI CL
2 2 0:∮	End of Borehole																			

			F	REC	ORI	0 0	FΒ	OR	EHC)LE I	No.	BH	6							
G.W.P		LOC	ATIC	DN <u>Vi</u>	cinity o	f north	n abut	ment,	east en	d (N:48	44697	7 E:27	7849)		1 C	DF 3	_ 0F	RIGINA	TED E	BY MS
DIST	CaledonHWY 410 / 10	BOF	REHC	DLE TY	/PE _2	00 mm	n diam	leter b	orehole	(hollow	stem)					_ cc	MPILE	D BY	SM
DATU	M_Geodetic	_ DAT	E	_16	6 Octob	ber 201	18 - 1	7 Octo	ber 201	18							— СН	ECKE) BY	SH
PROJE	ECT Foundation Investigation, Bridge	over H	-lwy 4	10 for	Entry I	Ramp	(Hwy	10 to I	√B Hwy	/ 410), C	Caledo	on, ON	l.				_ JO	B NO.		TPB166090
	SOIL PROFILE		5	SAMPL	ES	к			DYNA RESIS	MIC CON	NE PEI PLOT		TION			- NATI	IRAI		DUR G	REMARKS
<u>ELEV</u> DEPTH (m)	DESCRIPTION	STRAT PLOT	NUMBER	TYPE	"N" VALUES	ROUND WATE CONDITIONS	DEPTH	ELEVATION	2 SHEA 0 UI • Q	R STRENCONFINUICK TR	6 ENGT NED IAXIAL	0 8 H kPa + - ×	0 1 FIELD LAB V	00 VANE ANE				LIQUID LIMIT WL T (%)	AC SOIL VAPC	GRAIN SIZE DISTRIBUTION (%)
260.7 0.0	brown Sand and Gravel / Gravelly Sand FILL moist		1	SS	7		 	m	2	20 40	6	0 8	0 1	00	2 ⁵ 0	0 4	0 6	50	(ppm) 0/ 0	GR SA SI CL
<u>259.8</u> 0.9	brown/grey Clayey Silt / Silty Clay FILL		2	SS	10		- - - - - 1	260 -							¹³ 0				0/ 0	
258.9	some sand, trace gravel		3	SS	15		-	259 -							¹³ 0				0/ 0	
1.0	CLAYEY SILT / SILTY CLAY TILL some to with sand, trace to some gravel, cobbles/boulders stiff to hard					-	2 		-						152	3				
			4	SS	19		- - 3 	258 -	-							-1			0/0	4 27 51 18
	cobbles/boulders		5	SS	49		-	257 -							100				0/0	Hard augering
	grey						- 4 - 4 		-											
			6	SS	31		- - - - 5	256 -	-						100				0/0	
							-	255 -	-											
	cobbles/boulders		7	SS	16	-	- 6 - - - -		-						1319 ¹¹ d				0/ 0	12 29 42 17 LL=19, PL=13
							- - - 7 - - -	254 -												Groundwater level measured in the monitoring well on 2 Nov. 2018.
			8	SS	19		- - - - - 8	253 -	-						¹⁸ C				0/ 0	
							-	252 -												
				66	20		- 9 - -		-						15				0/0	
			9	55	29			251 -							-0				0/0	
	Continued Next Dese	L I A U	ধ	i	1			1						1				1		ı

Continued Next Page

Ontario

+ ³, \times ³: Numbers refer to Sensitivity

0^{3%} STRAIN AT FAILURE

wood

GW.P. LOCATION_Mainly of north abuttment_east and (N4844802 E277849) 2 OF 3 ORIGINATED DIST Caedoon HWY 410/10 BOREHOLE TYPE 200 mm diameter borehole (hollow stem) COMPLED B DATUM_Geodetic Datum Solid Processor Datum Caedoon ON JOB NO Solid PROFILE Solid Processor Solid Processor Solid Processor Datum Complexity and the processor JOB NO Solid Profile	wood	V					6	BH	No.	DLE	EHC	ORI	F B	00	ORI	REC	F		Dntario	Ont
DIST Caladion HWY 410 / 10 BOREHOLE TYPE 200 mm diameter borehole (hollow stem) COMPLED B DATUM Code DATE 16 October 2018 COHECKED PN CHECKED PN PROJECT Foundation Investigation. Bridge over Hwy 101 for Entry Ramp (Hwy 10 to NB Hwy 10). Caladion, ON UB NO. UB NO. SOL PROFILE SAMPLES By 90 K to 10 By 90 K to 10 <t< td=""><td>ED BY MS</td><td>NATED</td><td>_ ORIGIN/</td><td>DF 3</td><td>2 (</td><td></td><td>7849)</td><td>7 E:277</td><td>344697</td><td>d (N:48</td><td>east en</td><td>nent, e</td><td>abutr</td><td>f nortl</td><td>cinity o</td><td>N<u>Vi</u></td><td>ATIC</td><td>LOC</td><td>/.P</td><td>G.W.P.</td></t<>	ED BY MS	NATED	_ ORIGIN/	DF 3	2 (7849)	7 E:277	344697	d (N:48	east en	nent, e	abutr	f nortl	cinity o	N <u>Vi</u>	ATIC	LOC	/.P	G.W.P.
DATUM Geodelic DATE 16 October 2018 - 17 October 2018 CHECKED BY PROJECT Foundation Investigation, Bridge over Hwy 410 for Entry Ramp (Hwy 10 to NB Hwy 410), Caledon, ON. JOB NO. JOB NO. SOLL PROFILE SAMPLES SWEED BY Bridge over Hwy 410 for Entry Ramp (Hwy 10 to NB Hwy 410), Caledon, ON. JOB NO. JOB NO. ELEV DESCRIPTION Bridge over Hwy 410 for Entry Ramp (Hwy 10 to NB Hwy 410), Caledon, ON. Internot Marting (Job NB Hwy 410), Caledon, ON. JOB NO. 200.0 DESCRIPTION Bridge over Hwy 410 for Entry Ramp (Hwy 10 to NB Hwy 410), Caledon, ON. Job NB NO. Job NB NO. 200.0 DESCRIPTION Bridge over Hwy 410 for Entry Ramp (Hwy 10 to NB Hwy 410), Caledon, ON. Job NB NO. Job NB NO. 200.0 DESCRIPTION Bridge over Hwy 410 for Entry Ramp (Hwy 10 to NB Hwy 410), Caledon, ON. Job NB NO. Job NB NO. Job NB NO. 200.0 DESCRIPTION Bridge over Hwy 410 for Entry Ramp (Hwy 10 to NB Hwy 410), Caledon, ON. Job NB NO. Job ND NB NO. Job ND NB NO. 200.0 DESCRIPTION Bridge over Hwy 410 for Entry Ramp (Hwy 10 to NB Hwy 410), Caledon, ON. Job ND NB Hwy 410, ON. Job ND NB Hwy 410, ON. Job ND NB	BY SM	ILED BY)	v stem	(hollo	orehole	eter bo	n diam	00 mn	'PE _2(LE TY	REHC	BOF	T Caledon HWY 410 / 10	DIST
PROLECT Foundation Investigation, Bridge over Hwy 410 for Entry Ramp (Hwy 10 to NB Hwy 410), Caledon, O.V. JOB NO. SOIL PROFILE SAMPLES B <	BY <u>SH</u>	ED BY	- CHECKE							18	ber 201	Octo	18 - 17	er 20	Octob	16	E	_ DAT	UM Geodetic	DATUM
SOIL PROFILE SAMPLES End of the second seco	TPB166090	Э.	_ JOB NO.				۱.	on, ON	Caledo	v 410),	NB Hwy	I0 to N	(Hwy	Ramp	Entry F	10 for	łwy 4	over ⊦	DJECT Foundation Investigation, Bridge of	PROJE
LEEV DECRIPTION Dia di unitationality generationality description Dia di unitationality generationality description Dia di unitationality generationality description Dia di unitationality generationality description Dia di unitationality description Dia di unitationality description Dia di unitationality description Dia di unitationality descriptionality description Dia di unitationality description Dia di unitationality	<u> </u>	В.,					TION	NETRA			DYNA		1	~	ES	SAMPL	5		SOIL PROFILE	
250 fb	GRAIN SIZE GRAIN SIZE DISTRIBUTION (%) COV/					00 VANE ANE	30 10 FIELD	0 8 H kPa + - ×	0 6 RENGT INED RIAXIAL	R STF	2 SHEA 0 UM • QI	ELEVATION	DEPTH		"N" VALUES	ТҮРЕ	NUMBER	STRAT PLOT		ELEV DEPTH (m)
10.1 SAND AND SILT / SILT trace to some clay, trace gravel moist to wet 10 SS 33 -11 200 18 0/ 10 SS 33 -11 200 10 SS 0/ 10 SS 0/ 10 SS 0/ 10 SS 33 -11 200 10 SS 10 <t< td=""><td>opm) GR SA SI CL</td><td>(ppm)</td><td>0 60</td><td>20 40</td><td>2</td><td>00</td><td>30 10</td><td>0 8</td><td>06</td><td>0 4</td><td></td><td></td><td>_ m</td><td></td><td></td><td></td><td></td><td><u>k</u>r</td><td>6</td><td>250.6</td></t<>	opm) GR SA SI CL	(ppm)	0 60	20 40	2	00	30 10	0 8	06	0 4			_ m					<u>k</u> r	6	250.6
246.0	0/ 0 - 2 83 15 LL=21, PL=18	0/ 0		1	1 8 ¹⁶ d							250 -	- - - - - - - - - 11		33	SS	10		1 SAND AND SILT / SILT trace to some clay, trace gravel compact to dense moist to wet	10.1
246.0 11 SS 15 248 14 14 247 14 12 SS 14 14 247 14 14 15 248 14 14 15 15 16 14 247 14 14 15 15 16 16 248 14 14 15 14 14 15 15 16 16 246 16 16 246 17 16 <td< td=""><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>249</td><td>- - - - - - - - - - - - - - - - - - -</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		_										249	- - - - - - - - - - - - - - - - - - -							
246.0 12 SS 14 14 247 14 14 12 SS 14 14 14 14 14 14 15 14 14 14 14 15 14 14 14 15 16 14 14 15 16 <td< td=""><td>0/ 0 8 37 48 7 LL=13, PL=12</td><td>0/ 0</td><td></td><td></td><td>1123 ¹⁰₫</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>248 -</td><td></td><td></td><td>15</td><td>SS</td><td>11</td><td></td><td></td><td></td></td<>	0/ 0 8 37 48 7 LL=13, PL=12	0/ 0			1123 ¹⁰ ₫						-	248 -			15	SS	11			
246.0				20	22							247			14		10			
SANDY SILT TILL trace to some clay, trace gravel very dense wet to moist											-				14		12		0	246.0
245	0/ 0	0/ 0			¹¹ 0						-		- - - - - -		50/150 	SS	13	0,0,00	sandy SiLT TILL trace to some clay, trace gravel very dense wet to moist	14.7
244 - 244 -												245	- - 							
	0/ 0	0/ 0			¹⁰ O							244	- - 17 - -		50/150 mm	SS	14	000		
												243	- - - - - - - 18 - -					0 0 0		
silt 15 SS 84 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19	0/ 0 2 17 66 15 LL=18, PL=14	0/ 0			148 ¹² dH							242	- - - - - - - - - 19		84	SS	15	0	silt	
												241-						0		
												-	-					 	Continued Next Page	

<u> </u>			-		<u> </u>	_							-		2 0					
G.W.P	D	LOC	ATIC	DN <u>Vi</u> a	cinity o	f north	abutn	nent, e	ast end	1 (N:48	344697	7 E:277	7849)		3 (JF 3			TED E	BY MS
DIST	Caledon HWY 410 / 10	BOF	REHC	DLE TY	'PE 20	00 mm	diame	eter bo	rehole	(hollov	<i>w</i> stem	1)					0	MPILE		SM
	M Geodetic	- 	-	16	Octob	per 201	8 - 17	Octob	er 201	8		,					_ 00		ים ם.	SH
DATO			L 		F					440	0.1.1						— Сп	ECKEL	זםכ	TDP166000
PROJE	ECT _Foundation Investigation, Bridge of	over F	Hwy 4	10 tor	Entry I	Ramp	(Hwy 1	IU to N	B Hwy	410),	Caledo	on, ON	l.				JO	B NO.		IPB100090
	SOIL PROFILE		9	SAMPL	ES	ц			DYNAN RESIS	IC CO	NE PEI	NETRA	TION			NAT			n UR	DEMADKS
		-			6	ATE	₊	NO	2() 4	0 6	0 8	0 10	0	PLASTI LIMIT			LIQUID LIMIT	DIN	&
		PLO	B ER	ш	Ë I		I L	VAT	SHEA	RSTR		ĭĭ 'H kPa	<u> </u>	<u> </u>	W _P	001	w	$W_{\rm L}$	REA	GRAIN SIZE
DEPTH	DESCRIPTION	ZAT	UME	¥	AI		ä		O UN	CONF	INED	+	FIELD	VANE					о Сости	DISTRIBUTION (%)
(m)		STF	Z		ŗ	UN CY			 QL 20 			_ × 0 8	LAB VA	ANE 20			JNTEN 10 F	I (%)	TOV	
			16	SS	72		m	<u> </u>				-			110	-		1	(ppm) 0/0	GR SA SI UL
240.5	End (Develop)	911	1				-													
	50 mm dia. monitoring well with flushmound protective casing installed (depth below ground surface): Concrete: 0.0 - 0.3 m Bentonite: 0.3 - 11.6 m Sand Filter: 11.6 - 15.2 m Screen: 12.2 - 15.2 m Bentonite: 15.2 - 20.1 m																			

wood

G.W.F	D	LOC	ATIC	DN <u>Vi</u>	cinity o	f north	appro	oach (<u>(N:48</u>	4470	9 E::	27783	5)			1 (OF 1	OR	RIGINA	TED E	BY MS
DIST	CaledonHWY 410 / 10	BOF	REHC	DLE TY	'PE <u>2</u> (00 mm	n diam	eter b	oreh	ole (h	ollov	v sterr	ו)					co	MPILE	D BY	SM
DATU	M_Geodetic	_ DAT	Е 	<u>1</u>	Novem	ber 20) <u>18 - 1</u>	Nove	embe	r 201	8							— CH	ECKEI) BY	SH TPD166000
PROJI	ECT Foundation Investigation, Bridge of	over H	lwy 4	10 for	Entry I	Ramp	(Hwy	10 to I		wy 4	10),		ON, ON			1		JO	B NO.	~	IPB166090
FLEV	SOIL PROFILE	PLOT	BER	SAMPL	ES RES	UD WATER	EPTH	EVATION	RES		NCE				00	PLAST LIMIT W _P	IC NAT WA CON	TURAL ATER NTENT W	LIQUID LIMIT W _L	JIL VAPOUF READING	REMARKS & GRAIN SIZE
DEPTH (m) 259.6	DESCRIPTION	STRAT	MUN	Ł	AV "N"	GROUN	m	m	○ ●		ONFI CK TF 4	NED RIAXIA 0 6	+ × L 60 8	FIELD LAB V 0 1	VANE ANE	WA	TER C0	0NTEN 40 6	T (%)	ο COV/ TOV (ppm)	(%) GR SA SI CL
259.4 0.2	200 mm Topsoil / Organic mixed soil brown		1	SS	9		-		-								27 _O			0/ 0	
2 <u>59.0</u>	Clayey Silt / Silty Clay FILL						-	259 -								1*0					
0.1	CLAYEY SILT / SILTY CLAY TILL trace to with sand, trace gravel very stiff to hard		2	SS	25	-	- - 1 - -									16 ¹² 0	25			0/ 0	3 27 50 20
			3	SS	33		- - - - 2 -	258 -	-							¹³ O				0/ 0	
			4	SS	26			257 –	-							10 ₀				0/0	
			5	SS	16			256 -	-							142 ¹¹ 0	1			0/ 0	7 27 47 19 LL=21, PL=14
	grey					Ā	- - 4 - - -														Inferred groundwater level based on change in soil
			6	SS	17	-	- - - - - - -	255 -	-							¹⁰ O				0/ 0	colour.
								254 -	-												
			7	SS	32			253 -	-							¹⁵ O				0/ 0	
							- 7 - 7 														
			8	SS	63	-	- - - - 8 -	252 -	-							¹⁵ 0				0/ 0	
								251 -	-												
249.9	End of Borehole		9	SS	50			250 -	-							18 ¹⁸	23 H			0/ 0	0 3 80 17 LL=23, PL=18
9.0																					
							+ 3,	× ³ :	Num Sen:	bers ı sitivity	refer	to	0 ^{3%}	STRA	IN AT I	FAILUR	E				

- One	ano		F	REC	ORI) O	F B	ORE	EHC	LE	No.	BH	8							
G.W.P.		LOC	ATIC	N_Vic	cinity o	f north	appro	bach (t	hrough	existi	ng ber	n) (N:4	184472	22 E:2	1 C 77833)	DF 1		RIGINA	LED B	Y MS
DIST	CaledonHWY 410 / 10	BOF	EHC	LE TY	PE 1	50 mm	diame	eter bo	orehole	(Solid	Stem)						_ co	MPILE	D BY	SM
DATUM	Geodetic	DAT	E	14	Nover	mber 2	2018 -	14 No	vembe	r 2018							_ СН	ECKED) BY	SH
PROJE	CT Foundation Investigation, Bridge	e over ⊦	lwy 4	10 for	Entry F	Ramp	(Hwy 1	10 to N	IB Hwy	v 410),	Caled	on, ON	I.				_ JO	B NO.		TPB166090
	SOIL PROFILE		5	SAMPL	ES	Ř			DYNA RESIS	MIC CO TANCE	NE PE PLOT		TION			- NATI	URAL		DUR G	REMARKS
ELEV DEPTH (m)	DESCRIPTION	STRAT PLOT	NUMBER	түре	"N" VALUES	GROUND WATE CONDITIONS	DEPTH	ELEVATION	2 SHEA 0 Ur • QI	0 4 R STF NCONF JICK TF	0 6 RENGT INED RIAXIAI 0 6	0 8 TH kPa + - × 0 8	0 10 FIELD	VANE				LIQUID LIMIT WL T (%)	A SOIL VAPC	& GRAIN SIZE DISTRIBUTION (%)
263.8	100 mm Topsoil						m								_				(ppm)	GR 3A 31 CL
0.1	brown/grey Clayey Silt / Silty Clay FILL some sand, trace gravel		1	SS	10										20	D			0/ 0	
			2	SS	9		- - - 1 - - -	263 — - - - - - - -							¹³ 0				0/ 0	
			3	SS	18		- - - - - 2								¹⁴ 0				0/ 0	
	dark grey						- - - - - - - - -													
	rootlets		4	SS	10		-								2	⁴ 0			0/ 0	
<u>259.7</u> 4.1	brown/grey SILTY CLAY TILL with sand, trace gravel very stiff						- - 4 - - -													
258.6	,		5	SS	23		- - 5 -	259 — - - -							16 ¹² 0	26 —			0/ 0	6 23 47 24
5.2	End of Borehole																			

Ontario

+ ³, × ³: Numbers refer to Sensitivity

○^{3%} STRAIN AT FAILURE

wood

i	Onta	ario	
	G.W.P.		
	DIST	Caledon	HWY <u>410 / 10</u>
	DATUM	Geodetic	

G.W.F	P		LOC	ATIC	DN <u>Vi</u> a	cinity o	f north	appro	bach (t	hrough	existir	ng beri	m) (N:4	184473	35 E:2	1 C 77807)	DF 1	_ OR	RIGINA	TED E	Y MS
DIST	Caledon	HWY <u>410 / 10</u>	BOF	REHC	DLE TY	'PE <u>1</u>	50 mm	diame	eter bo	rehole	(Solid	Stem))					_ CO	MPILE	D BY	SM
DATU	M Geodetic		_ DAT	E	14	Nove	mber 2	2018 -	14 No	vembe	r 2018							— CH	ECKE) BY	SH
PROJI	ECT Founda	tion Investigation, Bridge	over H	lwy 4	10 for	Entry F	Ramp	(Hwy 1	10 to N	IB Hwy	410),	Caledo	on, ON	l.				_ JOI	B NO.		<u>IPB166090</u>
	SO	IL PROFILE		5	SAMPL	.ES	S IER		z	RESIS	TANCE	NE PE PLOT				PLASTI		URAL	LIQUID	POUR	REMARKS
ELEV DEPTH (m)	Γ	DESCRIPTION	TRAT PLOT	NUMBER	ТҮРЕ	N" VALUES	ROUND WAT	DEPTH	ELEVATIC	2 SHEA ○ UN	0 4 R STR NCONFI	0 6 ENGT NED	60 8 	FIELD			CON TER CO		LIMIT W _L 	SOIL VAI S READI	& GRAIN SIZE DISTRIBUTION (%)
265.3			ο Ο			-	ō	m	m	2	0 4	0 6	8 0	0 10	00	2	:0 4	ю е	50 	TOV (ppm)	GR SA SI CL
265.7	Clayey Some to v	b mm Topsoil brown/grey Silt / Silty Clay FILL vith sand, trace gravel		1	SS	9		- - - -	265							150				0/ 0	
				2	SS	10		- - - - 1 -								¹⁷ O				0/ 0	
							-	-	264							120					
				3	55	9	-	- - 2 -	- - - 263 —											0/0	
		grey						- - - - 3	- - - - -												
		rootlets		4	SS	24	-	- - - -	262							22	3 36 ₱			0/ 0	3 23 46 28
2 <u>61.2</u> 4.0		brown/grey						- - 4 													
	some	sand, trace gravel hard		5	ss	36	-	- - - -	261							¹⁴ 0				0/ 0	
260.2 5.0	En	d of Borehole						- 5	-												

0			R	ECO	ORE) OF	[;] B(ORE	EHO		No.	BH	10							
G.W.P		LOC	ATIC	DN <u>Vi</u>	cinity c	of north	appro	oach (1	hrough	existir	ng ber	m) (N:	48447	54 E:2	1 C 77777)	DF 1	_ OR	RIGINA	TED E	BY MS
DIST	_Caledon HWY 410 / 10	50 mm	n diameter borehole (Solid Stem)											MPILE	SM					
DATUN	M_Geodetic	_ DAT	E	14	Nove	mber 2	018 -	14 Nc	vembe	r 2018							– CH	ECKED) BY	SH
PROJE	ECT Foundation Investigation, Bridge	over H	Hwy 4	10 for	Entry	Ramp ((Hwy	10 to I	NB Hwy	410),	Caled	on, ON	۱.				_ JOI	B NO.		TPB16609
	SOIL PROFILE		5	SAMPL	ES	К Ц		_	DYNA RESIS	MIC CO TANCE	NE PE PLOT		TION			- NATL	JRAL		our IG	REMARKS
ELEV DEPTH (m)	DESCRIPTION	STRAT PLOT	NUMBER	TYPE	"N" VALUES	GROUND WATE CONDITIONS	DEPTH	ELEVATION	2 SHEA 0 UI • Q	0 4 R STR NCONFI JICK TF	0 6 RENGT INED RIAXIA	SO E FH kPa + L ×	30 1 FIELD LAB V/	VANE				Eligibili WL → T (%)	AD SOIL VAP	& GRAIN SIZE DISTRIBUTIOI (%)
267.0 26 6.9	100 mm Topsoil						_ m _	<u>m</u>		0 4	0 0				2	0 4	0 0		(ppm)	GR SA SI C
0.1	brown/grey Clayey Silt / Silty Clay FILL some to with sand, trace gravel		1	SS	8		-		-						20	þ			40/ 0	
			2	SS	11		- - - 1 -	266 -							¹¹ 0				5/ 1	
			3	SS	10	-	-		-						815 1₽				0/ 0	9 28 44 1
							- 2 - -	265 -	-											LL=15, PL=6
	grey						- - - - - 3	264 -												
			4	SS	13				-						¹¹ 0				0/ 0	
							- - - - - -	263 —	-											
	mixed with black organic matter		5	SS	21		- 5	262 -							21	5			0/ 0	
<u>261.4</u> 5.6									-											
260 4	very stiff		6	SS	27		-	201							¹⁵ 0				0/ 0	
6.6	End of Borehole																			

Ontario

 $\odot^{\,3\%}\,$ strain at failure

APPENDIX A

Overall Plan, Highway 410 Interchange, New Construction (Sheet P1, prepared by Wood (formerly Amec Foster Wheeler) And Preliminary General Arrangement for E/W-N Ramp Flyover (Proposed Bridge, dated November 2018, prepared by Wood)

By: Wed Plotted Last So 2019-02-26 2019-02-12

APPENDIX B

Site Photographs

The Corporation of the Town of Caledon (2016-62) Foundation Investigation and Design Report – GEOCRES 30M12-442 Preliminary Design of Proposed Bridge over Highway 410 for the Entry Ramp to Northbound Highway 410 from Highway 10 Wood Reference Number: TPB166090

SITE PHOTOGRAPHS

Photograph 1: View of Hwy 410 northbound lanes and existing berm, looking north (5 November 2018).

Photograph 2: View of from mid-slope of existing berm, looking north (5 November 2018).

The Corporation of the Town of Caledon (2016-62) Foundation Investigation and Design Report – GEOCRES 30M12-442 Preliminary Design of Proposed Bridge over Highway 410 for the Entry Ramp to Northbound Highway 410 from Highway 10 Wood Reference Number: TPB166090

SITE PHOTOGRAPHS

Photograph 3: View of Hwy 410 northbound lanes and existing berm, looking south (5 November 2018).

Photograph 4: View of Hwy 410 southbound lanes, looking south – note exit ramp to Hwy 10 on the right end of the photo (5 November 2018).

APPENDIX C

Laboratory Test Results (Figure Nos. C1 to C9)

APPENDIX C

Analytical Results for Soil (Tables 1 to 4)

Table 1 - Analytical Results for Soil Benzene, toluene, Ethylbenzene, and Xylene (BTEX), Petroleum Hydrocarbons (F1-F4)

Sample Location					Right shoulder of southt propose	ight shoulder of southbound Hwy 410 (west end o proposed abutment)		
Sample ID					BH3 SS3	DUP 1	BH5 SS2	
Soil Type					Clayey Silt/Silty Clay FILL	Clayey Silt/Silty Clay FILL	Silty Sand and Gravel FILL	
Sample Depth (mbgs)					1.5-2.1	1.5-2.1	0.8-1.2	
Sampling Date					17-Oct-18	1-Nov-18		
Laboratory ID					IBP028	IFK541		
Certificate of Analysis No.					B8R8406	B8T5664		
	Lower	Table 1	Table 2	Table 3				
	RDL	SCS	SCS	SCS				
Benzene	0.02	0.02	0.32	0.32	< 0.020	< 0.020	< 0.020	
Toluene	0.02	0.2	6.4	68	< 0.020	< 0.020	< 0.020	
Ethylbenzene	0.02	0.05	1.1	9.5	< 0.020	< 0.020	< 0.020	
m/p xylenes	0.04	NV	NV	NV	< 0.040	< 0.040	< 0.040	
o xylene	0.02	NV	NV	NV	< 0.020	< 0.020	< 0.020	
Total Xylenes	0.04	0.05	26	26	< 0.040	< 0.040	< 0.040	
F1 (C6-C10)	10	25	55	55	< 10	< 10	< 10	
F1 (C6-C10) - BTEX	10	25	55	55	< 10	< 10	< 10	
F2 (C10-C16 Hydrocarbons)	10	10	230	230	< 10	< 10	< 10	
F3 (C16-C34 Hydrocarbons)	50	240	1700	1700	< 50	< 50	< 50	
F4 (C34-C50 Hydrocarbons)	50	120	3300	3300	< 50	< 50	< 50	
				-				

					Loft shouldor of	Mid clope of existing	Mid clope of existing
Sample Location				I		Mid-Slope of existing	Mid-slope of existing
•				I	northbound Hwy 410	berm	berm
Sample ID				I	BH7 SS1	BH9 SS2	BH10 SS5
				I	Topsoil-Clayey Silt/Silty	Clavay Silt/Silty Clay Ell I	Clavay Silt/Silty Clay Ell I
Son Type				I	Clay FILL		Clayey Silt/Silty Clay FILL
Sample Depth (mbgs)				ŀ	0-0.6	0.1-0.6	4.6-5.0
Sampling Date				ŀ	2-Nov-18	14-Nov-18	14-Nov-18
Laboratory ID				ŀ	IFK543	IIA269	IIA271
Certificate of Analysis No.				I	B8T5664	B8U7525	B8U7525
	Lower	Table 1	Table 2	Table 3			
	RDL	SCS	SCS	SCS			
				1			
Benzene	0.02	0.02	0.32	0.32	< 0.020	< 0.020	< 0.020
Toluene	0.02	0.2	6.4	68	< 0.020	< 0.020	< 0.020
Ethylbenzene	0.02	0.05	1.1	9.5	< 0.020	< 0.020	< 0.020
m/p xylenes	0.04	NV	NV	NV	< 0.040	< 0.040	< 0.040
o xylene	0.02	NV	NV	NV	< 0.020	< 0.020	< 0.020
Total Xylenes	0.04	0.05	26	26	< 0.040	< 0.040	< 0.040
F1 (C6-C10)	10	25	55	55	< 10	< 10	< 10
F1 (C6-C10) - BTEX	10	25	55	55	< 10	< 10	< 10
F2 (C10-C16 Hydrocarbons)	10	10	230	230	< 10	< 10	< 10
F3 (C16-C34 Hydrocarbons)	50	240	1700	1700	< 50	< 50	< 50
F4 (C34-C50 Hydrocarbons)	50	120	3300	3300	< 50	< 50	< 50
			ļ	1			

Notes: Ontario Regulation 153/04, as amended, Table 1 Full Depth Background Site Condition Standards (SCS) for

residential/parkland/institutional/industrial/commercial/community property use (Table 1 SCS), Table 2 Full Depth Generic SCS in a potable groundwater condition for /industrial/commercial/community property use (Table 2 SCS), Table 3 Full Depth Generic SCS in a non-potable groundwater condition for /industrial/commercial/community property use (Table 3 SCS), and coarse textured soils. All values reported in µg/g (ppm) dry weight basis, unless otherwise noted. Table 1 SCS exceedances indicated in SHADING. Table 2 SCS exceedances indicated in BOLD. Table 3 SCS exceedances indicated <u>UNDERLINED</u>. "RDL" means reportable detection limit. "<" indicates not detected above the RDL as shown. "ppm" means parts per million. Field vapour readings shown in ppm unless otherwise noted. "NV" means no value. "NA" means not applicable. "F" means fraction. * If F4 analysis by GC/FID did not reach baseline, F4 gravimetric analysis was conducted. Higher of two F4 values shown. "-" means not analyzed.

Table 2 - Analytical Results for SoilMetals and Inorganic Parameters

Sample Location					Right shoulder of southbo proposed	Right shoulder of northbound Hwy 410 (east end of proposed abutment)	
Sample ID					BH3 SS3	DUP 1	BH5 SS2
Soil Type					Clayey Silt/Silty Clay FILL	Clayey Silt/Silty Clay FILL	Silty Sand and Gravel FILL
Sample Depth (mbgs) Sampling Date Laboratory ID Certificate of Analysis No.					1.5-2.1 17-Oct-18 IBP028 B8R8406	1.5-2.1 17-Oct-18 IBP033 B8R8406	0.8-1.2 1-Nov-18 IFK541 B8T5664
	Lower	Table 1	Table 2	Table 3			
	RDL	SCS	SCS	SCS			
Antimony	0.2	1.3	40	40	<0.20	<0.20	<0.20
Arsenic	1	18	18	18	4.9	5	6.4
Barium	0.5	220	670	670	61	64	64
Beryllium	0.2	2.5	8	8	0.62	0.66	0.76
Boron (Hot Water Soluble)	0.05	NV	2	2	0.1	0.12	0.061
Cadmium	0.1	1.2	1.9	1.9	<0.10	<0.10	<0.10
Chromium	1	70	160	160	26	22	20
Chromium VI	0.2	0.66	8	8	<0.2	<0.2	<0.2
Cobalt	0.1	21	80	80	11	11	13
Copper	0.5	92	230	230	33	33	36
Lead	1	120	120	120	9.4	9.1	9.2
Mercury	0.05	0.27	3.9	3.9	<0.050	<0.050	<0.050
Molybdenum	0.5	2	40	40	<0.50	<0.50	<0.50
Nickel	0.5	82	270	270	23	23	27
Selenium	0.5	1.5	5.5	5.5	<0.50	<0.50	<0.50
Silver	0.2	0.5	40	40	<0.20	<0.20	<0.20
Thallium	0.05	1	3.3	3.3	0.11	0.11	0.14
Vanadium	5	86	86	86	29	29	27
Zinc	5	290	340	340	58	57	58
pH (pH Units)	NV	NV	NV	NV	7.68	7.73	7.69
Conductivity (ms/cm)	0.002	0.57	1.4	1.4	0.33	0.34	0.19
Sodium Adsorption Ratio	NV	2.4	12	12	1.5	1.1	0.24
Cyanide, Free	0.01	0.051	0.051	0.051	<0.01	<0.01	<0.01
Boron (Total)	5	36	120	120	8.1	8.1	9.4
Uranium	0.05	2.5	33	33	0.59	0.52	0.47

Notes: Ontario Regulation 153/04, as amended, Table 1 Full Depth Background Site Condition Standards (SCS) for

residential/parkland/institutional/industrial/commercial/community property use (Table 1 SCS), Table 2 Full Depth Generic SCS in a potable groundwater condition for /industrial/commercial/community property use (Table 2 SCS), Table 3 Full Depth Generic SCS in a non-potable groundwater condition for /industrial/commercial/community property use (Table 2 SCS), Table 3 Full Depth Generic SCS in a non-potable groundwater condition for /industrial/commercial/community property use (Table 2 SCS), Table 3 Full Depth Generic SCS in a non-potable groundwater condition for /industrial/commercial/community property use (Table 3 SCS), and coarse textured soils. All values reported in µg/g (ppm) dry weight basis, unless otherwise noted. Table 1 SCS exceedances indicated in SHADING. Table 2 SCS exceedances indicated in BOLD. Table 3 SCS exceedances indicated UNDERLINED. "<" indicates not detected above the RDL as shown. "ppm" means parts per million. Field vapour readings shown in ppm unless otherwise noted. Field vapour readings shown as combustible organic vapour (COV) / total organic vapour (TOV). "NV" means no value. *To apply generic SCS, pH of soil is to be between 5 and 9 for surface soil (<1.5 mbg) and between 5 and 11 for subsurface soil (>1.5 mbg). "-" means not analyzed.

Table 2 - Analytical Results for SoilMetals and Inorganic Parameters

Sample Location					Left shoulder of northbound Hwy 410	Mid-slope of existing berm	Mid-slope of existing berm	
Sample ID					BH7 SS1	BH9 SS2	BH10 SS5	
Soil Type					Topsoil-Clayey Silt/Silty Clav FILL	Clayey Silt/Silty Clay FILL	Clayey Silt/Silty Clay FILL	
Sample Depth (mbgs)					0-0.6	0.1-0.6	4.6-5.0	
Sampling Date				2-Nov-18	14-Nov-18	14-Nov-18		
Laboratory ID			IFK543	IIA269	IIA271			
Certificate of Analysis No.					B8T5664	B8U7525	B8U7525	
	Lower	Table 1	Table 2	Table 3				
	RDL	SCS	SCS	SCS				
Antimony	0.2	1.3	40	40	<0.20	<0.20	<0.20	
Arsenic	1	18	18	18	5.3	4.5	3.5	
Barium	0.5	220	670	670	60	59	52	
Beryllium	0.2	2.5	8	8	0.63	0.6	0.52	
Boron (Hot Water Soluble)	0.05	NV	2	2	0.064	0.092	0.27	
Cadmium	0.1	1.2	1.9	1.9	<0.10	<0.10	0.17	
Chromium	1	70	160	160	19	19	17	
Chromium VI	0.2	0.66	8	8	<0.2	<0.2	<0.2	
Cobalt	0.1	21	80	80	11	10	9.1	
Copper	0.5	92	230	230	30	31	23	
Lead	1	120	120	120	9.2	9	9.5	
Mercury	0.05	0.27	3.9	3.9	<0.050	<0.050	<0.050	
Molybdenum	0.5	2	40	40	<0.50	<0.50	<0.50	
Nickel	0.5	82	270	270	24	22	17	
Selenium	0.5	1.5	5.5	5.5	<0.50	<0.50	<0.50	
Silver	0.2	0.5	40	40	<0.20	<0.20	<0.20	
Thallium	0.05	1	3.3	3.3	0.14	0.12	0.1	
Vanadium	5	86	86	86	26	27	25	
Zinc	5	290	340	340	54	54	50	
pH (pH Units)	NV	NV	NV	NV	7.55	7.72	7.33	
Conductivity (ms/cm)	0.002	0.57	1.4	1.4	0.83	0.26	0.59	
Socium Adsorption Ratio	INV	2.4	12	12	13	1.1	0.49	
Cyanide, Free	0.01	0.051	0.051	0.051	<0.01	<0.01	<0.01	
Boron (Total)	5	36	120	120	8.4	7.8	<5.0	
Uranium	0.05	2.5	33	33	0.57	0.57	0.48	

Notes: Ontario Regulation 153/04, as amended, Table 1 Full Depth Background Site Condition Standards (SCS) for

residential/parkland/institutional/industrial/commercial/community property use (Table 1 SCS), Table 2 Full Depth Generic SCS in a potable groundwater condition for /industrial/commercial/community property use (Table 2 SCS), Table 3 Full Depth Generic SCS in a non-potable groundwater condition for /industrial/commercial/community property use (Table 3 SCS), and coarse textured soils. All values reported in µg/g (ppm) dry weight basis, unless otherwise noted. Table 1 SCS exceedances indicated in SHADING. Table 2 SCS exceedances indicated in BOLD. Table 3 SCS exceedances indicated in SHADING. Table 2 SCS exceedances indicated in BOLD. Table 3 SCS exceedances indicated <u>UNDERLINED</u>. "<" indicates not detected above the RDL as shown. "ppm" means parts per million. Field vapour readings shown in ppm unless otherwise noted. Field vapour readings shown as combustible organic vapour (COV) / total organic vapour (TOV). "NV" means no value. *To apply generic SCS, pH of soil is to be between 5 and 9 for surface soil (<1.5 mbg) and between 5 and 11 for subsurface soil (>1.5 mbg). "-" means not analyzed.

Table 3 - Analytical Results for SoilPolycyclic Aromatic Hydrocarbons

Sample Location					Right shoulder of southb of proposed	Right shoulder of northbound Hwy 410 (east end of proposed abutment)	
Sample ID					BH3 SS3	DUP 1	BH5 SS2
Soil Type					Clayey Silt/Silty Clay	Clayey Silt/Silty Clay	Silty Sand and Gravel
Sample Denth (mbgs)					FILL 1.5-2.1	FILL 1.5-2.1	FILL 0.8-1.2
Sample Depth (hibgs)				17-Oct-18	17-Oct-18	1-Nov-18	
Laboratory ID				IBP028	IBP033	IFK541	
Certificate of Analysis No.					B8R8406	B8R8406	B8T5664
	Lower RDL	Table 1 SCS	Table 2 SCS	Table 3 SCS			
Acenaphthene	0.005	0.072	21	29	<0.0050	<0.0050	<0.0050
Acenaphthylene	0.005	0.093	0.15	0.17	<0.0050	<0.0050	<0.0050
Anthracene	0.005	0.16	0.67	0.74	<0.0050	<0.0050	<0.0050
Benzo(a)anthracene	0.005	0.36	0.96	0.63	<0.0050	<0.0050	<0.0050
Benzo(a)pyrene	0.005	0.3	0.3	0.3	<0.0050	<0.0050	<0.0050
Benzo(b/j)fluoranthene	0.005	0.47	0.78	0.78	<0.0050	<0.0050	<0.0050
Benzo(ghi)perylene	0.005	0.68	7.8	7.8	<0.0050	<0.0050	<0.0050
Benzo(k)fluoranthene	0.005	0.48	0.78	0.78	<0.0050	<0.0050	<0.0050
Chrysene	0.005	2.8	7.8	7.8	<0.0050	<0.0050	<0.0050
Dibenzo(a,h)anthracene	0.005	0.1	0.1	0.1	<0.0050	<0.0050	<0.0050
Fluoranthene	0.005	0.56	0.69	0.69	<0.0050	<0.0050	<0.0050
Fluorene	0.005	0.12	69	69	<0.0050	<0.0050	<0.0050
Indeno(1,2,3-cd)pyrene	0.005	0.23	0.48	0.48	<0.0050	<0.0050	<0.0050
1-Methylnaphthalene	0.005	0.59	3.4	3.4	<0.0050	0.0074	<0.0050
2-Methylnaphthalene	0.005	0.59	3.4	3.4	<0.0050	0.0068	<0.0050
Naphthalene	0.005	0.09	0.75	0.75	<0.0050	<0.0050	<0.0050
Phenanthrene	0.005	0.69	7.8	7.8	<0.0050	0.0071	<0.0050
Pyrene	0.005	1	78	78	<0.0050	<0.0050	<0.0050
Methylnaphthalene, 2-(1-)	0.0071	0.59	3.4	3.4	<0.0071	0.014	<0.0071

Notes: Ontario Regulation 153/04, as amended, Table 1 Full Depth Background Site Condition Standards (SCS) for

residential/parkland/institutional/industrial/commercial/community property use (Table 1 SCS), Table 2 Full Depth Generic SCS in a potable groundwater condition for /industrial/commercial/community property use (Table 2 SCS), Table 3 Full Depth Generic SCS in a non-potable groundwater condition for /industrial/commercial/community property use (Table 3 SCS), and coarse textured soils. All values reported in µg/g (ppm) dry weight basis, unless otherwise noted. Table 1 SCS exceedances indicated in SHADING. Table 2 SCS exceedances indicated in BOLD. Table 3 SCS exceedances indicated <u>UNDERLINED</u>. "RDL" means reportable detection limit. "<" indicates not detected above the RDL as shown. "ppm" means parts per million. Field vapour readings shown in ppm unless otherwise noted. "NV" means no value.

Table 3 - Analytical Results for SoilPolycyclic Aromatic Hydrocarbons

Sample Location					Left shoulder of northbound Hwy 410	Mid-slope of existing berm
Sample ID	BH7 SS1	BH9 SS2				
Soil Туре	Topsoil-Clayey Silt/Silty	Clayey Silt/Silty Clay				
Sample Depth (mbgs)						0 1-0 6
Sampling Date					2-Nov-18	14-Nov-18
Laboratory ID					IFK543	IIA269
Certificate of Analysis No.					B8T5664	B8U7525
	Lower	Table 1	Table 2	Table 3		
	RDL	SCS	SCS	SCS		
Acenaphthene	0.005	0.072	21	29	<0.0050	<0.0050
Acenaphthylene	0.005	0.093	0.15	0.17	<0.0050	<0.0050
Anthracene	0.005	0.16	0.67	0.74	<0.0050	<0.0050
Benzo(a)anthracene	0.005	0.36	0.96	0.63	<0.0050	<0.0050
Benzo(a)pyrene	0.005	0.3	0.3	0.3	<0.0050	<0.0050
Benzo(b/j)fluoranthene	0.005	0.47	0.78	0.78	<0.0050	0.0075
Benzo(ghi)perylene	0.005	0.68	7.8	7.8	<0.0050	0.0057
Benzo(k)fluoranthene	0.005	0.48	0.78	0.78	<0.0050	<0.0050
Chrysene	0.005	2.8	7.8	7.8	<0.0050	<0.0050
Dibenzo(a,h)anthracene	0.005	0.1	0.1	0.1	<0.0050	<0.0050
Fluoranthene	0.005	0.56	0.69	0.69	<0.0050	0.0075
Fluorene	0.005	0.12	69	69	<0.0050	<0.0050
Indeno(1,2,3-cd)pyrene	0.005	0.23	0.48	0.48	<0.0050	<0.0050
1-Methylnaphthalene	0.005	0.59	3.4	3.4	<0.0050	<0.0050
2-Methylnaphthalene	0.005	0.59	3.4	3.4	<0.0050	<0.0050
Naphthalene	0.005	0.09	0.75	0.75	<0.0050	<0.0050
Phenanthrene	0.005	0.69	7.8	7.8	<0.0050	<0.0050
Pyrene	0.005	1	78	78	<0.0050	0.0062
Methylnaphthalene, 2-(1-)	0.0071	0.59	3.4	3.4	<0.0071	<0.0071

Notes: Ontario Regulation 153/04, as amended, Table 1 Full Depth Background Site Condition Standards (SCS) for residential/parkland/institutional/industrial/commercial/community property use (Table 1 SCS), Table 2 Full Depth Generic SCS in a potable groundwater condition for /industrial/commercial/community property use (Table 2 SCS), Table 3 Full Depth Generic SCS in a non-potable groundwater condition for /industrial/commercial/community property use (Table 2 SCS), Table 3 Full Depth Generic SCS in a non-potable groundwater condition for /industrial/commercial/community property use (Table 2 SCS), Table 3 Full Depth Generic SCS in a non-potable groundwater condition for /industrial/commercial/community property use (Table 3 SCS), and coarse textured soils. All values reported in µg/g (ppm) dry weight basis, unless otherwise noted. Table 1 SCS exceedances indicated in SHADING. Table 2 SCS exceedances indicated in BOLD. Table 3 SCS exceedances indicated <u>UNDERLINED</u>. "RDL" means reportable detection limit. "<" indicates not detected above the RDL as shown. "ppm" means parts per million. Field vapour readings shown in ppm unless otherwise noted. "NV" means no value.

Table 4 - Ontario Regulation 347/90, as amended, for Leachate Analyses Waste Classification

Sample Location		Southbound and northbound off-ramp		
			berm	
Laboratory ID			IIL061	
Sample ID			TCLP-410/10	
Sampling Date			14-Nov-18	
TCI P Leachate	RDI		14110710	
	NDL	Schedule 4 Leachate Criteria (mg/L)		
		Criteria		
Leachable Fluoride (F-)	0.1	150.0	0.22	
Leachable Free Cyanide	0.01	20.0	<0.01	
Leachable Nitrate + Nitrite	1	1000.0	< 1.0	
Leachable Arsenic (As)	0.2	2.5	< 0.2	
Leachable Barium (Ba)	0.2	100.0	0.5	
Leachable Boron (B)	0.1	500.0	0.1	
Leachable Cadmium (Cd)	0.05	0.5	< 0.05	
Leachable Chromium (Cr)	0.1	5.0	< 0.1	
Leachable Lead (Pb)	0.1	5.0	< 0.1	
Leachable Mercury (Hg)	0.001	0.1	<0.001	
Leachable Selenium (Se)	0.1	1.0	< 0.1	
Leachable Silver (Ag)	0.01	5.0	< 0.01	
Leachable Uranium (U)	0.01	10.0	< 0.01	
Leachable Vinyl Chloride	0.020	0.2	<0.020	
Leachable 1,1-Dichloroethylene	0.020	1.4	<0.020	
Leachable Methylene Chloride(Dichloromethane)	0.2	5.0	< 0.2	
Leachable Methyl Ethyl Ketone (2-Butanone)	1.0	200.0	< 1.0	
Leachable Chloroform	0.020	10.0	<0.020	
Leachable 1,2-Dichloroethane	0.05	0.5	<0.050	
Leachable Carbon Tetrachloride	0.020	0.5	<0.020	
Leachable Benzene	0.020	0.5	<0.020	
Leachable Trichloroethylene	0.020	5.0	<0.020	
Leachable Tetrachloroethylene	0.02	3.0	<0.020	
Leachable Chlorobenzene	0.02	8.0	<0.020	
Leachable 1,2-Dichlorobenzene	0.05	20.0	<0.050	
Leachable 1,4-Dichlorobenzene	0.05	0.5	<0.050	
Leachate Benzo(a)pyrene	0.0001	0.001	0.0001	
	0.0030	0.3	< 0.003	
len itehilitu	NIA	NA		
Ignitability	NA	INA INA	NI/NF	

Notes: Ontario Regulation 558/00, Schedule 4 Leachate Criteria. All results reported in mg/L except for Ignitability and flammability which have no units. "RDL" means reportable detection limit. "<" indicates not detected above RDL as shown. Schedule 4 exceedances indicated in <u>BOLD underlined</u>. "NV" means no value. "NA" means not applicable / not analyzed. "NI/NF means Not Ignitable/Not Flammable.

APPENDIX E

Certificates of Analyses for Soil Chemical Analysis

Your Project #: TPB166090.6000 Site Location: HIGHWAY 410 Your C.O.C. #: n/a

Attention: Allesandro Pellerito

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited 50 Vogell Road Units 3 and 4 Richmond Hill, ON CANADA L4B 3N6

> **Report Date: 2018/11/12** Report #: R5480468 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B8R8406 Received: 2018/10/19, 14:50

Sample Matrix: Soil # Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Methylnaphthalene Sum	2	N/A	2018/11/07	CAM SOP-00301	EPA 8270D m
Hot Water Extractable Boron	2	2018/11/06	2018/11/06	CAM SOP-00408	R153 Ana. Prot. 2011
Chloride (20:1 extract)	2	N/A	2018/10/25	CAM SOP-00463	EPA 325.2 m
Free (WAD) Cyanide	2	2018/11/06	2018/11/07	CAM SOP-00457	OMOE E3015 m
Conductivity	2	N/A	2018/10/24	CAM SOP-00414	OMOE E3530 v1 m
Conductivity	2	2018/11/07	2018/11/08	CAM SOP-00414	OMOE E3530 v1 m
Hexavalent Chromium in Soil by IC (1)	1	2018/11/06	2018/11/08	CAM SOP-00436	EPA 3060/7199 m
Hexavalent Chromium in Soil by IC (1)	1	2018/11/06	2018/11/09	CAM SOP-00436	EPA 3060/7199 m
Petroleum Hydro. CCME F1 & BTEX in Soil (2)	2	N/A	2018/11/06	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (3)	2	2018/11/06	2018/11/07	CAM SOP-00316	CCME CWS m
Strong Acid Leachable Metals by ICPMS	2	2018/11/06	2018/11/07	CAM SOP-00447	EPA 6020B m
Moisture	2	N/A	2018/11/05	CAM SOP-00445	Carter 2nd ed 51.2 m
PAH Compounds in Soil by GC/MS (SIM)	2	2018/11/06	2018/11/07	CAM SOP-00318	EPA 8270D m
pH CaCl2 EXTRACT	2	2018/10/23	2018/10/23	CAM SOP-00413	EPA 9045 D m
pH CaCl2 EXTRACT	2	2018/11/07	2018/11/07	CAM SOP-00413	EPA 9045 D m
Resistivity of Soil	2	2018/10/22	2018/10/24	CAM SOP-00414	SM 23 2510 m
Sodium Adsorption Ratio (SAR)	2	N/A	2018/11/09	CAM SOP-00102	EPA 6010C
Sulphate (20:1 Extract)	2	N/A	2018/10/25	CAM SOP-00464	EPA 375.4 m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed

Your Project #: TPB166090.6000 Site Location: HIGHWAY 410 Your C.O.C. #: n/a

Attention: Allesandro Pellerito

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited 50 Vogell Road Units 3 and 4 Richmond Hill, ON CANADA L4B 3N6

> Report Date: 2018/11/12 Report #: R5480468 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B8R8406

Received: 2018/10/19, 14:50

or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Soils are reported on a dry weight basis unless otherwise specified.

(2) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated. (3) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Gina Baybayan, Project Manager Email: GBaybayan@maxxam.ca Phone# (905)817-5766

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 17

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.6000 Site Location: HIGHWAY 410 Sampler Initials: MS

O.REG 153 METALS & INORGANICS PKG (SOIL)

Maxxam ID		IBP028		IBP033		
Sampling Date		2018/10/17 14:10		2018/10/17		
COC Number		n/a		n/a		
	UNITS	BH3 SS3	QC Batch	DUP 1	RDL	QC Batch
Calculated Parameters						
Sodium Adsorption Ratio	N/A	1.5	5820005	1.1		5820005
Inorganics					1	
Conductivity	mS/cm	0.33	5822965	0.34	0.002	5822965
Moisture	%	14	5821117	14	1.0	5821117
Available (CaCl2) pH	рН	7.68	5823079	7.73		5823079
WAD Cyanide (Free)	ug/g	<0.01	5822752	<0.01	0.01	5822752
Chromium (VI)	ug/g	<0.2	5821915	<0.2	0.2	5822736
Metals						
Hot Water Ext. Boron (B)	ug/g	0.10	5822766	0.12	0.050	5822766
Acid Extractable Antimony (Sb)	ug/g	<0.20	5822906	<0.20	0.20	5822906
Acid Extractable Arsenic (As)	ug/g	4.9	5822906	5.0	1.0	5822906
Acid Extractable Barium (Ba)	ug/g	61	5822906	64	0.50	5822906
Acid Extractable Beryllium (Be)	ug/g	0.62	5822906	0.66	0.20	5822906
Acid Extractable Boron (B)	ug/g	8.1	5822906	8.1	5.0	5822906
Acid Extractable Cadmium (Cd)	ug/g	<0.10	5822906	<0.10	0.10	5822906
Acid Extractable Chromium (Cr)	ug/g	26	5822906	22	1.0	5822906
Acid Extractable Cobalt (Co)	ug/g	11	5822906	11	0.10	5822906
Acid Extractable Copper (Cu)	ug/g	33	5822906	33	0.50	5822906
Acid Extractable Lead (Pb)	ug/g	9.4	5822906	9.1	1.0	5822906
Acid Extractable Molybdenum (Mo)	ug/g	<0.50	5822906	<0.50	0.50	5822906
Acid Extractable Nickel (Ni)	ug/g	23	5822906	23	0.50	5822906
Acid Extractable Selenium (Se)	ug/g	<0.50	5822906	<0.50	0.50	5822906
Acid Extractable Silver (Ag)	ug/g	<0.20	5822906	<0.20	0.20	5822906
Acid Extractable Thallium (Tl)	ug/g	0.11	5822906	0.11	0.050	5822906
Acid Extractable Uranium (U)	ug/g	0.59	5822906	0.52	0.050	5822906
Acid Extractable Vanadium (V)	ug/g	29	5822906	29	5.0	5822906
Acid Extractable Zinc (Zn)	ug/g	58	5822906	57	5.0	5822906
Acid Extractable Mercury (Hg)	ug/g	<0.050	5822906	<0.050	0.050	5822906
RDL = Reportable Detection Limit						
QC Batch = Quality Control Batch						

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.6000 Site Location: HIGHWAY 410 Sampler Initials: MS

Maxxam ID		IBP028	IBP033				
Sampling Date		2018/10/17 14:10	2018/10/17				
COC Number		n/a	n/a				
	UNITS	BH3 SS3	DUP 1	RDL	QC Batch		
Calculated Parameters							
Methylnaphthalene, 2-(1-)	ug/g	<0.0071	0.014	0.0071	5819935		
Polyaromatic Hydrocarbons							
Acenaphthene	ug/g	<0.0050	<0.0050	0.0050	5823654		
Acenaphthylene	ug/g	<0.0050	<0.0050	0.0050	5823654		
Anthracene	ug/g	<0.0050	<0.0050	0.0050	5823654		
Benzo(a)anthracene	ug/g	<0.0050	<0.0050	0.0050	5823654		
Benzo(a)pyrene	ug/g	<0.0050	<0.0050	0.0050	5823654		
Benzo(b/j)fluoranthene	ug/g	<0.0050	<0.0050	0.0050	5823654		
Benzo(g,h,i)perylene	ug/g	<0.0050	<0.0050	0.0050	5823654		
Benzo(k)fluoranthene	ug/g	<0.0050	<0.0050	0.0050	5823654		
Chrysene	ug/g	<0.0050	<0.0050	0.0050	5823654		
Dibenz(a,h)anthracene	ug/g	<0.0050	<0.0050	0.0050	5823654		
Fluoranthene	ug/g	<0.0050	<0.0050	0.0050	5823654		
Fluorene	ug/g	<0.0050	<0.0050	0.0050	5823654		
Indeno(1,2,3-cd)pyrene	ug/g	<0.0050	<0.0050	0.0050	5823654		
1-Methylnaphthalene	ug/g	<0.0050	0.0074	0.0050	5823654		
2-Methylnaphthalene	ug/g	<0.0050	0.0068	0.0050	5823654		
Naphthalene	ug/g	<0.0050	<0.0050	0.0050	5823654		
Phenanthrene	ug/g	<0.0050	0.0071	0.0050	5823654		
Pyrene	ug/g	<0.0050	<0.0050	0.0050	5823654		
Surrogate Recovery (%)							
D10-Anthracene	%	97	94		5823654		
D14-Terphenyl (FS)	%	82	84		5823654		
D8-Acenaphthylene	%	99	94		5823654		
RDL = Reportable Detection L	imit						
QC Batch = Quality Control Ba	itch						

O.REG 153 PAHS (SOIL)

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.6000 Site Location: HIGHWAY 410 Sampler Initials: MS

Maxxam ID		IBP028	IBP033		
Sampling Date		2018/10/17 14:10	2018/10/17		
COC Number		n/a	n/a		
	UNITS	BH3 SS3	DUP 1	RDL	QC Batch
BTEX & F1 Hydrocarbons					
Benzene	ug/g	<0.020	<0.020	0.020	5821697
Toluene	ug/g	<0.020	<0.020	0.020	5821697
Ethylbenzene	ug/g	<0.020	<0.020	0.020	5821697
o-Xylene	ug/g	<0.020	<0.020	0.020	5821697
p+m-Xylene	ug/g	<0.040	<0.040	0.040	5821697
Total Xylenes	ug/g	<0.040	<0.040	0.040	5821697
F1 (C6-C10)	ug/g	<10	<10	10	5821697
F1 (C6-C10) - BTEX	ug/g	<10	<10	10	5821697
F2-F4 Hydrocarbons					
F2 (C10-C16 Hydrocarbons)	ug/g	<10	<10	10	5823651
F3 (C16-C34 Hydrocarbons)	ug/g	<50	<50	50	5823651
F4 (C34-C50 Hydrocarbons)	ug/g	<50	<50	50	5823651
Reached Baseline at C50	ug/g	Yes	Yes		5823651
Surrogate Recovery (%)					
1,4-Difluorobenzene	%	102	102		5821697
4-Bromofluorobenzene	%	99	96		5821697
D10-Ethylbenzene	%	87	89		5821697
D4-1,2-Dichloroethane	%	114	110		5821697
o-Terphenyl	%	97	95		5823651
RDL = Reportable Detection L	imit				
QC Batch = Quality Control Ba	tch				

O.REG 153 PETROLEUM HYDROCARBONS (SOIL)

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.6000 Site Location: HIGHWAY 410 Sampler Initials: MS

Maxxam ID		IBP036	IBP037						
Sampling Date		2018/10/16	2018/10/17						
COC Number		n/a	n/a						
	UNITS	BH6 SS4	BH2 SS11	RDL	QC Batch				
Calculated Parameters									
Resistivity	ohm-cm	5700	7200		5796016				
Inorganics									
Soluble (20:1) Chloride (Cl-)	ug/g	24	<20	20	5799805				
Conductivity	umho/cm	176	138	2	5800015				
Available (CaCl2) pH	рН	7.84	8.01		5797839				
Soluble (20:1) Sulphate (SO4)	ug/g	38	33	20	5799807				
RDL = Reportable Detection Lir	nit								
QC Batch = Quality Control Bat	ch								

RESULTS OF ANALYSES OF SOIL

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.6000 Site Location: HIGHWAY 410 Sampler Initials: MS

TEST SUMMARY

Maxxam ID:	IBP028
Sample ID:	BH3 SS3
Matrix:	Soil

Collected: 2018/10/17 Shipped: Received: 2018/10/19

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	5819935	N/A	2018/11/07	Automated Statchk
Hot Water Extractable Boron	ICP	5822766	2018/11/06	2018/11/06	Suban Kanapathippllai
Free (WAD) Cyanide	TECH	5822752	2018/11/06	2018/11/07	Louise Harding
Conductivity	AT	5822965	2018/11/07	2018/11/08	Barbara Kalbasi Esfahani
Hexavalent Chromium in Soil by IC	IC/SPEC	5821915	2018/11/06	2018/11/08	Sally Norouz
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	5821697	N/A	2018/11/06	Georgeta Rusu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5823651	2018/11/06	2018/11/07	Zhiyue (Frank) Zhu
Strong Acid Leachable Metals by ICPMS	ICP/MS	5822906	2018/11/06	2018/11/07	Daniel Teclu
Moisture	BAL	5821117	N/A	2018/11/05	Min Yang
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	5823654	2018/11/06	2018/11/07	Mitesh Raj
pH CaCl2 EXTRACT	AT	5823079	2018/11/07	2018/11/07	Gnana Thomas
Sodium Adsorption Ratio (SAR)	CALC/MET	5820005	N/A	2018/11/09	Automated Statchk

Maxxam ID: IBP033 Sample ID: DUP 1 Matrix: Soil

Collected:	2018/10/17
Shipped:	
Received:	2018/10/19

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	5819935	N/A	2018/11/07	Automated Statchk
Hot Water Extractable Boron	ICP	5822766	2018/11/06	2018/11/06	Suban Kanapathippllai
Free (WAD) Cyanide	TECH	5822752	2018/11/06	2018/11/07	Louise Harding
Conductivity	AT	5822965	2018/11/07	2018/11/08	Barbara Kalbasi Esfahani
Hexavalent Chromium in Soil by IC	IC/SPEC	5822736	2018/11/06	2018/11/09	Sally Norouz
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	5821697	N/A	2018/11/06	Georgeta Rusu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5823651	2018/11/06	2018/11/07	Zhiyue (Frank) Zhu
Strong Acid Leachable Metals by ICPMS	ICP/MS	5822906	2018/11/06	2018/11/07	Daniel Teclu
Moisture	BAL	5821117	N/A	2018/11/05	Min Yang
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	5823654	2018/11/06	2018/11/07	Mitesh Raj
pH CaCl2 EXTRACT	AT	5823079	2018/11/07	2018/11/07	Gnana Thomas
Sodium Adsorption Ratio (SAR)	CALC/MET	5820005	N/A	2018/11/09	Automated Statchk

Maxxam ID: Sample ID: Matrix:	IBP036 BH6 SS4 Soil					Collected: Shipped: Received:	2018/10/16 2018/10/19	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst		
Chloride (20:1 extract)		KONE/EC	5799805	N/A	2018/10/25	Alina Dobr	eanu	
Conductivity		AT	5800015	N/A	2018/10/24	Barbara Ka	Ibasi Esfahani	
pH CaCl2 EXTRACT		AT	5797839	2018/10/23	2018/10/23	Gnana Tho	omas	
Resistivity of Soil			5796016	2018/10/24	2018/10/24	Anastassia	Hamanov	
Sulphate (20:1 Extract)		KONE/EC	5799807	N/A	2018/10/25	Alina Dobr	eanu	

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.6000 Site Location: HIGHWAY 410 Sampler Initials: MS

TEST SUMMARY

Maxxam ID:	IBP037
Sample ID:	BH2 SS11
Matrix:	Soil

Collected: 2018/10/17 Shipped: Received: 2018/10/19

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Chloride (20:1 extract)	KONE/EC	5799805	N/A	2018/10/25	Alina Dobreanu
Conductivity	AT	5800015	N/A	2018/10/24	Barbara Kalbasi Esfahani
pH CaCl2 EXTRACT	AT	5797839	2018/10/23	2018/10/23	Gnana Thomas
Resistivity of Soil		5796016	2018/10/24	2018/10/24	Anastassia Hamanov
Sulphate (20:1 Extract)	KONE/EC	5799807	N/A	2018/10/25	Alina Dobreanu

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.6000 Site Location: HIGHWAY 410 Sampler Initials: MS

GENERAL COMMENTS

ach temperature is the	average of up to	hree cooler temperatures taken at receipt	
Package 1	2.7°C	7	
evised Report (2018/11,	12): Metals/Ino	ganics, PAH and PHC analysis have been included in this report.	

Results relate only to the items tested.

Maxxam Job #: B8R8406 Report Date: 2018/11/12

QUALITY ASSURANCE REPORT

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.6000 Site Location: HIGHWAY 410 Sampler Initials: MS

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5821697	1,4-Difluorobenzene	2018/11/06	103	60 - 140	104	60 - 140	101	%		
5821697	4-Bromofluorobenzene	2018/11/06	97	60 - 140	99	60 - 140	98	%		
5821697	D10-Ethylbenzene	2018/11/06	91	60 - 140	102	60 - 140	80	%		
5821697	D4-1,2-Dichloroethane	2018/11/06	112	60 - 140	116	60 - 140	112	%		
5823651	o-Terphenyl	2018/11/06	98	60 - 130	95	60 - 130	96	%		
5823654	D10-Anthracene	2018/11/06	92	50 - 130	96	50 - 130	95	%		
5823654	D14-Terphenyl (FS)	2018/11/06	83	50 - 130	97	50 - 130	86	%		
5823654	D8-Acenaphthylene	2018/11/06	91	50 - 130	97	50 - 130	93	%		
5797839	Available (CaCl2) pH	2018/10/23			100	97 - 103			0.33 (1)	N/A
5799805	Soluble (20:1) Chloride (Cl-)	2018/10/25	NC	70 - 130	106	70 - 130	<20	ug/g	7.9 (1)	35
5799807	Soluble (20:1) Sulphate (SO4)	2018/10/25	115	70 - 130	105	70 - 130	<20	ug/g	NC (1)	35
5800015	Conductivity	2018/10/24			104	90 - 110	<2	umho/cm	9.1 (1)	10
5821117	Moisture	2018/11/05							2.6 (1)	20
5821697	Benzene	2018/11/06	79	60 - 140	99	60 - 140	<0.020	ug/g	NC (1)	50
5821697	Ethylbenzene	2018/11/06	90	60 - 140	100	60 - 140	<0.020	ug/g	NC (1)	50
5821697	F1 (C6-C10) - BTEX	2018/11/06					<10	ug/g	NC (1)	30
5821697	F1 (C6-C10)	2018/11/06	84	60 - 140	99	80 - 120	<10	ug/g	NC (1)	30
5821697	o-Xylene	2018/11/06	89	60 - 140	98	60 - 140	<0.020	ug/g	NC (1)	50
5821697	p+m-Xylene	2018/11/06	90	60 - 140	101	60 - 140	<0.040	ug/g	NC (1)	50
5821697	Toluene	2018/11/06	86	60 - 140	99	60 - 140	<0.020	ug/g	NC (1)	50
5821697	Total Xylenes	2018/11/06					<0.040	ug/g	NC (1)	50
5821915	Chromium (VI)	2018/11/08	82	70 - 130	96	80 - 120	<0.2	ug/g	6.7 (1)	35
5822736	Chromium (VI)	2018/11/09	78	70 - 130	84	80 - 120	<0.2	ug/g	NC (1)	35
5822752	WAD Cyanide (Free)	2018/11/07	94	75 - 125	94	80 - 120	<0.01	ug/g	NC (1)	35
5822766	Hot Water Ext. Boron (B)	2018/11/06	100	75 - 125	96	75 - 125	<0.050	ug/g	35 (1)	40
5822906	Acid Extractable Antimony (Sb)	2018/11/06	101	75 - 125	108	80 - 120	<0.20	ug/g	19 (1)	30
5822906	Acid Extractable Arsenic (As)	2018/11/06	99	75 - 125	100	80 - 120	<1.0	ug/g	9.5 (1)	30
5822906	Acid Extractable Barium (Ba)	2018/11/06	104	75 - 125	98	80 - 120	<0.50	ug/g	9.8 (1)	30
5822906	Acid Extractable Beryllium (Be)	2018/11/06	99	75 - 125	101	80 - 120	<0.20	ug/g	1.1 (1)	30
5822906	Acid Extractable Boron (B)	2018/11/06	91	75 - 125	100	80 - 120	<5.0	ug/g	0.97 (1)	30

Maxxam Job #: B8R8406 Report Date: 2018/11/12

QUALITY ASSURANCE REPORT(CONT'D)

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.6000 Site Location: HIGHWAY 410 Sampler Initials: MS

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI	כ
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5822906	Acid Extractable Cadmium (Cd)	2018/11/06	99	75 - 125	102	80 - 120	<0.10	ug/g	11 (1)	30
5822906	Acid Extractable Chromium (Cr)	2018/11/06	98	75 - 125	102	80 - 120	<1.0	ug/g	10 (1)	30
5822906	Acid Extractable Cobalt (Co)	2018/11/06	99	75 - 125	102	80 - 120	<0.10	ug/g	4.8 (1)	30
5822906	Acid Extractable Copper (Cu)	2018/11/06	104	75 - 125	101	80 - 120	<0.50	ug/g	6.3 (1)	30
5822906	Acid Extractable Lead (Pb)	2018/11/06	101	75 - 125	102	80 - 120	<1.0	ug/g	4.3 (1)	30
5822906	Acid Extractable Mercury (Hg)	2018/11/06	92	75 - 125	96	80 - 120	<0.050	ug/g	NC (1)	30
5822906	Acid Extractable Molybdenum (Mo)	2018/11/06	104	75 - 125	101	80 - 120	<0.50	ug/g	7.5 (1)	30
5822906	Acid Extractable Nickel (Ni)	2018/11/06	98	75 - 125	106	80 - 120	<0.50	ug/g	5.7 (1)	30
5822906	Acid Extractable Selenium (Se)	2018/11/06	98	75 - 125	101	80 - 120	<0.50	ug/g	NC (1)	30
5822906	Acid Extractable Silver (Ag)	2018/11/06	99	75 - 125	104	80 - 120	<0.20	ug/g	NC (1)	30
5822906	Acid Extractable Thallium (TI)	2018/11/06	100	75 - 125	103	80 - 120	<0.050	ug/g	11 (1)	30
5822906	Acid Extractable Uranium (U)	2018/11/06	100	75 - 125	101	80 - 120	<0.050	ug/g	5.5 (1)	30
5822906	Acid Extractable Vanadium (V)	2018/11/06	102	75 - 125	98	80 - 120	<5.0	ug/g	1.5 (1)	30
5822906	Acid Extractable Zinc (Zn)	2018/11/06	NC	75 - 125	101	80 - 120	<5.0	ug/g	3.1 (1)	30
5822965	Conductivity	2018/11/08			104	90 - 110	<0.002	mS/cm	1.3 (1)	10
5823079	Available (CaCl2) pH	2018/11/07			100	97 - 103			1.0 (1)	N/A
5823651	F2 (C10-C16 Hydrocarbons)	2018/11/07	100	50 - 130	98	80 - 120	<10	ug/g	NC (1)	30
5823651	F3 (C16-C34 Hydrocarbons)	2018/11/07	101	50 - 130	96	80 - 120	<50	ug/g	NC (1)	30
5823651	F4 (C34-C50 Hydrocarbons)	2018/11/07	96	50 - 130	91	80 - 120	<50	ug/g	NC (1)	30
5823654	1-Methylnaphthalene	2018/11/07	91	50 - 130	98	50 - 130	<0.0050	ug/g	NC (1)	40
5823654	2-Methylnaphthalene	2018/11/07	82	50 - 130	89	50 - 130	<0.0050	ug/g	NC (1)	40
5823654	Acenaphthene	2018/11/07	86	50 - 130	93	50 - 130	<0.0050	ug/g	NC (1)	40
5823654	Acenaphthylene	2018/11/07	84	50 - 130	87	50 - 130	<0.0050	ug/g	NC (1)	40
5823654	Anthracene	2018/11/07	85	50 - 130	90	50 - 130	<0.0050	ug/g	NC (1)	40
5823654	Benzo(a)anthracene	2018/11/07	96	50 - 130	99	50 - 130	<0.0050	ug/g	NC (1)	40
5823654	Benzo(a)pyrene	2018/11/07	84	50 - 130	94	50 - 130	<0.0050	ug/g	NC (1)	40
5823654	Benzo(b/j)fluoranthene	2018/11/07	82	50 - 130	94	50 - 130	<0.0050	ug/g	NC (1)	40
5823654	Benzo(g,h,i)perylene	2018/11/07	81	50 - 130	82	50 - 130	<0.0050	ug/g	NC (1)	40
5823654	Benzo(k)fluoranthene	2018/11/07	78	50 - 130	86	50 - 130	<0.0050	ug/g	NC (1)	40
5823654	Chrysene	2018/11/07	91	50 - 130	96	50 - 130	<0.0050	ug/g	NC (1)	40

Maxxam Job #: B8R8406 Report Date: 2018/11/12

QUALITY ASSURANCE REPORT(CONT'D)

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.6000 Site Location: HIGHWAY 410 Sampler Initials: MS

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5823654	Dibenz(a,h)anthracene	2018/11/07	80	50 - 130	79	50 - 130	<0.0050	ug/g	NC (1)	40
5823654	Fluoranthene	2018/11/07	84	50 - 130	95	50 - 130	<0.0050	ug/g	NC (1)	40
5823654	Fluorene	2018/11/07	85	50 - 130	91	50 - 130	<0.0050	ug/g	NC (1)	40
5823654	Indeno(1,2,3-cd)pyrene	2018/11/07	84	50 - 130	83	50 - 130	<0.0050	ug/g	NC (1)	40
5823654	Naphthalene	2018/11/07	76	50 - 130	82	50 - 130	<0.0050	ug/g	NC (1)	40
5823654	Phenanthrene	2018/11/07	84	50 - 130	92	50 - 130	<0.0050	ug/g	1.2 (1)	40
5823654	Pyrene	2018/11/07	83	50 - 130	96	50 - 130	<0.0050	ug/g	NC (1)	40

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Duplicate Parent ID

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.6000 Site Location: HIGHWAY 410 Sampler Initials: MS

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

A Bu	reau Veritas Group Company Phone	2: 905-817-5700 Fax: FCD-01191/3	905-817-5779	Toll Free:	800-5	63-6266	· . ·				CH		OF CL	ISTO	DY RE	COR	D		Pageof					
_	Invoice Information		Report	Informatio	ın (if di	ffers fro	om invo	lice)		\rightarrow		Project	Informat	ion-(whe	re applic	able)	_	, Turnarour	nd Time (TAT) Required					
Company Na	me: ; Wood	Comj	any Name:					_			Juotatio	n#: B	61973					X Regular TAT	(5-7 days) Most analyses			4		
Contact Nam	e: Accounts Payable	Cont	ict Name:	Alessand	ro Pell	erito				F	.O. #/ AI	FE#:	*				2	PLEASE PROVIDE ADV	ANCE NOTICE FOR RUSH PROJECTS	5				
Address:	50 Vogell road, Units 3 and 4 , Richn	aond Hill, Add	255:							F	roject #	; ті	PB16609	0.6000			ĸ.	Rush TAT (Se	urcharges will be applied)		-0			
	L4B 3N6						+			S	ite Local	tion: Hi	ighway 4	10				1 Day	2 Days 3-4 Days	2				
Phone: 905-	415-2632 Fax:	Phon	e:			Fax:		1		S	ite #:	_						1.1						
Email: <u>AP</u>	GTAEAST@woodplc.com	Emai	<u>a.pellerito</u> shami.ma	alla@wo	dplc.c	om; c.com				s	ampled	ву: М	lohamma	id Safarpi	nah		×	Date Required:		н.,		م		
WITH	MOE REGULATED DRINKING WATER	OR WATER INTENDED F	OR HUMAN CON	SUMPTION	MUST	BE SUE	IMITTE	ON TH	IE MAD	XXAM	DRINKIN	G WATE	RCHAIN	OFCUST	İDΥ	S.M.		Rush Confirmation #	6 <u>_</u>					
	Regulation 153	Other	Regulations	_			-	-	_		Analysis	Request	ted				•	LABOI	RATORY USE ONLY					
Table 3	Res/Park Med/ Fine	MISA Stu PWQO Re	nitary Sewer Byl orm Sewer Bylav gion	aw /		Hg / CrVI												CUSTODY SEAL Y / N Present Intact				<i></i>		
FOR RSC	(PLEASE CIRCLE) Y / N	REG 558 (MIN.	DAY TAT REQU	IRED)	TED	etals /			ANICS		WS - B							7 9	213,3					
Include Criter	ia on Certificate of Analysis: Y /	N			UBMIT	CLE) M			NORG		etals, H						LYZE							
SAMPLES	MUST BE KEPT COOL (< 10 °C) FROM TIN	ME OF SAMPLING UNTIL	DELIVERY TO M	AXXAM	VERS SI	D (CIR			ALS & I		ALS MS M6						TANA							
,	SAMPLE IDENTIFICATION	DATE SAMPLED	TIME SAMPLEI (HH:MM)	MATRIX	T OF CONTAIL	HELD FILTERE	STEX/ PHC F1	/0Cs	EG 153 MET	AHS	tEG 153 MET Hg. Cr VI, ICP						OLD- DO NO	COOLING MEDIA PRESE						
1	BH1 SS4	10/16/2018	3:50pm	Soil	4	Ĩ				-							X					Ci .		
2	BH2 SS4	10/17/2018	9:00am	Soil	4			1			-					+	x							
3	BH2 5510	10/17/2018	10:40	Soll	4		-	+								+	x					1.00		
4	BH3 SS3	10/17/2018	2:10pm	Soil	4		+	+		-				2			x							
5	BH3 SS11	10/17/2018	4:45pm	Soil	4		+			-			1				x							
6	BH6 SS2	10/16/2018		Soil	0	+	-	-								+	×				6. I			
7	BH6 SS3	10/16/2018	-	Soil				-		-						+	-0 				R			
2	BH6 \$\$11	10/16/2018		6-11	4		+	-		-			-			+	^		,					
	DUDI	10/10/2010		300	4					-						+	×	10.0						
9	DUPI	10/17/2018		Soil	4		-	-						_		+	X	19-0	ct-18 14:50			1		
10																	_ 1	Gina Bayba	iyan	100				
RELI	Alessandro Pellerito	2018/10/10	9" 20)	211	RECEIV	L.	(Signat	ure/Pr	rint)	6	Pate	101	/ 0,	TIMI	(HH:M	M)	B8R84	06	2				
	14	91 117	1.		100	une	4	UC	1 C	in	07	NOIS	101	T	14	00	- 1	VMK F	NV-1167				2	

6

•

.

				1	Contraction of the second
	×				
1					
6740 Campobelio Road,	Mississauga, Ontario 15N 218			14.	
Phone: 905-817-5700 CAM FCD-01191/3	Fax: 905-817-5779 Toll Free: 800-563-6266		27		
Invoice Information	Report Information (if differs from invoice)	CHAIN OF CUSTODY RECORD	Page of		
Company Name: Wood	Company Name:	Ourtation B. Bracco	Turnaround Time (TAT) Required	12	
Contact Name: Accounts Payable	Contact Name: Alessandro Pellerito	P.O. #/ AFF#	Regular TAT (5-7 days) Most analyses		
Address: 50 Vogell road, Units 3 and 4, Richmond Hill,	Address:	Project #: TP8166090.6000	Rush TAT (Surcharges will be molied)		
L4B 3N6		Site Location: Highway 410	1 Day 2 Days 3-4 Days		8 7 7 1
	Phone: Fax:	Site #: -			
Email: AP GTAEAST@woodpic.com	a.pellerito@woodpic.com;		Date Required:		8
MOE REGULATED DRINKING WATER OR WATER INTEND	ED FOR HUMAN CONSUMPTION AUX TO SUB-	Sampled By: Mohammad Safarpanah			1) 1
Regulation 153 0	ther Regulations	Analysis Requested	Rush Confirmation #:		- · · · ·
Table 1 Res/Park Med/Fine CCME	Sanitary Sewer Bylaw		LABORATORY USE ONLY CUSTODY SEAL		
Table 3 Agri/ Other PWQ0	Region S		Y / N COOLER TEMPERATURES		
FOR RSC (PLEASE CIRCLE) Y / N	cify) 0 =		Present Intact.		
Include Criteria on Certificate of Analysis: Y / N	AND S DAT TAL REQUIRED				
SAMPLES MUST BE KEPT COOL (< 10 °C) FROM TIME OF SAMPLING U	NTIL DELIVERY TO MAXXAM	AS Meets		•	
SAMPLE IDENTIFICATION DATE SAM	APLED TIME SAMPLED TO BE	VU, ICPI	COOLING MEDIA PRESENT: Y / N		
	PHEG 01 C C C C C C C C C C C C C C C C C C	He C I	COMMENTS		
2 BH4 552 10/18/2	018 9:30am 20/2 4	x			
3 GHUG CC/ 10/18/2	018 11:10am 4	x			
4 BH2 CCU 1012	and the second sec	\times			
s DICE SIT - MIT				2	R
6		8			
7		i			
8					•
9					
10					120 X ao 11
RELINQUISHED BY: (Signature/Print) DATE: (YYYY/MM/	DD) TIME: (HH:MM) RECEIVED BY: (Signature/Print)	DATE: (YYYY/MM/DD) TIME: DUI ANAL			
Alessandro Pellerito	9 4:20 See Page 1	((IN:MIN)	MAXXAM JOB #		
10 4.0	de l				
Unless otherwise agreed to in writing, work submitted on this Chain of Custody www.maxam.co/terms. Sample costillant, agreements	s subject to Maxxom's standard Terms and Conditions. Signing of this Che	an of Custody document is acknowledgement			*
sample container, preservation, hold time and package	es information can be viewed at http://maxxam.ca/wp-content/uploods/G	Intario-COC.pdf.	e of our terms which are available for viewing at		. F
					- S1

*

.

Page 15 of 17

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.6000 Project name: HIGHWAY 410 Client ID: BH3 SS3

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.6000 Project name: HIGHWAY 410 Client ID: DUP 1

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Your Project #: TPB166090.600 Site Location: HIGHWAY 410 Your C.O.C. #: n/a

Attention: Allesandro Pellerito

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited 50 Vogell Road Units 3 and 4 Richmond Hill, ON CANADA L4B 3N6

> Report Date: 2018/11/15 Report #: R5485890 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8T5664 Received: 2018/11/06, 14:48

Sample Matrix: Soil # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Methylnaphthalene Sum	2	N/A	2018/11/15	CAM SOP-00301	EPA 8270D m
Hot Water Extractable Boron	2	2018/11/12	2018/11/12	CAM SOP-00408	R153 Ana. Prot. 2011
Free (WAD) Cyanide	2	2018/11/12	2018/11/13	CAM SOP-00457	OMOE E3015 m
Conductivity	2	2018/11/14	2018/11/14	CAM SOP-00414	OMOE E3530 v1 m
Hexavalent Chromium in Soil by IC (1)	2	2018/11/10	2018/11/14	CAM SOP-00436	EPA 3060/7199 m
Petroleum Hydro. CCME F1 & BTEX in Soil (2)	2	N/A	2018/11/13	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (3)	2	2018/11/13	2018/11/13	CAM SOP-00316	CCME CWS m
Strong Acid Leachable Metals by ICPMS	2	2018/11/10	2018/11/12	CAM SOP-00447	EPA 6020B m
Moisture	2	N/A	2018/11/08	CAM SOP-00445	Carter 2nd ed 51.2 m
PAH Compounds in Soil by GC/MS (SIM)	2	2018/11/13	2018/11/14	CAM SOP-00318	EPA 8270D m
pH CaCl2 EXTRACT	2	2018/11/13	2018/11/13	CAM SOP-00413	EPA 9045 D m
Sodium Adsorption Ratio (SAR)	2	N/A	2018/11/15	CAM SOP-00102	EPA 6010C

Sample Matrix: Solid # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Asbestos by PLM - 0.5 RDL (4)	2	N/A	2018/11/09	COR3SOP-00002	EPA 600R-93/116

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report.

Your Project #: TPB166090.600 Site Location: HIGHWAY 410 Your C.O.C. #: n/a

Attention: Allesandro Pellerito

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited 50 Vogell Road Units 3 and 4 Richmond Hill, ON CANADA L4B 3N6

> Report Date: 2018/11/15 Report #: R5485890 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8T5664

Received: 2018/11/06, 14:48

Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Maxxam Analytics' Asbestos Laboratory is accredited by NVLAP for bulk asbestos analysis by polarized light microscopy, NVLAP Code 600136-0.

This report may not be reproduced, except in full, without the written approval of Maxxam Analytics. This report may not be used by the client to claim product endorsement by NVLAP, NIST or any other agency of the U.S. Government.

Maxxam Analytics' scope of accreditation includes EPA-600/M4-82-020: "Interim Method for the Determination of Asbestos in Bulk Insulation Samples" and EPA-600/R-93/116: "Method for the Determination of Asbestos in Bulk Building Materials".

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Soils are reported on a dry weight basis unless otherwise specified.

(2) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated.
(3) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.
(4) P.O.B. - Percent of Bulk

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Gina Baybayan, Project Manager Email: GBaybayan@maxxam.ca Phone# (905)817-5766

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 16

O.REG 153 METALS & INORGANICS PKG (SOIL)

Maxxam ID		IFK541	IFK543		
Sampling Date		2018/11/01	2018/11/02		
		09:40	08:30		
COC Number		n/a	n/a		
	UNITS	BH5 SS2	BH7 SS1	RDL	QC Batch
Calculated Parameters					
Sodium Adsorption Ratio	N/A	0.24	13		5826989
Inorganics	-				
Conductivity	mS/cm	0.19	0.83	0.002	5833105
Moisture	%	10	23	1.0	5828411
Available (CaCl2) pH	рН	7.69	7.55		5832549
WAD Cyanide (Free)	ug/g	<0.01	<0.01	0.01	5832936
Chromium (VI)	ug/g	<0.2	<0.2	0.2	5831518
Metals					
Hot Water Ext. Boron (B)	ug/g	0.061	0.064	0.050	5832167
Acid Extractable Antimony (Sb)	ug/g	<0.20	<0.20	0.20	5831332
Acid Extractable Arsenic (As)	ug/g	6.4	5.3	1.0	5831332
Acid Extractable Barium (Ba)	ug/g	64	60	0.50	5831332
Acid Extractable Beryllium (Be)	ug/g	0.76	0.63	0.20	5831332
Acid Extractable Boron (B)	ug/g	9.4	8.4	5.0	5831332
Acid Extractable Cadmium (Cd)	ug/g	<0.10	<0.10	0.10	5831332
Acid Extractable Chromium (Cr)	ug/g	20	19	1.0	5831332
Acid Extractable Cobalt (Co)	ug/g	13	11	0.10	5831332
Acid Extractable Copper (Cu)	ug/g	36	30	0.50	5831332
Acid Extractable Lead (Pb)	ug/g	9.2	9.2	1.0	5831332
Acid Extractable Molybdenum (Mo)	ug/g	<0.50	<0.50	0.50	5831332
Acid Extractable Nickel (Ni)	ug/g	27	24	0.50	5831332
Acid Extractable Selenium (Se)	ug/g	<0.50	<0.50	0.50	5831332
Acid Extractable Silver (Ag)	ug/g	<0.20	<0.20	0.20	5831332
Acid Extractable Thallium (Tl)	ug/g	0.14	0.14	0.050	5831332
Acid Extractable Uranium (U)	ug/g	0.47	0.57	0.050	5831332
Acid Extractable Vanadium (V)	ug/g	27	26	5.0	5831332
Acid Extractable Zinc (Zn)	ug/g	58	54	5.0	5831332
Acid Extractable Mercury (Hg)	ug/g	<0.050	<0.050	0.050	5831332
RDL = Reportable Detection Limit QC Batch = Quality Control Batch					

O.REG 153 PAHS (SOIL)

Maxxam ID		IFK541	IFK543		
Sampling Data		2018/11/01	2018/11/02		
Sampling Date		09:40	08:30		
COC Number		n/a	n/a		
	UNITS	BH5 SS2	BH7 SS1	RDL	QC Batch
Calculated Parameters					
Methylnaphthalene, 2-(1-)	ug/g	<0.0071	<0.0071	0.0071	5826988
Polyaromatic Hydrocarbons					
Acenaphthene	ug/g	<0.0050	<0.0050	0.0050	5833853
Acenaphthylene	ug/g	<0.0050	<0.0050	0.0050	5833853
Anthracene	ug/g	<0.0050	<0.0050	0.0050	5833853
Benzo(a)anthracene	ug/g	<0.0050	<0.0050	0.0050	5833853
Benzo(a)pyrene	ug/g	<0.0050	<0.0050	0.0050	5833853
Benzo(b/j)fluoranthene	ug/g	<0.0050	<0.0050	0.0050	5833853
Benzo(g,h,i)perylene	ug/g	<0.0050	<0.0050	0.0050	5833853
Benzo(k)fluoranthene	ug/g	<0.0050	<0.0050	0.0050	5833853
Chrysene	ug/g	<0.0050	<0.0050	0.0050	5833853
Dibenz(a,h)anthracene	ug/g	<0.0050	<0.0050	0.0050	5833853
Fluoranthene	ug/g	<0.0050	<0.0050	0.0050	5833853
Fluorene	ug/g	<0.0050	<0.0050	0.0050	5833853
Indeno(1,2,3-cd)pyrene	ug/g	<0.0050	<0.0050	0.0050	5833853
1-Methylnaphthalene	ug/g	<0.0050	<0.0050	0.0050	5833853
2-Methylnaphthalene	ug/g	<0.0050	<0.0050	0.0050	5833853
Naphthalene	ug/g	<0.0050	<0.0050	0.0050	5833853
Phenanthrene	ug/g	<0.0050	<0.0050	0.0050	5833853
Pyrene	ug/g	<0.0050	<0.0050	0.0050	5833853
Surrogate Recovery (%)					
D10-Anthracene	%	88	85		5833853
D14-Terphenyl (FS)	%	82	79		5833853
D8-Acenaphthylene	%	82	80		5833853
RDL = Reportable Detection L	imit			_	
QC Batch = Quality Control Ba	atch				

Maxxam ID		IFK541	IFK543		
Comulius Data		2018/11/01	2018/11/02		
Sampling Date		09:40	08:30		
COC Number		n/a	n/a		
	UNITS	BH5 SS2	BH7 SS1	RDL	QC Batch
BTEX & F1 Hydrocarbons					
Benzene	ug/g	<0.020	<0.020	0.020	5834644
Toluene	ug/g	<0.020	<0.020	0.020	5834644
Ethylbenzene	ug/g	<0.020	<0.020	0.020	5834644
o-Xylene	ug/g	<0.020	<0.020	0.020	5834644
p+m-Xylene	ug/g	<0.040	<0.040	0.040	5834644
Total Xylenes	ug/g	<0.040	<0.040	0.040	5834644
F1 (C6-C10)	ug/g	<10	<10	10	5834644
F1 (C6-C10) - BTEX	ug/g	<10	<10	10	5834644
F2-F4 Hydrocarbons					
F2 (C10-C16 Hydrocarbons)	ug/g	<10	<10	10	5833889
F3 (C16-C34 Hydrocarbons)	ug/g	<50	<50	50	5833889
F4 (C34-C50 Hydrocarbons)	ug/g	<50	<50	50	5833889
Reached Baseline at C50	ug/g	Yes	Yes		5833889
Surrogate Recovery (%)					
1,4-Difluorobenzene	%	102	102		5834644
4-Bromofluorobenzene	%	98	97		5834644
D10-Ethylbenzene	%	88	90		5834644
D4-1,2-Dichloroethane	%	99	99		5834644
o-Terphenyl	%	91	91		5833889
RDL = Reportable Detection I	imit			•	-
QC Batch = Quality Control B	atch				

O.REG 153 PETROLEUM HYDROCARBONS (SOIL)

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.600 Site Location: HIGHWAY 410

Asbestos Analytical Results

EPA/600R-93/116 by Polarized Light Microscopy

BH 4						
Maxxam ID:	IFK546			Date	Analyzed:	2018/11/09
	P.O.B	Sample Morphology	Asbestos	Other Fibres		Particulate
Layer 1	100	Homogeneous grey asphalt	Not Detected			Tar
						Non-Fibrous
ВН 6						
Maxxam ID:	IFK547			Date	Analyzed:	2018/11/09
	P.O.B	Sample Morphology	Asbestos	Other Fibres		Particulate
Layer 1	100	Homogeneous black asphalt	Not Detected			Tar
						Non-Fibrous

The limit of quantitation is 0.50%, although asbestos may be qualitatively detected at concentrations less than 0.50%. Samples for which asbestos is detected at <0.50% are reported as trace, "<0.50%". "Not Detected" indicates that no asbestos fibres were observed.

Calibrated Visual Estimate (%) Date Format : yyyy/mm/dd

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.600 Site Location: HIGHWAY 410

TEST SUMMARY

Maxxam ID:	IFK541
Sample ID:	BH5 SS2
Matrix:	Soil

				Collected: 2018/11/01 Shipped: Received: 2018/11/06
Instrumentation	Batch	Extracted	Date Analyzed	Analyst
CALC	5826988	N/A	2018/11/15	Automated Statchk
ICP	5832167	2018/11/12	2018/11/12	Suban Kanapathippllai
TECH	5832936	2018/11/12	2018/11/13	Louise Harding
AT	5833105	2018/11/14	2018/11/14	Barbara Kalbasi Esfahani
IC/SPEC	5831518	2018/11/10	2018/11/14	Rupinder Sihota
HSGC/MSFD	5834644	N/A	2018/11/13	Georgeta Rusu
GC/FID	5833889	2018/11/13	2018/11/13	Anna Stuglik Rolland
ICP/MS	5831332	2018/11/10	2018/11/12	Daniel Teclu
BAL	5828411	N/A	2018/11/08	Min Yang
GC/MS	5833853	2018/11/13	2018/11/14	Mitesh Raj
AT	5832549	2018/11/13	2018/11/13	Gnana Thomas
CALC/MET	5826989	N/A	2018/11/15	Automated Statchk
	Instrumentation CALC ICP TECH AT IC/SPEC HSGC/MSFD GC/FID ICP/MS BAL GC/MS AT CALC/MET	Instrumentation Batch CALC 5826988 ICP 5832167 TECH 5832936 AT 5833105 IC/SPEC 5831518 HSGC/MSFD 5834644 GC/FID 5833889 ICP/MS 5831332 BAL 5828411 GC/MSFD 5833853 AT 5832549 CALC/MET 5826989	Instrumentation Batch Extracted CALC 5826988 N/A ICP 5832167 2018/11/12 TECH 5832936 2018/11/12 AT 5833105 2018/11/14 IC/SPEC 5831518 2018/11/10 HSGC/MSFD 5834644 N/A GC/FID 5833889 2018/11/13 ICP/MS 5831332 2018/11/10 BAL 5828411 N/A GC/MSF 5833853 2018/11/13 AT 5832549 2018/11/13 AT 5832549 2018/11/13	Instrumentation Batch Extracted Date Analyzed CALC 5826988 N/A 2018/11/15 ICP 5832167 2018/11/12 2018/11/12 TECH 5832936 2018/11/12 2018/11/13 AT 5833105 2018/11/14 2018/11/14 IC/SPEC 5831518 2018/11/10 2018/11/14 HSGC/MSFD 5834644 N/A 2018/11/13 GC/FID 583389 2018/11/13 2018/11/13 ICP/MS 5831332 2018/11/13 2018/11/12 BAL 5828411 N/A 2018/11/14 AT 5833853 2018/11/13 2018/11/14 AT 5832549 2018/11/13 2018/11/14 AT 5832549 2018/11/13 2018/11/13

Maxxam ID:	IFK543
Sample ID:	BH7 SS1
Matrix:	Soil

Collected: 2018/11/02 Shipped: **Received:** 2018/11/06

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	5826988	N/A	2018/11/15	Automated Statchk
Hot Water Extractable Boron	ICP	5832167	2018/11/12	2018/11/12	Suban Kanapathippllai
Free (WAD) Cyanide	TECH	5832936	2018/11/12	2018/11/13	Louise Harding
Conductivity	AT	5833105	2018/11/14	2018/11/14	Barbara Kalbasi Esfahani
Hexavalent Chromium in Soil by IC	IC/SPEC	5831518	2018/11/10	2018/11/14	Rupinder Sihota
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	5834644	N/A	2018/11/13	Georgeta Rusu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5833889	2018/11/13	2018/11/13	Anna Stuglik Rolland
Strong Acid Leachable Metals by ICPMS	ICP/MS	5831332	2018/11/10	2018/11/12	Daniel Teclu
Moisture	BAL	5828411	N/A	2018/11/08	Min Yang
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	5833853	2018/11/13	2018/11/14	Mitesh Raj
pH CaCl2 EXTRACT	AT	5832549	2018/11/13	2018/11/13	Gnana Thomas
Sodium Adsorption Ratio (SAR)	CALC/MET	5826989	N/A	2018/11/15	Automated Statchk

Maxxam ID: Sample ID: Matrix:	IFK546 BH 4 Solid					Collected: Shipped: Received:	2018/10/18 2018/11/06
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Asbestos by PLM - 0.5 RDL		MIC	5827918	N/A	2018/11/09	Romeo Sa	mson
Maxxam ID: Sample ID: Matrix:	IFK546 Dup BH 4 Solid					Collected: Shipped: Received:	2018/10/18 2018/11/06
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Asbestos by PLM - 0.5 RD	L	MIC	5827918	N/A	2018/11/09	Romeo Sa	mson

Page 7 of 16

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.600 Site Location: HIGHWAY 410

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	IFK547 BH 6 Solid					Collected: Shipped: Received:	2018/11/01 2018/11/06	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst		
Ashestos by PLM - 0.5 RD	1	MIC	5827918	N/A	2018/11/09	Romeo Sar	nson	

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	1.0°C
Package 2	20.0°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.600 Site Location: HIGHWAY 410

			Matrix	Spike	SPIKED BLANK		ANK Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5833853	D10-Anthracene	2018/11/13	84	50 - 130	86	50 - 130	86	%		
5833853	D14-Terphenyl (FS)	2018/11/13	79	50 - 130	81	50 - 130	80	%		
5833853	D8-Acenaphthylene	2018/11/13	83	50 - 130	84	50 - 130	80	%		
5833889	o-Terphenyl	2018/11/13	91	60 - 130	89	60 - 130	92	%		
5834644	1,4-Difluorobenzene	2018/11/13	101	60 - 140	102	60 - 140	102	%		
5834644	4-Bromofluorobenzene	2018/11/13	98	60 - 140	100	60 - 140	97	%		
5834644	D10-Ethylbenzene	2018/11/13	87	60 - 140	102	60 - 140	83	%		
5834644	D4-1,2-Dichloroethane	2018/11/13	99	60 - 140	99	60 - 140	98	%		
5828411	Moisture	2018/11/08							1.5 (1)	20
5831332	Acid Extractable Antimony (Sb)	2018/11/12	90	75 - 125	103	80 - 120	<0.20	ug/g	4.0 (1)	30
5831332	Acid Extractable Arsenic (As)	2018/11/12	94	75 - 125	104	80 - 120	<1.0	ug/g	2.2 (1)	30
5831332	Acid Extractable Barium (Ba)	2018/11/12	NC	75 - 125	99	80 - 120	<0.50	ug/g	1.2 (1)	30
5831332	Acid Extractable Beryllium (Be)	2018/11/12	95	75 - 125	101	80 - 120	<0.20	ug/g	3.3 (1)	30
5831332	Acid Extractable Boron (B)	2018/11/12	88	75 - 125	98	80 - 120	<5.0	ug/g	3.3 (1)	30
5831332	Acid Extractable Cadmium (Cd)	2018/11/12	94	75 - 125	100	80 - 120	<0.10	ug/g	NC (1)	30
5831332	Acid Extractable Chromium (Cr)	2018/11/12	NC	75 - 125	104	80 - 120	<1.0	ug/g	4.2 (1)	30
5831332	Acid Extractable Cobalt (Co)	2018/11/12	99	75 - 125	103	80 - 120	<0.10	ug/g	2.6 (1)	30
5831332	Acid Extractable Copper (Cu)	2018/11/12	95	75 - 125	101	80 - 120	<0.50	ug/g	0.83 (1)	30
5831332	Acid Extractable Lead (Pb)	2018/11/12	91	75 - 125	103	80 - 120	<1.0	ug/g	3.4 (1)	30
5831332	Acid Extractable Mercury (Hg)	2018/11/12	93	75 - 125	105	80 - 120	<0.050	ug/g	NC (1)	30
5831332	Acid Extractable Molybdenum (Mo)	2018/11/12	97	75 - 125	103	80 - 120	<0.50	ug/g	NC (1)	30
5831332	Acid Extractable Nickel (Ni)	2018/11/12	92	75 - 125	102	80 - 120	<0.50	ug/g	3.0 (1)	30
5831332	Acid Extractable Selenium (Se)	2018/11/12	93	75 - 125	104	80 - 120	<0.50	ug/g	NC (1)	30
5831332	Acid Extractable Silver (Ag)	2018/11/12	94	75 - 125	98	80 - 120	<0.20	ug/g	NC (1)	30
5831332	Acid Extractable Thallium (TI)	2018/11/12	92	75 - 125	101	80 - 120	<0.050	ug/g	2.2 (1)	30
5831332	Acid Extractable Uranium (U)	2018/11/12	95	75 - 125	103	80 - 120	<0.050	ug/g	3.3 (1)	30
5831332	Acid Extractable Vanadium (V)	2018/11/12	NC	75 - 125	100	80 - 120	<5.0	ug/g	5.5 (1)	30
5831332	Acid Extractable Zinc (Zn)	2018/11/12	NC	75 - 125	106	80 - 120	<5.0	ug/g	1.0 (1)	30
5831518	Chromium (VI)	2018/11/14	41 (2)	70 - 130	87	80 - 120	<0.2	ug/g	NC (1)	35
5832167	Hot Water Ext. Boron (B)	2018/11/12	97	75 - 125	101	75 - 125	<0.050	ug/g	NC (1)	40

QUALITY ASSURANCE REPORT(CONT'D)

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.600 Site Location: HIGHWAY 410

			Matrix Spike		SPIKED	BLANK	Method E	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5832549	Available (CaCl2) pH	2018/11/13			100	97 - 103			0.76 (1)	N/A
5832936	WAD Cyanide (Free)	2018/11/13	85	75 - 125	94	80 - 120	<0.01	ug/g	2.2 (1)	35
5833105	Conductivity	2018/11/14			104	90 - 110	<0.002	mS/cm	0.35 (1)	10
5833853	1-Methylnaphthalene	2018/11/13	108	50 - 130	109	50 - 130	<0.0050	ug/g	NC (1)	40
5833853	2-Methylnaphthalene	2018/11/13	97	50 - 130	95	50 - 130	<0.0050	ug/g	NC (1)	40
5833853	Acenaphthene	2018/11/13	87	50 - 130	87	50 - 130	<0.0050	ug/g	NC (1)	40
5833853	Acenaphthylene	2018/11/13	78	50 - 130	78	50 - 130	<0.0050	ug/g	NC (1)	40
5833853	Anthracene	2018/11/13	81	50 - 130	80	50 - 130	<0.0050	ug/g	NC (1)	40
5833853	Benzo(a)anthracene	2018/11/13	90	50 - 130	87	50 - 130	<0.0050	ug/g	NC (1)	40
5833853	Benzo(a)pyrene	2018/11/13	85	50 - 130	85	50 - 130	<0.0050	ug/g	NC (1)	40
5833853	Benzo(b/j)fluoranthene	2018/11/13	89	50 - 130	92	50 - 130	<0.0050	ug/g	NC (1)	40
5833853	Benzo(g,h,i)perylene	2018/11/13	81	50 - 130	79	50 - 130	<0.0050	ug/g	NC (1)	40
5833853	Benzo(k)fluoranthene	2018/11/13	91	50 - 130	91	50 - 130	<0.0050	ug/g	NC (1)	40
5833853	Chrysene	2018/11/13	89	50 - 130	89	50 - 130	<0.0050	ug/g	NC (1)	40
5833853	Dibenz(a,h)anthracene	2018/11/13	85	50 - 130	82	50 - 130	<0.0050	ug/g	NC (1)	40
5833853	Fluoranthene	2018/11/13	88	50 - 130	90	50 - 130	<0.0050	ug/g	NC (1)	40
5833853	Fluorene	2018/11/13	95	50 - 130	93	50 - 130	<0.0050	ug/g	NC (1)	40
5833853	Indeno(1,2,3-cd)pyrene	2018/11/13	84	50 - 130	83	50 - 130	<0.0050	ug/g	NC (1)	40
5833853	Naphthalene	2018/11/13	84	50 - 130	83	50 - 130	<0.0050	ug/g	NC (1)	40
5833853	Phenanthrene	2018/11/13	85	50 - 130	85	50 - 130	<0.0050	ug/g	NC (1)	40
5833853	Pyrene	2018/11/13	84	50 - 130	85	50 - 130	<0.0050	ug/g	NC (1)	40
5833889	F2 (C10-C16 Hydrocarbons)	2018/11/13	100	50 - 130	99	80 - 120	<10	ug/g	7.6 (1)	30
5833889	F3 (C16-C34 Hydrocarbons)	2018/11/13	95	50 - 130	94	80 - 120	<50	ug/g	NC (1)	30
5833889	F4 (C34-C50 Hydrocarbons)	2018/11/13	94	50 - 130	92	80 - 120	<50	ug/g	NC (1)	30
5834644	Benzene	2018/11/13	73	60 - 140	104	60 - 140	<0.020	ug/g	NC (1)	50
5834644	Ethylbenzene	2018/11/13	77	60 - 140	104	60 - 140	<0.020	ug/g	NC (1)	50
5834644	F1 (C6-C10) - BTEX	2018/11/13					<10	ug/g	NC (1)	30
5834644	F1 (C6-C10)	2018/11/13	86	60 - 140	101	80 - 120	<10	ug/g	NC (1)	30
5834644	o-Xylene	2018/11/13	76	60 - 140	101	60 - 140	<0.020	ug/g	NC (1)	50
5834644	p+m-Xylene	2018/11/13	77	60 - 140	103	60 - 140	<0.040	ug/g	NC (1)	50

QUALITY ASSURANCE REPORT(CONT'D)

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.600 Site Location: HIGHWAY 410

		_	Matrix Spike		SPIKED	BLANK	Method B	lank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5834644	Toluene	2018/11/13	80	60 - 140	109	60 - 140	<0.020	ug/g	NC (1)	50
5834644	Total Xylenes	2018/11/13					<0.040	ug/g	NC (1)	50

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Duplicate Parent ID

(2) The matrix spike recovery was below the lower control limit. This may be due in part to the reducing environment of the sample. The sample was reanalyzed with the same results.

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.600 Site Location: HIGHWAY 410

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

Banu Gurgen-Keough, Supervisor

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

CAMPEDIC)1191/3									C	AIN	OF	USTO	DY R	FCO	RD		1	1				2	- 3	1
Invoice Information		Report	Informatio	in (if di	ffers f	rom in	voice)	_			Proje	ect Inform	nation (wh	ere appli	icable)		Turnaround Time (TAT) Required		~						
pany Name: Wood	Compa	ny Name:								Quotat	ion #:	B61973				1	X Regular TAT (5-7 days) Most analyses							12	183
act Name: Accounts Payable	Contact	t Name:	Alessand	ro Pelli	erito					P.O. #/	AFE#: >						PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS								
ess: 50 Vogell road, Units 3 and 4, Richmond	Hill, Address	s;				_				Project	#:	TPB1660	90.6000		÷	5.8	Rush TAT (Surcharges will be applied)	1	2.0		4	10			
e: 905-415-2632					-	-		-	_	Site Loo	ation:	Highway	410		4		1 Day 2 Days 3-4 Days								
C. ex	Phone:	a pollorite	Quand	inte d	Fax:			-	*	Site #:						1	1				¥.				
AP GTAEAST@woodplc.com	Email:	shami.ma	alla@wo	odplc	om; con	1			1	Sample	d By:	Mohami	nad Safarr	anah			Date Required:								
MOE REGULATED DRINKING WATER OR W	ATER INTENDED FOR	HUMAN CON	SUMPT:ON	MUST	BE SU	вмітті	D ON	THE M	AXXAN	DRINKI	NG WA	TER CHAI	N OF CUST	ODY		N.	Rush Confirmation #:	1					90		
able 1 Res/Park Med/Fine	Other Re	gulations					_	-	_	Analysi	s Requ	ested		h-10022	- W		LABORATORY USE ONLY								
able 2 Ind/Comm Coarse able 3 Agri/ Other able 9 OR RSC (PLEASE CIRCLE) Y / N	MISA Storn PWQO Regio	m Sewer Bylaw	aw /		als / Hg / CrVI			S		(+ B)	2						CUSTODY SEAL Y / N Present Intact				-				
e Criteria on Certificate of Analysis: Y / N	KEG 558 (MIN. 3 D	DAY TAT REQUI	IRED)	MITTE	E) Met		1.	ORGAN		Is, HWS	Ches		1				AC AL DOLD Nº		e	8					
AMPLES MUST BE KEPT COOL (< 10 °C) FROM TIME OF	SAMPLING UNTIL DE	LIVERY TO M	AXXAM	ERS SUE	(CIRCU			S & IN		S Meta	多					INALYZ	TU 10 20120 Cooling Hel	ân.							
SAMPLE IDENTIFICATION	DATE SAMPLED (YYYY/MM/DD)	TIME SAMPLED (HH:MM)	MATRIX	TOF CONTAIN	HELD FILTERED	ITEX/ PHC F1	003	EG 153,META	AHs	EG 153 METAI Ig. Cr VI, ICPM	sbestos					ID- DO NOT /	COOLING MEDIA PRESENT: () / N	18							
BH5 SS2	11/1/2018	9:40	Soil	4				02	<u>a</u>	a: ±	4			++	++	¥	1								
BH5 SS9	11/1/2018	1:00	Soil	4						10	+			++		x									
BH7 SS1	11/2/2018	8:30	Soil 2	4							+			++		x									3
BH7 SS7	11/2/2018	9:40	Soil	4							$\uparrow \uparrow$			++	+	x									
TCLP	11/2/2018	NA	Soil	2							Ħ					x									
BH 4	10/18/2018	9:00	Asphalt	1							x						2				5				
BH 6	11/1/2018	9:00	Asphalt	4							x	•	13												
						2											06-Nov-18 14:48					2			
/																	Gina Bavbavan								
RELINQUISHED BY: (Signature / Print)																	TE TE DE ANTE DA TE DE TE D								
Alessandro Pellerito	(YYYY/MM/DD)	TIME: (HH:M	(M)	R	ECEIV	ED BY:	Signat	ure/Pr	int)		DATE	: (YYYY/I	MM/DD)	TIME:	: (HH:M	M)	в8Т5664							•	
A W	MUJOS	11. a	Di	Til	S	igh	DH	AXA	Six	NG A	20	18/11	106	14	4:4	48	GID ENV-1127	Ľ							×.

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.600 Project name: HIGHWAY 410 Client ID: BH5 SS2

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.600 Project name: HIGHWAY 410 Client ID: BH7 SS1

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Your Project #: TPB166090.6000 Site Location: HIGHWAY 410 Your C.O.C. #: n/a

Attention: Allesandro Pellerito

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited 50 Vogell Road Units 3 and 4 Richmond Hill, ON CANADA L4B 3N6

> Report Date: 2018/11/26 Report #: R5499575 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8U7525 Received: 2018/11/16, 15:16

Sample Matrix: Soil # Samples Received: 5

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Methylnaphthalene Sum	1	N/A	2018/11/23	CAM SOP-00301	EPA 8270D m
Hot Water Extractable Boron	2	2018/11/21	2018/11/22	CAM SOP-00408	R153 Ana. Prot. 2011
Free (WAD) Cyanide	2	2018/11/21	2018/11/22	CAM SOP-00457	OMOE E3015 m
Conductivity	2	2018/11/22	2018/11/22	CAM SOP-00414	OMOE E3530 v1 m
Hexavalent Chromium in Soil by IC (1)	2	2018/11/20	2018/11/23	CAM SOP-00436	EPA 3060/7199 m
Petroleum Hydro. CCME F1 & BTEX in Soil (2)	2	N/A	2018/11/22	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (3)	1	2018/11/20	2018/11/21	CAM SOP-00316	CCME CWS m
Petroleum Hydrocarbons F2-F4 in Soil (3)	1	2018/11/22	2018/11/23	CAM SOP-00316	CCME CWS m
Temporary Hold - 1 Day Fridge	8	N/A	2018/11/16		
Strong Acid Leachable Metals by ICPMS	2	2018/11/21	2018/11/21	CAM SOP-00447	EPA 6020B m
Moisture	2	N/A	2018/11/21	CAM SOP-00445	Carter 2nd ed 51.2 m
PAH Compounds in Soil by GC/MS (SIM)	1	2018/11/22	2018/11/22	CAM SOP-00318	EPA 8270D m
pH CaCl2 EXTRACT	2	2018/11/22	2018/11/22	CAM SOP-00413	EPA 9045 D m
Sodium Adsorption Ratio (SAR)	2	N/A	2018/11/26	CAM SOP-00102	EPA 6010C

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Your Project #: TPB166090.6000 Site Location: HIGHWAY 410 Your C.O.C. #: n/a

Attention: Allesandro Pellerito

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited 50 Vogell Road Units 3 and 4 Richmond Hill, ON CANADA L4B 3N6

> Report Date: 2018/11/26 Report #: R5499575 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8U7525

Received: 2018/11/16, 15:16

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Soils are reported on a dry weight basis unless otherwise specified.

(2) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated.

(3) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Gina Baybayan, Project Manager Email: GBaybayan@maxxam.ca Phone# (905)817-5766

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

O.REG 153 METALS & INORGANICS PKG (SOIL) Maxxam ID IIA269 IIA271 2018/11/14 2018/11/14 Sampling Date 12:15 10:55 COC Number n/a n/a UNITS BH9 SS2 QC Batch **BH10 SS5** RDL QC Batch **Calculated Parameters** Sodium Adsorption Ratio 5846330 0.49 5844278 N/A 1.1 Inorganics Conductivity 5849832 0.002 mS/cm 0.26 0.59 5849832 Moisture % 13 5848748 17 1.0 5848748 Available (CaCl2) pH pН 7.72 5849649 7.33 5849649 WAD Cyanide (Free) ug/g < 0.01 5849074 < 0.01 0.01 5849074 Chromium (VI) <0.2 < 0.2 0.2 5847575 5847575 ug/g Metals Hot Water Ext. Boron (B) 0.092 5848803 0.27 0.050 5848803 ug/g Acid Extractable Antimony (Sb) ug/g < 0.20 5849039 <0.20 0.20 5849039 Acid Extractable Arsenic (As) 4.5 5849039 3.5 1.0 5849039 ug/g Acid Extractable Barium (Ba) 5849039 59 52 0.50 5849039 ug/g Acid Extractable Beryllium (Be) 0.60 5849039 0.52 0.20 5849039 ug/g Acid Extractable Boron (B) 7.8 5849039 <5.0 5.0 5849039 ug/g Acid Extractable Cadmium (Cd) 5849039 0.17 0.10 5849039 ug/g < 0.10 Acid Extractable Chromium (Cr) ug/g 19 5849039 17 1.0 5849039 Acid Extractable Cobalt (Co) 5849039 10 9.1 0.10 5849039 ug/g Acid Extractable Copper (Cu) 31 5849039 23 0.50 5849039 ug/g Acid Extractable Lead (Pb) 9.0 5849039 9.5 1.0 5849039 ug/g Acid Extractable Molybdenum (Mo) < 0.50 5849039 < 0.50 0.50 5849039 ug/g Acid Extractable Nickel (Ni) 22 5849039 17 0.50 5849039 ug/g Acid Extractable Selenium (Se) ug/g < 0.50 5849039 < 0.50 0.50 5849039 Acid Extractable Silver (Ag) 5849039 5849039 <0.20 <0.20 0.20 ug/g Acid Extractable Thallium (TI) 5849039 0.050 5849039 ug/g 0.12 0.10 Acid Extractable Uranium (U) ug/g 0.57 5849039 0.48 0.050 5849039 Acid Extractable Vanadium (V) ug/g 27 5849039 25 5.0 5849039 Acid Extractable Zinc (Zn) 54 5849039 50 5.0 5849039 ug/g

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Acid Extractable Mercury (Hg)

< 0.050

5849039

<0.050

0.050

5849039

ug/g

O.REG 153 PAHS (SOIL)

Maxxam ID		IIA269		
Courselling Date		2018/11/14		
Sampling Date		12:15		
COC Number		n/a		
	UNITS	BH9 SS2	RDL	QC Batch
Calculated Parameters				
Methylnaphthalene, 2-(1-)	ug/g	<0.0071	0.0071	5846329
Polyaromatic Hydrocarbons				
Acenaphthene	ug/g	<0.0050	0.0050	5851504
Acenaphthylene	ug/g	<0.0050	0.0050	5851504
Anthracene	ug/g	<0.0050	0.0050	5851504
Benzo(a)anthracene	ug/g	<0.0050	0.0050	5851504
Benzo(a)pyrene	ug/g	<0.0050	0.0050	5851504
Benzo(b/j)fluoranthene	ug/g	0.0075	0.0050	5851504
Benzo(g,h,i)perylene	ug/g	0.0057	0.0050	5851504
Benzo(k)fluoranthene	ug/g	<0.0050	0.0050	5851504
Chrysene	ug/g	<0.0050	0.0050	5851504
Dibenz(a,h)anthracene	ug/g	<0.0050	0.0050	5851504
Fluoranthene	ug/g	0.0075	0.0050	5851504
Fluorene	ug/g	<0.0050	0.0050	5851504
Indeno(1,2,3-cd)pyrene	ug/g	<0.0050	0.0050	5851504
1-Methylnaphthalene	ug/g	<0.0050	0.0050	5851504
2-Methylnaphthalene	ug/g	<0.0050	0.0050	5851504
Naphthalene	ug/g	<0.0050	0.0050	5851504
Phenanthrene	ug/g	<0.0050	0.0050	5851504
Pyrene	ug/g	0.0062	0.0050	5851504
Surrogate Recovery (%)				
D10-Anthracene	%	93		5851504
D14-Terphenyl (FS)	%	94		5851504
D8-Acenaphthylene	%	89		5851504
RDL = Reportable Detection L	imit			
QC Batch = Quality Control Ba	atch			

Maxxam ID		IIA269		IIA271		
Sampling Date		2018/11/14 12:15		2018/11/14 10:55		
COC Number		n/a		n/a		
	UNITS	BH9 SS2	QC Batch	BH10 SS5	RDL	QC Batch
BTEX & F1 Hydrocarbons						
Benzene	ug/g	<0.020	5850968	<0.020	0.020	5850968
Toluene	ug/g	<0.020	5850968	<0.020	0.020	5850968
Ethylbenzene	ug/g	<0.020	5850968	<0.020	0.020	5850968
o-Xylene	ug/g	<0.020	5850968	<0.020	0.020	5850968
p+m-Xylene	ug/g	<0.040	5850968	<0.040	0.040	5850968
Total Xylenes	ug/g	<0.040	5850968	<0.040	0.040	5850968
F1 (C6-C10)	ug/g	<10	5850968	<10	10	5850968
F1 (C6-C10) - BTEX	ug/g	<10	5850968	<10	10	5850968
F2-F4 Hydrocarbons						
F2 (C10-C16 Hydrocarbons)	ug/g	<10	5851518	<10	10	5846823
F3 (C16-C34 Hydrocarbons)	ug/g	<50	5851518	<50	50	5846823
F4 (C34-C50 Hydrocarbons)	ug/g	<50	5851518	<50	50	5846823
Reached Baseline at C50	ug/g	Yes	5851518	Yes		5846823
Surrogate Recovery (%)						
1,4-Difluorobenzene	%	100	5850968	100		5850968
4-Bromofluorobenzene	%	109	5850968	109		5850968
D10-Ethylbenzene	%	95	5850968	97		5850968
D4-1,2-Dichloroethane	%	94	5850968	94		5850968
o-Terphenyl	%	101	5851518	96		5846823
RDL = Reportable Detection L QC Batch = Quality Control Ba	imit itch					

O.REG 153 PETROLEUM HYDROCARBONS (SOIL)

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.6000 Site Location: HIGHWAY 410 Sampler Initials: MS

TEST SUMMARY

Matrix: Soil Received: 2018/11/16 Test Description Instrumentation Batch Extracted Date Analyzed Analyst Temporary Hold - 1 Day Fridge 0 Isha Chugh Isha Chugh Maxxam ID: IIA269 Collected: 2018/11/14 Sample ID: BH9 SS2 Shipped: Received: 2018/11/16
Test DescriptionInstrumentationBatchExtractedDate AnalyzedAnalystTemporary Hold - 1 Day Fridge0Isha ChughMaxxam ID:IIA269Collected:2018/11/14Sample ID:BH9 SS2Shipped:Shipped:Matrix:SoilIsha Chugh
Temporary Hold - 1 Day Fridge0Isha ChughMaxxam ID:IIA269Collected:2018/11/14Sample ID:BH9 SS2Shipped:Matrix:SoilReceived:2018/11/16
Maxxam ID:IIA269Collected:2018/11/14Sample ID:BH9 SS2Shipped:Matrix:SoilReceived:2018/11/16
Maxxam ID: IIA269 Collected: 2018/11/14 Sample ID: BH9 SS2 Shipped: Matrix: Soil Received: 2018/11/16
Sample ID: BH9 SS2 Shipped: Matrix: Soil Received: 2018/11/16
Test Description Instrumentation Batch Extracted Date Analyzed Analyst
Methylnaphthalene Sum CALC 5846329 N/A 2018/11/23 Automated Statchk
Hot Water Extractable BoronICP58488032018/11/212018/11/22Archana Patel
Free (WAD) Cyanide TECH 5849074 2018/11/21 2018/11/22 Louise Harding
Conductivity AT 5849832 2018/11/22 2018/11/22 Kazzandra Adeva
Hexavalent Chromium in Soil by IC IC/SPEC 5847575 2018/11/20 2018/11/23 Sally Norouz
Petroleum Hydro. CCME F1 & BTEX in Soil HSGC/MSFD 5850968 N/A 2018/11/22 Joe Paino
Petroleum Hydrocarbons F2-F4 in Soil GC/FID 5851518 2018/11/22 2018/11/23 Zhiyue (Frank) Zhu
Strong Acid Leachable Metals by ICPMS ICP/MS 5849039 2018/11/21 2018/11/21 Matthew Ritenburg
Moisture BAL 5848748 N/A 2018/11/21 Prgya Panchal
PAH Compounds in Soil by GC/MS (SIM) GC/MS 5851504 2018/11/22 2018/11/22 Mitesh Raj
pH CaCl2 EXTRACT AT 5849649 2018/11/22 2018/11/22 Gnana Thomas
Sodium Adsorption Ratio (SAR) CALC/MET 5846330 N/A 2018/11/26 Automated Statchk
Maxxam ID: UA270 Collected: 2018/11/14
Sample ID: BH10 SS2 Shipped:
Matrix: Soil Received: 2018/11/16
Test Description Instrumentation Batch Extracted Date Analyzed Analyst
Temporary Hold - 1 Day Fridge 0 Isha Chugh
Maxyam ID: 11/0271 Collected: 2018/11/14
Sample ID: BH10 SS5 Shipped:
Matrix: Soil Received: 2018/11/16
Test Description Instrumentation Batch Extracted Date Analyzed Analyst
Hot Water Extractable Boron ICP 5848803 2018/11/21 2018/11/22 Archana Patel
Free (WAD) Cyanide TECH 5849074 2018/11/21 2018/11/22 Louise Harding
Conductivity AT 5849832 2018/11/22 2018/11/22 Kazzandra Adeva
Hexavalent Chromium in Soil by IC IC/SPEC 5847575 2018/11/20 2018/11/23 Sally Norouz
Petroleum Hydro. CCME F1 & BTEX in Soil HSGC/MSFD 5850968 N/A 2018/11/22 Joe Paino
Petroleum Hydrocarbons F2-F4 in Soil GC/FID 5846823 2018/11/20 2018/11/21 Zhiyue (Frank) Zhu
Strong Acid Leachable Metals by ICPMS ICP/MS 5849039 2018/11/21 2018/11/21 Matthew Ritenburg
MoistureBAL5848748N/A2018/11/21Prgya Panchal
pH CaCl2 EXTRACT AT 5849649 2018/11/22 2018/11/22 Gnana Thomas
Sodium Adsorption Ratio (SAR) CALC/MET 5844278 N/A 2018/11/26 Automated Statchk

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	IIA272 TCLP Soil					Collected: Shipped: Received:	2018/11/14 2018/11/16
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Temporary Hold - 1 Day F	ridge		0			Isha Chugł	า

GENERAL COMMENTS

Each tempe	erature is the a	verage of up to th	ree cooler temperatures taken at receipt
Pa	ackage 1	0.3°C	
<u>. </u>			
Results rela	ate only to the	items tested.	

Page 8 of 15

QUALITY ASSURANCE REPORT

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.6000 Site Location: HIGHWAY 410 Sampler Initials: MS

			Matrix	Spike	SPIKED	BLANK	Method Blank		RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5846823	o-Terphenyl	2018/11/21	105	60 - 130	107	60 - 130	101	%		
5850968	1,4-Difluorobenzene	2018/11/22	100	60 - 140	98	60 - 140	101	%		
5850968	4-Bromofluorobenzene	2018/11/22	109	60 - 140	110	60 - 140	109	%		
5850968	D10-Ethylbenzene	2018/11/22	95	60 - 140	104	60 - 140	92	%		
5850968	D4-1,2-Dichloroethane	2018/11/22	94	60 - 140	92	60 - 140	95	%		
5851504	D10-Anthracene	2018/11/22	93	50 - 130	96	50 - 130	103	%		
5851504	D14-Terphenyl (FS)	2018/11/22	92	50 - 130	95	50 - 130	97	%		
5851504	D8-Acenaphthylene	2018/11/22	88	50 - 130	91	50 - 130	91	%		
5851518	o-Terphenyl	2018/11/23	110	60 - 130	111	60 - 130	103	%		
5846823	F2 (C10-C16 Hydrocarbons)	2018/11/21	110	50 - 130	109	80 - 120	<10	ug/g	NC (1)	30
5846823	F3 (C16-C34 Hydrocarbons)	2018/11/21	104	50 - 130	103	80 - 120	<50	ug/g	NC (1)	30
5846823	F4 (C34-C50 Hydrocarbons)	2018/11/21	93	50 - 130	96	80 - 120	<50	ug/g	NC (1)	30
5847575	Chromium (VI)	2018/11/23	85	70 - 130	88	80 - 120	<0.2	ug/g	NC (1)	35
5848748	Moisture	2018/11/21							3.7 (1)	20
5848803	Hot Water Ext. Boron (B)	2018/11/22	101	75 - 125	101	75 - 125	<0.050	ug/g	4.5 (1)	40
5849039	Acid Extractable Antimony (Sb)	2018/11/21	103	75 - 125	102	80 - 120	<0.20	ug/g	NC (1)	30
5849039	Acid Extractable Arsenic (As)	2018/11/21	106	75 - 125	100	80 - 120	<1.0	ug/g	NC (1)	30
5849039	Acid Extractable Barium (Ba)	2018/11/21	102	75 - 125	95	80 - 120	<0.50	ug/g	16 (1)	30
5849039	Acid Extractable Beryllium (Be)	2018/11/21	103	75 - 125	98	80 - 120	<0.20	ug/g	NC (1)	30
5849039	Acid Extractable Boron (B)	2018/11/21	98	75 - 125	96	80 - 120	<5.0	ug/g	NC (1)	30
5849039	Acid Extractable Cadmium (Cd)	2018/11/21	103	75 - 125	98	80 - 120	<0.10	ug/g	NC (1)	30
5849039	Acid Extractable Chromium (Cr)	2018/11/21	106	75 - 125	99	80 - 120	<1.0	ug/g	11 (1)	30
5849039	Acid Extractable Cobalt (Co)	2018/11/21	105	75 - 125	99	80 - 120	<0.10	ug/g	7.5 (1)	30
5849039	Acid Extractable Copper (Cu)	2018/11/21	104	75 - 125	98	80 - 120	<0.50	ug/g	6.5 (1)	30
5849039	Acid Extractable Lead (Pb)	2018/11/21	102	75 - 125	100	80 - 120	<1.0	ug/g	5.8 (1)	30
5849039	Acid Extractable Mercury (Hg)	2018/11/21	96	75 - 125	93	80 - 120	<0.050	ug/g	NC (1)	30
5849039	Acid Extractable Molybdenum (Mo)	2018/11/21	103	75 - 125	99	80 - 120	<0.50	ug/g	NC (1)	30
5849039	Acid Extractable Nickel (Ni)	2018/11/21	103	75 - 125	102	80 - 120	<0.50	ug/g	16 (1)	30
5849039	Acid Extractable Selenium (Se)	2018/11/21	106	75 - 125	101	80 - 120	<0.50	ug/g	NC (1)	30
5849039	Acid Extractable Silver (Ag)	2018/11/21	103	75 - 125	100	80 - 120	<0.20	ug/g	NC (1)	30

QUALITY ASSURANCE REPORT(CONT'D)

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.6000 Site Location: HIGHWAY 410 Sampler Initials: MS

			Matrix Spike		SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5849039	Acid Extractable Thallium (TI)	2018/11/21	102	75 - 125	102	80 - 120	<0.050	ug/g	NC (1)	30
5849039	Acid Extractable Uranium (U)	2018/11/21	104	75 - 125	99	80 - 120	<0.050	ug/g	1.0 (1)	30
5849039	Acid Extractable Vanadium (V)	2018/11/21	102	75 - 125	100	80 - 120	<5.0	ug/g	12 (1)	30
5849039	Acid Extractable Zinc (Zn)	2018/11/21	113	75 - 125	103	80 - 120	<5.0	ug/g	27 (1)	30
5849074	WAD Cyanide (Free)	2018/11/22	93	75 - 125	99	80 - 120	<0.01	ug/g	NC (1)	35
5849649	Available (CaCl2) pH	2018/11/22			100	97 - 103			0.46 (1)	N/A
5849832	Conductivity	2018/11/22			102	90 - 110	<0.002	mS/cm	0.33 (1)	10
5850968	Benzene	2018/11/22	79	60 - 140	97	60 - 140	<0.020	ug/g		
5850968	Ethylbenzene	2018/11/22	88	60 - 140	102	60 - 140	<0.020	ug/g		
5850968	F1 (C6-C10) - BTEX	2018/11/22					<10	ug/g	NC (1)	30
5850968	F1 (C6-C10)	2018/11/22	106	60 - 140	105	80 - 120	<10	ug/g	NC (1)	30
5850968	o-Xylene	2018/11/22	88	60 - 140	100	60 - 140	<0.020	ug/g		
5850968	p+m-Xylene	2018/11/22	94	60 - 140	106	60 - 140	<0.040	ug/g		
5850968	Toluene	2018/11/22	86	60 - 140	99	60 - 140	<0.020	ug/g		
5850968	Total Xylenes	2018/11/22					<0.040	ug/g		
5851504	1-Methylnaphthalene	2018/11/22	122	50 - 130	122	50 - 130	<0.0050	ug/g	NC (1)	40
5851504	2-Methylnaphthalene	2018/11/22	109	50 - 130	108	50 - 130	<0.0050	ug/g	NC (1)	40
5851504	Acenaphthene	2018/11/22	96	50 - 130	96	50 - 130	<0.0050	ug/g	NC (1)	40
5851504	Acenaphthylene	2018/11/22	92	50 - 130	92	50 - 130	<0.0050	ug/g	NC (1)	40
5851504	Anthracene	2018/11/22	93	50 - 130	90	50 - 130	<0.0050	ug/g	NC (1)	40
5851504	Benzo(a)anthracene	2018/11/22	101	50 - 130	97	50 - 130	<0.0050	ug/g	NC (1)	40
5851504	Benzo(a)pyrene	2018/11/22	95	50 - 130	94	50 - 130	<0.0050	ug/g	NC (1)	40
5851504	Benzo(b/j)fluoranthene	2018/11/22	95	50 - 130	99	50 - 130	<0.0050	ug/g	NC (1)	40
5851504	Benzo(g,h,i)perylene	2018/11/22	85	50 - 130	84	50 - 130	<0.0050	ug/g	NC (1)	40
5851504	Benzo(k)fluoranthene	2018/11/22	102	50 - 130	98	50 - 130	<0.0050	ug/g	NC (1)	40
5851504	Chrysene	2018/11/22	97	50 - 130	97	50 - 130	<0.0050	ug/g	NC (1)	40
5851504	Dibenz(a,h)anthracene	2018/11/22	95	50 - 130	89	50 - 130	<0.0050	ug/g	NC (1)	40
5851504	Fluoranthene	2018/11/22	101	50 - 130	102	50 - 130	<0.0050	ug/g	NC (1)	40
5851504	Fluorene	2018/11/22	104	50 - 130	104	50 - 130	<0.0050	ug/g	NC (1)	40
5851504	Indeno(1,2,3-cd)pyrene	2018/11/22	92	50 - 130	89	50 - 130	<0.0050	ug/g	NC (1)	40

QUALITY ASSURANCE REPORT(CONT'D)

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.6000 Site Location: HIGHWAY 410 Sampler Initials: MS

			Matrix Spike		SPIKED	BLANK	Method E	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5851504	Naphthalene	2018/11/22	93	50 - 130	92	50 - 130	<0.0050	ug/g	NC (1)	40
5851504	Phenanthrene	2018/11/22	93	50 - 130	94	50 - 130	<0.0050	ug/g	NC (1)	40
5851504	Pyrene	2018/11/22	96	50 - 130	97	50 - 130	<0.0050	ug/g	NC (1)	40
5851518	F2 (C10-C16 Hydrocarbons)	2018/11/23	109	50 - 130	109	80 - 120	<10	ug/g	NC (1)	30
5851518	F3 (C16-C34 Hydrocarbons)	2018/11/23	108	50 - 130	107	80 - 120	<50	ug/g	NC (1)	30
5851518	F4 (C34-C50 Hydrocarbons)	2018/11/23	109	50 - 130	107	80 - 120	<50	ug/g	NC (1)	30

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Duplicate Parent ID

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

	Invoice Information		Report Info	rmation (in	f differs fi	om invoi	:e)			Project I	nformati	on (where	applicable	e)	Turnaround Time (TAT) Required
	anany Name: Wood	Company	Name:						Quotation	n#: B6	1973				X Regular TAT (5-7 days) Most analyses
Comp		Contact N		orcandro I	allerito				P.O. #/ AF						PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS
Addre	ress: 50 Vogell road, Units 3 and 4, Richmon	d Hill, Address:	-	contra o r	interne.				Project #:	TP	B166090	.6000			Rush TAT (Surcharges will be applied)
	L4B 3N6		_						Site Locat	ion: Hi	ghway 41	.0			1 Day 2 Days 3-4 Days
Phone	ne: 905-415-2632 Fax:	Phone:		(Fax:				Site #:	_					
	AR CTAFAST@woodpla.com	E	.pellerito@	woodpl	c.com;				Foundard			15-6	10		Date Required:
Email	MOF REGULATED DRINKING WATER OR	WATER INTENDED FOR H	JMAN CONSUL	VIPTION M	UST BE SL	BMITTED	ON THE	MAXXA	VI DRINKIN	G WATE	CHAIN	o satarpat	DY		Rush Confirmation #:
	Regulation 153	Other Regu	lations		the state of the s		a.		Analysis	Request	ed	CONSIGNATION OF			LABORATORY USE ONLY
	Table 1 Res/Park Med/ Fine	CCME Sanitar	Y Sewer Bylaw				П				П				CUSTODY SEAL
	Table 3 Agri/ Other	PWQO Region	ewer bylaw		s / CrVI										Present Intact
	Table	Other (Specify)	-		D H/ Shi			NCS	(8 - S)						3 7 1/0/0
	FOR RSC (PLEASE CIRCLE) Y / N	REG 558 (MIN. 3 DA)	TAT REQUIRE	D)	BMITTE LE) Me			4ORGA!	HW.					YZE	
	SAMPLES MUST BE KEPT COOL (< 10 °C) FROM TIME	OF SAMPLING UNTIL DELI	VERY TO MAX	XAM	JERS SU D (CIRC			ALS & II	ALS MS Me					DT ANA	
		DATE SAMPLED	IME SAMPLED		ONTAIP	PHC F1		3 MET	3 MET	15				DO NO	COOLING MEDIA PRESENT: (Y) / N
	SAMPLE IDENTIFICATION	(YYYY/MM/DD)	(HH:MM)	MATRIX	# OE C	BTEX/ PHCs F	vocs	REG 1	REG 13 (Hg, Cr	Wsbest				HOLD	COMMENTS
1	BH8 SS4	11/14/2018	2:45	Soil	4									×	
2	BH9 SS2	11/14/2018	12:15	Soil	4								-	X	
3	BH10 SS2	11/14/2018	10:05 -	Soil	2							÷.		×	
4	BH10 SS5	11/14/2018	10:55	Soil	4	x x		х							
5	TCLP	11/14/2018	L ^{NA}	Soil	2									×	
	4													_	16-Nov-18 15 16
	801				_			_				-			Gina Baybayan
															II IN BUT AND A THE AND A THE AND
	NEX .														B8U7525
								ý.							FCN ENV-701
						HILF D DLL	1111	and Dalat		DATT.	tymmer in	444/001	T18 47. 11		

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.6000 Project name: HIGHWAY 410 Client ID: BH9 SS2

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Your Project #: TPB166090.6000 Site Location: HIGHWAY 410 Your C.O.C. #: na

Attention: Allesandro Pellerito

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited 50 Vogell Road Units 3 and 4 Richmond Hill, ON CANADA L4B 3N6

> Report Date: 2018/11/26 Report #: R5499833 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8U9258 Received: 2018/11/20, 10:28

Sample Matrix: Soil # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Cyanide (WAD) in Leachates	1	N/A	2018/11/22	CAM SOP-00457	OMOE 3015 m
Fluoride by ISE in Leachates	1	2018/11/22	2018/11/22	CAM SOP-00449	SM 23 4500-F- C m
Mercury (TCLP Leachable) (mg/L)	1	N/A	2018/11/22	CAM SOP-00453	EPA 7470A m
Total Metals in TCLP Leachate by ICPMS	1	2018/11/22	2018/11/23	CAM SOP-00447	EPA 6020B m
Ignitability of a Sample	1	2018/11/23	2018/11/23	CAM SOP-00432	EPA 1030 Rev. 1 m
Nitrate(NO3) + Nitrite(NO2) in Leachate	1	N/A	2018/11/23	CAM SOP-00440	SM 23 4500-NO3I/NO2B
PAH Compounds in Leachate by GC/MS (SIM)	1	2018/11/22	2018/11/23	CAM SOP-00318	EPA 8270D m
Polychlorinated Biphenyl in Leachate	1	2018/11/23	2018/11/23	CAM SOP-00309	EPA 8082A m
TCLP - % Solids	1	2018/11/21	2018/11/22	CAM SOP-00401	EPA 1311 Update I m
TCLP - Extraction Fluid	1	N/A	2018/11/22	CAM SOP-00401	EPA 1311 Update I m
TCLP - Initial and final pH	1	N/A	2018/11/22	CAM SOP-00401	EPA 1311 Update I m
TCLP Zero Headspace Extraction	1	2018/11/22	2018/11/23	CAM SOP-00430	EPA 1311 m
VOCs in ZHE Leachates	1	2018/11/23	2018/11/23	CAM SOP-00228	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope

Your Project #: TPB166090.6000 Site Location: HIGHWAY 410 Your C.O.C. #: na

Attention: Allesandro Pellerito

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited 50 Vogell Road Units 3 and 4 Richmond Hill, ON CANADA L4B 3N6

> Report Date: 2018/11/26 Report #: R5499833 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8U9258

Received: 2018/11/20, 10:28

dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Gina Baybayan, Project Manager Email: GBaybayan@maxxam.ca Phone# (905)817-5766

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 13

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.6000 Site Location: HIGHWAY 410

O.REG 558 TCLP BENZO(A)PYRENE

Maxxam ID		IIL061					
Sampling Date		2018/11/14					
COC Number		na					
	UNITS	TCLP-410/10	RDL	QC Batch			
Polyaromatic Hydrocarbons							
Leachable Benzo(a)pyrene	ug/L	<0.10	0.10	5852052			
Surrogate Recovery (%)							
Leachable D10-Anthracene	%	115		5852052			
Leachable D14-Terphenyl (FS)	%	115		5852052			
Leachable D8-Acenaphthylene	%	118		5852052			
RDL = Reportable Detection Limit QC Batch = Quality Control Batch							

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.6000 Site Location: HIGHWAY 410

O.REG 558 TCLP INORGANICS PACKAGE (SOIL)

Maxxam ID		IIL061		
Sampling Date		2018/11/14		
COC Number		na		
	UNITS	TCLP-410/10	RDL	QC Batch
Inorganics				
Leachable Fluoride (F-)	mg/L	0.22	0.10	5851376
Leachable WAD Cyanide (Free)	mg/L	<0.010	0.010	5851377
Leachable Nitrite (N)	mg/L	<0.10	0.10	5851391
Leachable Nitrate (N)	mg/L	<1.0	1.0	5851391
Leachable Nitrate + Nitrite (N)	mg/L	<1.0	1.0	5851391
Metals				
Leachable Mercury (Hg)	mg/L	<0.0010	0.0010	5851325
Leachable Arsenic (As)	mg/L	<0.2	0.2	5851243
Leachable Barium (Ba)	mg/L	0.5	0.2	5851243
Leachable Boron (B)	mg/L	0.1	0.1	5851243
Leachable Cadmium (Cd)	mg/L	<0.05	0.05	5851243
Leachable Chromium (Cr)	mg/L	<0.1	0.1	5851243
Leachable Lead (Pb)	mg/L	<0.1	0.1	5851243
Leachable Selenium (Se)	mg/L	<0.1	0.1	5851243
Leachable Silver (Ag)	mg/L	<0.01	0.01	5851243
Leachable Uranium (U)	mg/L	<0.01	0.01	5851243
RDL = Reportable Detection Limi	t			
QC Batch = Quality Control Batch	า			

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.6000 Site Location: HIGHWAY 410

O.REG 558 TCLP LEACHATE PREPARATION (SOIL)

Maxxam ID		IIL061						
Sampling Date		2018/11/14						
COC Number		na						
	UNITS	TCLP-410/10	RDL	QC Batch				
Inorganics								
Final pH	рН	6.10		5849300				
Initial pH	рН	9.13		5849300				
TCLP - % Solids	%	100	0.2	5849296				
TCLP Extraction Fluid	N/A	FLUID 1		5849299				
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.6000 Site Location: HIGHWAY 410

O.REG 558 TCLP PCBS (SOIL)

	IIL061							
	2018/11/14							
	na							
UNITS	TCLP-410/10	RDL	QC Batch					
PCBs								
ug/L	<3.0	3.0	5853257					
Surrogate Recovery (%)								
%	88		5853257					
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								
	UNITS ug/L % it	IIL061 2018/11/14 na UNITS TCLP-410/10 ug/L <3.0	IIL061 2018/11/14 na UNITS TCLP-410/10 RDL ug/L <3.0					

O.REG 558 TCLP VOLATILE ORGANICS HS (SOIL)

Maxxam ID		IIL061		
Sampling Date		2018/11/14		
COC Number		na		
	UNITS	TCLP-410/10	RDL	QC Batch
Charge/Prep Analysis				
Amount Extracted (Wet Weight) (g)	N/A	25	N/A	5851005
Volatile Organics				
Leachable Benzene	mg/L	<0.020	0.020	5853235
Leachable Carbon Tetrachloride	mg/L	<0.020	0.020	5853235
Leachable Chlorobenzene	mg/L	<0.020	0.020	5853235
Leachable Chloroform	mg/L	<0.020	0.020	5853235
Leachable 1,2-Dichlorobenzene	mg/L	<0.050	0.050	5853235
Leachable 1,4-Dichlorobenzene	mg/L	<0.050	0.050	5853235
Leachable 1,2-Dichloroethane	mg/L	<0.050	0.050	5853235
Leachable 1,1-Dichloroethylene	mg/L	<0.020	0.020	5853235
Leachable Methylene Chloride(Dichloromethane)	mg/L	<0.20	0.20	5853235
Leachable Methyl Ethyl Ketone (2-Butanone)	mg/L	<1.0	1.0	5853235
Leachable Tetrachloroethylene	mg/L	<0.020	0.020	5853235
Leachable Trichloroethylene	mg/L	<0.020	0.020	5853235
Leachable Vinyl Chloride	mg/L	<0.020	0.020	5853235
Surrogate Recovery (%)				
Leachable 4-Bromofluorobenzene	%	74		5853235
Leachable D4-1,2-Dichloroethane	%	102		5853235
Leachable D8-Toluene	%	95		5853235
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				
N/A = Not Applicable				

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.6000 Site Location: HIGHWAY 410

MISCELLANEOUS (SOIL)

Maxxam ID		IIL061							
Sampling Date		2018/11/14							
COC Number		na							
	UNITS	TCLP-410/10	QC Batch						
Inorganics									
Ignitability	N/A	NF/NI	5853480						
QC Batch = Quality Control Batch									

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.6000 Site Location: HIGHWAY 410

Collected: 2018/11/14

TEST SUMMARY

Maxxam ID:	IIL061
Sample ID:	TCLP-410/10
Matrix:	Soil

Matrix: Soil					Shipped: Received: 2018/11/20
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Cyanide (WAD) in Leachates	SKAL/CN	5851377	N/A	2018/11/22	Xuanhong Qiu
Fluoride by ISE in Leachates	ISE	5851376	2018/11/22	2018/11/22	Surinder Rai
Mercury (TCLP Leachable) (mg/L)	CV/AA	5851325	N/A	2018/11/22	Medhat Nasr
Total Metals in TCLP Leachate by ICPMS	ICP1/MS	5851243	2018/11/22	2018/11/23	Thao Nguyen
Ignitability of a Sample	BAL	5853480	2018/11/23	2018/11/23	Chun Yan
Nitrate(NO3) + Nitrite(NO2) in Leachate	LACH	5851391	N/A	2018/11/23	Chandra Nandlal
PAH Compounds in Leachate by GC/MS (SIM)	GC/MS	5852052	2018/11/22	2018/11/23	Lingyun Feng
Polychlorinated Biphenyl in Leachate	GC/ECD	5853257	2018/11/23	2018/11/23	Sarah Huang
TCLP - % Solids	BAL	5849296	2018/11/21	2018/11/22	Jian (Ken) Wang
TCLP - Extraction Fluid		5849299	N/A	2018/11/22	Jian (Ken) Wang
TCLP - Initial and final pH	РН	5849300	N/A	2018/11/22	Jian (Ken) Wang
TCLP Zero Headspace Extraction		5851005	2018/11/22	2018/11/23	Walt Wang
VOCs in ZHE Leachates	GC/MS	5853235	2018/11/23	2018/11/23	Rebecca McClean

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.6000 Site Location: HIGHWAY 410

GENERAL COMMENTS

Sample IIL061 [TCLP-410/10] : NF/NI = Non Flammable and Non Ignitable

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.6000 Site Location: HIGHWAY 410

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D	Leachate	Blank
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	Value	UNITS
5852052	Leachable D10-Anthracene	2018/11/23	109	50 - 130	106	50 - 130	97	%				
5852052	Leachable D14-Terphenyl (FS)	2018/11/23	113	50 - 130	111	50 - 130	103	%				
5852052	Leachable D8-Acenaphthylene	2018/11/23	113	50 - 130	108	50 - 130	100	%				
5853235	Leachable 4-Bromofluorobenzene	2018/11/23	94	70 - 130	93	70 - 130	90	%				
5853235	Leachable D4-1,2-Dichloroethane	2018/11/23	105	70 - 130	108	70 - 130	109	%				
5853235	Leachable D8-Toluene	2018/11/23	107	70 - 130	106	70 - 130	122	%				
5853257	Leachable Decachlorobiphenyl	2018/11/23	91	30 - 130	96	30 - 130	85	%				
5851243	Leachable Arsenic (As)	2018/11/23	103	80 - 120	101	80 - 120	<0.2	mg/L	NC (1)	35		
5851243	Leachable Barium (Ba)	2018/11/23	NC	80 - 120	101	80 - 120	<0.2	mg/L	14 (1)	35		
5851243	Leachable Boron (B)	2018/11/23	99	80 - 120	101	80 - 120	<0.1	mg/L	NC (1)	35		
5851243	Leachable Cadmium (Cd)	2018/11/23	100	80 - 120	97	80 - 120	<0.05	mg/L	NC (1)	35		
5851243	Leachable Chromium (Cr)	2018/11/23	104	80 - 120	100	80 - 120	<0.1	mg/L	NC (1)	35		
5851243	Leachable Lead (Pb)	2018/11/23	97	80 - 120	98	80 - 120	<0.1	mg/L	NC (1)	35		
5851243	Leachable Selenium (Se)	2018/11/23	101	80 - 120	102	80 - 120	<0.1	mg/L	NC (1)	35		
5851243	Leachable Silver (Ag)	2018/11/23	96	80 - 120	101	80 - 120	<0.01	mg/L	NC (1)	35		
5851243	Leachable Uranium (U)	2018/11/23	95	80 - 120	95	80 - 120	<0.01	mg/L	NC (1)	35		
5851325	Leachable Mercury (Hg)	2018/11/22	110	75 - 125	105	80 - 120	<0.0010	mg/L	NC (1)	25	<0.0010	mg/L
5851376	Leachable Fluoride (F-)	2018/11/22	98	80 - 120	104	80 - 120	<0.10	mg/L	NC (1)	25	<0.10	mg/L
5851377	Leachable WAD Cyanide (Free)	2018/11/22	98	80 - 120	98	80 - 120	<0.0020	mg/L	NC (1)	20	<0.010	mg/L
5851391	Leachable Nitrate (N)	2018/11/23	97	80 - 120	100	80 - 120	<1.0	mg/L	NC (1)	25	<1.0	mg/L
5851391	Leachable Nitrate + Nitrite (N)	2018/11/23	99	80 - 120	101	80 - 120	<1.0	mg/L	NC (1)	25	<1.0	mg/L
5851391	Leachable Nitrite (N)	2018/11/23	107	80 - 120	103	80 - 120	<0.10	mg/L	NC (1)	25	<0.10	mg/L
5852052	Leachable Benzo(a)pyrene	2018/11/23	100	50 - 130	95	50 - 130	<0.10	ug/L	NC (1)	40		
5853235	Leachable 1,1-Dichloroethylene	2018/11/23	108	70 - 130	101	70 - 130	<0.020	mg/L	NC (1)	30		
5853235	Leachable 1,2-Dichlorobenzene	2018/11/23	99	70 - 130	93	70 - 130	<0.050	mg/L	NC (1)	30		
5853235	Leachable 1,2-Dichloroethane	2018/11/23	104	70 - 130	100	70 - 130	<0.050	mg/L	NC (1)	30		
5853235	Leachable 1,4-Dichlorobenzene	2018/11/23	102	70 - 130	95	70 - 130	<0.050	mg/L	NC (1)	30		
5853235	Leachable Benzene	2018/11/23	96	70 - 130	91	70 - 130	<0.020	mg/L	NC (1)	30		
5853235	Leachable Carbon Tetrachloride	2018/11/23	95	70 - 130	89	70 - 130	<0.020	mg/L	NC (1)	30		
5853235	Leachable Chlorobenzene	2018/11/23	96	70 - 130	90	70 - 130	<0.020	mg/L	NC (1)	30		

QUALITY ASSURANCE REPORT(CONT'D)

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.6000 Site Location: HIGHWAY 410

			Matrix Spike		SPIKED BLANK		Method Blank		RPD		Leachate Blank	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	Value	UNITS
5853235	Leachable Chloroform	2018/11/23	98	70 - 130	93	70 - 130	<0.020	mg/L	NC (1)	30		
5853235	Leachable Methyl Ethyl Ketone (2-Butanone)	2018/11/23	105	60 - 140	102	60 - 140	<1.0	mg/L	NC (1)	30		
5853235	Leachable Methylene Chloride(Dichloromethane)	2018/11/23	91	70 - 130	88	70 - 130	<0.20	mg/L	NC (1)	30		
5853235	Leachable Tetrachloroethylene	2018/11/23	93	70 - 130	85	70 - 130	<0.020	mg/L	NC (1)	30		
5853235	Leachable Trichloroethylene	2018/11/23	91	70 - 130	86	70 - 130	<0.020	mg/L	NC (1)	30		
5853235	Leachable Vinyl Chloride	2018/11/23	104	70 - 130	99	70 - 130	<0.020	mg/L	NC (1)	30		
5853257	Leachable Total PCB	2018/11/23	109	30 - 130	119	30 - 130	<3.0	ug/L	NC (1)	40		

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Leachate Blank: A blank matrix containing all reagents used in the leaching procedure. Used to determine any process contamination.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL). (1) Duplicate Parent ID

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.6000 Site Location: HIGHWAY 410

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: TPB166090.6000 Site Location: HIGHWAY 410 Your C.O.C. #: n/a

Attention: Allesandro Pellerito

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited 50 Vogell Road Units 3 and 4 Richmond Hill, ON CANADA L4B 3N6

> Report Date: 2018/10/25 Report #: R5456129 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8R8406 Received: 2018/10/19, 14:50

Sample Matrix: Soil # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Chloride (20:1 extract)	2	N/A	2018/10/25	CAM SOP-00463	EPA 325.2 m
Conductivity	2	N/A	2018/10/24	CAM SOP-00414	OMOE E3530 v1 m
pH CaCl2 EXTRACT	2	2018/10/23	2018/10/23	CAM SOP-00413	EPA 9045 D m
Resistivity of Soil	2	2018/10/22	2018/10/24	CAM SOP-00414	SM 23 2510 m
Sulphate (20:1 Extract)	2	N/A	2018/10/25	CAM SOP-00464	EPA 375.4 m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your Project #: TPB166090.6000 Site Location: HIGHWAY 410 Your C.O.C. #: n/a

Attention: Allesandro Pellerito

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited 50 Vogell Road Units 3 and 4 Richmond Hill, ON CANADA L4B 3N6

> Report Date: 2018/10/25 Report #: R5456129 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8R8406 Received: 2018/10/19, 14:50

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Gina Baybayan, Project Manager Email: GBaybayan@maxxam.ca Phone# (905)817-5766

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.6000 Site Location: HIGHWAY 410 Sampler Initials: MS

		100000	100007		
Maxxam ID		IBP036	IBP037		
Sampling Date		2018/10/16	2018/10/17		
COC Number		n/a	n/a		
	UNITS	BH6 SS4	BH2 SS11	RDL	QC Batch
Calculated Parameters					
Resistivity	ohm-cm	5700	7200		5796016
Inorganics					
Soluble (20:1) Chloride (Cl-)	ug/g	24	<20	20	5799805
Conductivity	umho/cm	176	138	2	5800015
Available (CaCl2) pH	рН	7.84	8.01		5797839
Soluble (20:1) Sulphate (SO4)	ug/g	38	33	20	5799807
RDL = Reportable Detection Lir	nit				
QC Batch = Quality Control Bat	ch				

RESULTS OF ANALYSES OF SOIL

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.6000 Site Location: HIGHWAY 410 Sampler Initials: MS

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	IBP036 BH6 SS4 Soil					Collected: Shipped: Received:	2018/10/16 2018/10/19
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Chloride (20:1 extract)		KONE/EC	5799805	N/A	2018/10/25	Alina Dobr	eanu
Conductivity		AT	5800015	N/A	2018/10/24	Barbara Ka	lbasi Esfahani
pH CaCl2 EXTRACT		AT	5797839	2018/10/23	2018/10/23	Gnana Tho	mas
Resistivity of Soil			5796016	2018/10/24	2018/10/24	Anastassia	Hamanov
Sulphate (20:1 Extract)		KONE/EC	5799807	N/A	2018/10/25	Alina Dobr	eanu
Maxxam ID: Sample ID: Matrix:	IBP037 BH2 SS11 Soil					Collected: Shipped: Received:	2018/10/17 2018/10/19

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Chloride (20:1 extract)	KONE/EC	5799805	N/A	2018/10/25	Alina Dobreanu
Conductivity	AT	5800015	N/A	2018/10/24	Barbara Kalbasi Esfahani
pH CaCl2 EXTRACT	AT	5797839	2018/10/23	2018/10/23	Gnana Thomas
Resistivity of Soil		5796016	2018/10/24	2018/10/24	Anastassia Hamanov
Sulphate (20:1 Extract)	KONE/EC	5799807	N/A	2018/10/25	Alina Dobreanu

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.6000 Site Location: HIGHWAY 410 Sampler Initials: MS

GENERAL COMMENTS

ich temperature is the	average of up to th	e cooler temperatures taken at receip	t	
Package 1	2.7°C			
L				
esults relate only to the	e items tested.			

Maxxam Job #: B8R8406 Report Date: 2018/10/25

QUALITY ASSURANCE REPORT

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.6000 Site Location: HIGHWAY 410 Sampler Initials: MS

			Matrix Spike		SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5797839	Available (CaCl2) pH	2018/10/23			100	97 - 103			0.33 (1)	N/A
5799805	Soluble (20:1) Chloride (Cl-)	2018/10/25	NC	70 - 130	106	70 - 130	<20	ug/g	7.9 (1)	35
5799807	Soluble (20:1) Sulphate (SO4)	2018/10/25	115	70 - 130	105	70 - 130	<20	ug/g	NC (1)	35
5800015	Conductivity	2018/10/24			104	90 - 110	<2	umho/cm	9.1 (1)	10

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Duplicate Parent ID

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.6000 Site Location: HIGHWAY 410 Sampler Initials: MS

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

A Bu	reau Veritas Group Company Phone	2: 905-817-5700 Fax: FCD-01191/3	905-817-5779	Toll Free:	800-5	63-6266	· . ·				CH		OF CL	ISTO	DY RE	COR	D		Pageof					
	Invoice Information		Report	Informatio	ın (if di	ffers fro	om invo	lice)		\rightarrow		Project	Informat	ion-(whe	re applic	able)	_	, Turnarour	nd Time (TAT) Required					
Company Na	me: ; Wood	Comj	any Name:					_			Juotatio	n#: B	61973					X Regular TAT	(5-7 days) Most analyses			4		
Contact Nam	e: Accounts Payable	Cont	ict Name:	Alessand	ro Pell	erito				F	.O. #/ AI	FE#:	*				2	PLEASE PROVIDE ADV	ANCE NOTICE FOR RUSH PROJECTS	5				
Address:	50 Vogell road, Units 3 and 4 , Richn	aond Hill, Add	255:							F	roject #	; ті	PB16609	0.6000			ĸ.	Rush TAT (Se	urcharges will be applied)		-0			
	L4B 3N6						+			S	ite Local	tion: Hi	ighway 4	10				1 Day	2 Days 3-4 Days	2				
Phone: 905-	415-2632 Fax:	Phon	e:			Fax:		1		S	ite #:	_						1.1						
Email: <u>AP</u>	GTAEAST@woodplc.com	Emai	<u>a.pellerito</u> shami.ma	alla@wo	dplc.c	om; c.com				s	ampled	ву: М	lohamma	id Safarpi	nah		2	Date Required:		н.,		م		
WITH	MOE REGULATED DRINKING WATER	OR WATER INTENDED F	OR HUMAN CON	SUMPTION	MUST	BE SUE	IMITTE	ON TH	IE MAD	XXAM	DRINKIN	G WATE	RCHAIN	OFCUST	İDΥ	S.M.		Rush Confirmation #	6 <u>_</u>					
	Regulation 153	Other	Regulations	_			-	-	_		Analysis	Request	ted				•	LABOI	RATORY USE ONLY					
Table 3	Res/Park Med/ Fine	MISA Stu	nitary Sewer Byl orm Sewer Bylav gion	aw /		Hg / CrVI												CUSTODY SEAL Y / N Present Intact				<i>.</i>		
FOR RSC	(PLEASE CIRCLE) Y / N	REG 558 (MIN.	DAY TAT REQU	IRED)	TED	etals /			ANICS		WS - B							7 9	213,3					
Include Criter	ia on Certificate of Analysis: Y /	N			UBMIT	CLE) M			NORG		etals, H						LYZE							
SAMPLES	MUST BE KEPT COOL (< 10 °C) FROM TIN	ME OF SAMPLING UNTIL	DELIVERY TO M	AXXAM	VERS SI	D (CIR			ALS & I		ALS MS M6						TANA							
,	SAMPLE IDENTIFICATION	DATE SAMPLED	TIME SAMPLEI (HH:MM)	MATRIX	T OF CONTAIL	HELD FILTERE	STEX/ PHC F1	/0Cs	EG 153 MET	AHS	tEG 153 MET Hg. Cr VI, ICP						OLD- DO NO	COOLING MEDIA PRESE						
1	BH1 SS4	10/16/2018	3:50pm	Soil	4	Ĩ				-							X					Ci .		
2	BH2 SS4	10/17/2018	9:00am	Soil	4			1			-					+	x							
3	BH2 5510	10/17/2018	10:40	Soll	4		-	+								+	x					1.00		
4	BH3 SS3	10/17/2018	2:10pm	Soil	4		+	+		-				2		1.1	x							
5	BH3 SS11	10/17/2018	4:45pm	Soil	4		+			-			1	-			x							
6	BH6 SS2	10/16/2018		Soil	0	+	-	-								+	×				6. I			
7	BH6 SS3	10/16/2018	-	Soil				-		-						+	-0 				R			
2	BH6 \$\$11	10/16/2018		6-11	4		+	-		-			-			+	^		,					
	DUDI	10/10/2010		300	4					-						+	×	10.0						
9	DUPI	10/17/2018		Soil	4		-	-						_		+	X	19-0	ct-18 14:50			1		
10																	_ 1	Gina Bayba	iyan	100				
RELI	Alessandro Pellerito	2018/10/10	9" 20)	211	RECEIV	L.	(Signat	ure/Pr	rint)	6	Pate	101	/ 0,	TIMI	(HH:M	M)	B8R84	06	2				
	14	91 117	1.		100	une	4	UC	1 C	in	07	NOIS	101	T	14	00	- 1	VMK F	NV-1167				25	

Sec.

•

.

	*				e and the second
6740 Campobello Roat Phone: 905-817-5700	d, Missiissauga, Ontario L5N 2L8 Fax: 903-817-5779 Tol Free: 800-563-6266				
CAM FCD-01191/3	~	CHAIN OF CUSTODY RECORD	Page C of L		
Company News March	Report Information (if differs from invoice)	Project Information (where applicable)	Turnaround Time (TAT) Required	٦	
company name. Wood	Company Name:	Quotation #: B61973	X Regular TAT (5-7 days) Most analyses	전환 속	
Contact Name: Accounts Payable	Contact Name: Alessandro Pellerito	P.O. #/ AFE#:	PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS		a
Address: 50 Vogell road, Units 3 and 4 , Richmond Hill,	Address:	Project #: TP8166090.6000	Rush TAT (Surcharges will be applied)		
148 3N6 Phone: 905-615-2632	-	Site Location: Highway 410	1 Day 2 Days 3-4 Days		5 () () () () () () () () () (
Las a store tax.	Phone: Fax:	Site #: -		1	
	a.pellerito@woodpic.com:			1	5
Email: AP GTAEAST@woodplc.com	Email: shami.malla@woodplc.com	Sampled By: Mohammad Safarpanah	Date Required:	8	19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
MOE REGULATED DRINKING WATER OR WATER INTEN	NDED FOR HUMAN CONSUMPTION MUST BE SUBMITTED ON THE MAXXAN	PRINKING WATER CHAIN OF CUSTODY	Rush Confirmation #	10 m	
Table 1 Res/Park Med/Fine Contac	Other Regulations	Analysis Requested	LABORATORY LISE ONLY		
Table 2 Ind/Comm Coarse MISA	Storm Sewer Bylaw		CUSTODY SEAL		
Table 3 Agri/ Other PWQO	Region		Y / N COOLER TEMPERATURES		(* L
FOR RSC (PLEASE CIRCLE) Y / N	pecify		Mercent Intact	e	
Include Criteria on Certificate of Analysis: Y / N	(MIRE 3 DAY IAT REQUIRED)	S S			
SAMPLES MUST BE KEPT COOL (< 10 °C) FROM TIME OF SAMPLING	P INC	Metal			
		ICPMS			
SAMPLE IDENTIFICATION DATE SA (VYYY/M	AMPLED TIME SAMPLED MATRIX 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	C VU.	COOLING MEDIA PRESENT: Y / N		
1 BH4 552 10/18	12018 0.200 CO//	REG HQLD	COMMENTS		
2 BH4 SS10 20/28	1010 3:30am 20/C 4	x			
3 BHIG CCT : Intel	7018 11:10am 4	x			
4 242 554 1916	/all	\times			
DAZ SII - WIT	4008	X		¥	
6					
7					
8					14 M
9		-++++++++			
10					20 20 20 20
RELINQUISHED BY: (Signature/Print) DATE: (YYYY/MN	A/DD) TIME: (HH:MM) RECEIVED BY //			r	
Alessandro Pellerito	10 9-20 See Print)	DATE: (YYYY/MM/DD) TIME: (HH:MM)	MAXXAM JOB #		
N MM	11 T. W marge		3		
Unine attendes and a	v				
www.maxiam.co/terms. Sample container, preservation, hold time and parks	y is subject to Maxxam's standard Terms and Conditions. Signing of this Cha	sin of Custody document is acknowledgment and acceptance	of our terms which nee mailable for visual		
	services and be viewed at http://maxiam.co/wp-content/uploods/C	Intorio-COC.pdf	at a second when we available for viewing at		. 7
				V	-50 R

*

Page 9 of 9

Your Project #: TPB166090.600 Site Location: HIGHWAY 410 Your C.O.C. #: n/a

Attention: Allesandro Pellerito

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited 50 Vogell Road Units 3 and 4 Richmond Hill, ON CANADA L4B 3N6

> Report Date: 2018/11/15 Report #: R5485890 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8T5664 Received: 2018/11/06, 14:48

Sample Matrix: Soil # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Methylnaphthalene Sum	2	N/A	2018/11/15	CAM SOP-00301	EPA 8270D m
Hot Water Extractable Boron	2	2018/11/12	2018/11/12	CAM SOP-00408	R153 Ana. Prot. 2011
Free (WAD) Cyanide	2	2018/11/12	2018/11/13	CAM SOP-00457	OMOE E3015 m
Conductivity	2	2018/11/14	2018/11/14	CAM SOP-00414	OMOE E3530 v1 m
Hexavalent Chromium in Soil by IC (1)	2	2018/11/10	2018/11/14	CAM SOP-00436	EPA 3060/7199 m
Petroleum Hydro. CCME F1 & BTEX in Soil (2)	2	N/A	2018/11/13	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (3)	2	2018/11/13	2018/11/13	CAM SOP-00316	CCME CWS m
Strong Acid Leachable Metals by ICPMS	2	2018/11/10	2018/11/12	CAM SOP-00447	EPA 6020B m
Moisture	2	N/A	2018/11/08	CAM SOP-00445	Carter 2nd ed 51.2 m
PAH Compounds in Soil by GC/MS (SIM)	2	2018/11/13	2018/11/14	CAM SOP-00318	EPA 8270D m
pH CaCl2 EXTRACT	2	2018/11/13	2018/11/13	CAM SOP-00413	EPA 9045 D m
Sodium Adsorption Ratio (SAR)	2	N/A	2018/11/15	CAM SOP-00102	EPA 6010C

Sample Matrix: Solid # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Asbestos by PLM - 0.5 RDL (4)	2	N/A	2018/11/09	COR3SOP-00002	EPA 600R-93/116

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report.

Your Project #: TPB166090.600 Site Location: HIGHWAY 410 Your C.O.C. #: n/a

Attention: Allesandro Pellerito

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited 50 Vogell Road Units 3 and 4 Richmond Hill, ON CANADA L4B 3N6

> Report Date: 2018/11/15 Report #: R5485890 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8T5664

Received: 2018/11/06, 14:48

Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Maxxam Analytics' Asbestos Laboratory is accredited by NVLAP for bulk asbestos analysis by polarized light microscopy, NVLAP Code 600136-0.

This report may not be reproduced, except in full, without the written approval of Maxxam Analytics. This report may not be used by the client to claim product endorsement by NVLAP, NIST or any other agency of the U.S. Government.

Maxxam Analytics' scope of accreditation includes EPA-600/M4-82-020: "Interim Method for the Determination of Asbestos in Bulk Insulation Samples" and EPA-600/R-93/116: "Method for the Determination of Asbestos in Bulk Building Materials".

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Soils are reported on a dry weight basis unless otherwise specified.

(2) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated.
(3) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.
(4) P.O.B. - Percent of Bulk

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Gina Baybayan, Project Manager Email: GBaybayan@maxxam.ca Phone# (905)817-5766

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 16

O.REG 153 METALS & INORGANICS PKG (SOIL)

Maxxam ID		IFK541	IFK543						
Sampling Date		2018/11/01	2018/11/02						
		09:40	08:30						
COC Number		n/a	n/a						
	UNITS	BH5 SS2	BH7 SS1	RDL	QC Batch				
Calculated Parameters									
Sodium Adsorption Ratio	N/A	0.24	13		5826989				
Inorganics									
Conductivity	mS/cm	0.19	0.83	0.002	5833105				
Moisture	%	10	23	1.0	5828411				
Available (CaCl2) pH	рН	7.69	7.55		5832549				
WAD Cyanide (Free)	ug/g	<0.01	<0.01	0.01	5832936				
Chromium (VI)	ug/g	<0.2	<0.2	0.2	5831518				
Metals									
Hot Water Ext. Boron (B)	ug/g	0.061	0.064	0.050	5832167				
Acid Extractable Antimony (Sb)	ug/g	<0.20	<0.20	0.20	5831332				
Acid Extractable Arsenic (As)	ug/g	6.4	5.3	1.0	5831332				
Acid Extractable Barium (Ba)	ug/g	64	60	0.50	5831332				
Acid Extractable Beryllium (Be)	ug/g	0.76	0.63	0.20	5831332				
Acid Extractable Boron (B)	ug/g	9.4	8.4	5.0	5831332				
Acid Extractable Cadmium (Cd)	ug/g	<0.10	<0.10	0.10	5831332				
Acid Extractable Chromium (Cr)	ug/g	20	19	1.0	5831332				
Acid Extractable Cobalt (Co)	ug/g	13	11	0.10	5831332				
Acid Extractable Copper (Cu)	ug/g	36	30	0.50	5831332				
Acid Extractable Lead (Pb)	ug/g	9.2	9.2	1.0	5831332				
Acid Extractable Molybdenum (Mo)	ug/g	<0.50	<0.50	0.50	5831332				
Acid Extractable Nickel (Ni)	ug/g	27	24	0.50	5831332				
Acid Extractable Selenium (Se)	ug/g	<0.50	<0.50	0.50	5831332				
Acid Extractable Silver (Ag)	ug/g	<0.20	<0.20	0.20	5831332				
Acid Extractable Thallium (Tl)	ug/g	0.14	0.14	0.050	5831332				
Acid Extractable Uranium (U)	ug/g	0.47	0.57	0.050	5831332				
Acid Extractable Vanadium (V)	ug/g	27	26	5.0	5831332				
Acid Extractable Zinc (Zn)	ug/g	58	54	5.0	5831332				
Acid Extractable Mercury (Hg)	ug/g	<0.050	<0.050	0.050	5831332				
RDL = Reportable Detection Limit QC Batch = Quality Control Batch									

O.REG 153 PAHS (SOIL)

Maxxam ID		IFK541	IFK543		
Sampling Data		2018/11/01	2018/11/02		
Sampling Date		09:40	08:30		
COC Number		n/a	n/a		
	UNITS	BH5 SS2	BH7 SS1	RDL	QC Batch
Calculated Parameters					
Methylnaphthalene, 2-(1-)	ug/g	<0.0071	<0.0071	0.0071	5826988
Polyaromatic Hydrocarbons					
Acenaphthene	ug/g	<0.0050	<0.0050	0.0050	5833853
Acenaphthylene	ug/g	<0.0050	<0.0050	0.0050	5833853
Anthracene	ug/g	<0.0050	<0.0050	0.0050	5833853
Benzo(a)anthracene	ug/g	<0.0050	<0.0050	0.0050	5833853
Benzo(a)pyrene	ug/g	<0.0050	<0.0050	0.0050	5833853
Benzo(b/j)fluoranthene	ug/g	<0.0050	<0.0050	0.0050	5833853
Benzo(g,h,i)perylene	ug/g	<0.0050	<0.0050	0.0050	5833853
Benzo(k)fluoranthene	ug/g	<0.0050	<0.0050	0.0050	5833853
Chrysene	ug/g	<0.0050	<0.0050	0.0050	5833853
Dibenz(a,h)anthracene	ug/g	<0.0050	<0.0050	0.0050	5833853
Fluoranthene	ug/g	<0.0050	<0.0050	0.0050	5833853
Fluorene	ug/g	<0.0050	<0.0050	0.0050	5833853
Indeno(1,2,3-cd)pyrene	ug/g	<0.0050	<0.0050	0.0050	5833853
1-Methylnaphthalene	ug/g	<0.0050	<0.0050	0.0050	5833853
2-Methylnaphthalene	ug/g	<0.0050	<0.0050	0.0050	5833853
Naphthalene	ug/g	<0.0050	<0.0050	0.0050	5833853
Phenanthrene	ug/g	<0.0050	<0.0050	0.0050	5833853
Pyrene	ug/g	<0.0050	<0.0050	0.0050	5833853
Surrogate Recovery (%)					
D10-Anthracene	%	88	85		5833853
D14-Terphenyl (FS)	%	82	79		5833853
D8-Acenaphthylene	%	82	80		5833853
RDL = Reportable Detection L	imit			_	
QC Batch = Quality Control Ba	atch				

Maxxam ID		IFK541	IFK543		
Comulius Data		2018/11/01	2018/11/02		
Sampling Date		09:40	08:30		
COC Number		n/a	n/a		
	UNITS	BH5 SS2	BH7 SS1	RDL	QC Batch
BTEX & F1 Hydrocarbons					
Benzene	ug/g	<0.020	<0.020	0.020	5834644
Toluene	ug/g	<0.020	<0.020	0.020	5834644
Ethylbenzene	ug/g	<0.020	<0.020	0.020	5834644
o-Xylene	ug/g	<0.020	<0.020	0.020	5834644
p+m-Xylene	ug/g	<0.040	<0.040	0.040	5834644
Total Xylenes	ug/g	<0.040	<0.040	0.040	5834644
F1 (C6-C10)	ug/g	<10	<10	10	5834644
F1 (C6-C10) - BTEX	ug/g	<10	<10	10	5834644
F2-F4 Hydrocarbons					
F2 (C10-C16 Hydrocarbons)	ug/g	<10	<10	10	5833889
F3 (C16-C34 Hydrocarbons)	ug/g	<50	<50	50	5833889
F4 (C34-C50 Hydrocarbons)	ug/g	<50	<50	50	5833889
Reached Baseline at C50	ug/g	Yes	Yes		5833889
Surrogate Recovery (%)					
1,4-Difluorobenzene	%	102	102		5834644
4-Bromofluorobenzene	%	98	97		5834644
D10-Ethylbenzene	%	88	90		5834644
D4-1,2-Dichloroethane	%	99	99		5834644
o-Terphenyl	%	91	91		5833889
RDL = Reportable Detection I	imit			•	-
QC Batch = Quality Control B	atch				

O.REG 153 PETROLEUM HYDROCARBONS (SOIL)

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.600 Site Location: HIGHWAY 410

Asbestos Analytical Results

EPA/600R-93/116 by Polarized Light Microscopy

BH 4						
Maxxam ID:	IFK546			Date	Analyzed:	2018/11/09
	P.O.B	Sample Morphology	Asbestos	Other Fibres		Particulate
Layer 1	100	Homogeneous grey asphalt	Not Detected			Tar
						Non-Fibrous
ВН 6						
Maxxam ID:	IFK547			Date	Analyzed:	2018/11/09
	P.O.B	Sample Morphology	Asbestos	Other Fibres		Particulate
Layer 1	100	Homogeneous black asphalt	Not Detected			Tar
						Non-Fibrous

The limit of quantitation is 0.50%, although asbestos may be qualitatively detected at concentrations less than 0.50%. Samples for which asbestos is detected at <0.50% are reported as trace, "<0.50%". "Not Detected" indicates that no asbestos fibres were observed.

Calibrated Visual Estimate (%) Date Format : yyyy/mm/dd

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.600 Site Location: HIGHWAY 410

TEST SUMMARY

Maxxam ID:	IFK541
Sample ID:	BH5 SS2
Matrix:	Soil

				Collected: 2018/11/01 Shipped: Received: 2018/11/06
Instrumentation	Batch	Extracted	Date Analyzed	Analyst
CALC	5826988	N/A	2018/11/15	Automated Statchk
ICP	5832167	2018/11/12	2018/11/12	Suban Kanapathippllai
TECH	5832936	2018/11/12	2018/11/13	Louise Harding
AT	5833105	2018/11/14	2018/11/14	Barbara Kalbasi Esfahani
IC/SPEC	5831518	2018/11/10	2018/11/14	Rupinder Sihota
HSGC/MSFD	5834644	N/A	2018/11/13	Georgeta Rusu
GC/FID	5833889	2018/11/13	2018/11/13	Anna Stuglik Rolland
ICP/MS	5831332	2018/11/10	2018/11/12	Daniel Teclu
BAL	5828411	N/A	2018/11/08	Min Yang
GC/MS	5833853	2018/11/13	2018/11/14	Mitesh Raj
AT	5832549	2018/11/13	2018/11/13	Gnana Thomas
CALC/MET	5826989	N/A	2018/11/15	Automated Statchk
	Instrumentation CALC ICP TECH AT IC/SPEC HSGC/MSFD GC/FID ICP/MS BAL GC/MS AT CALC/MET	Instrumentation Batch CALC 5826988 ICP 5832167 TECH 5832936 AT 5833105 IC/SPEC 5831518 HSGC/MSFD 5834644 GC/FID 5833889 ICP/MS 5831332 BAL 5828411 GC/MSFD 5833853 AT 5832549 CALC/MET 5826989	Instrumentation Batch Extracted CALC 5826988 N/A ICP 5832167 2018/11/12 TECH 5832936 2018/11/12 AT 5833105 2018/11/14 IC/SPEC 5831518 2018/11/10 HSGC/MSFD 5834644 N/A GC/FID 5833889 2018/11/13 ICP/MS 5831332 2018/11/10 BAL 5828411 N/A GC/MSF 5833853 2018/11/13 AT 5832549 2018/11/13 AT 5832549 2018/11/13	Instrumentation Batch Extracted Date Analyzed CALC 5826988 N/A 2018/11/15 ICP 5832167 2018/11/12 2018/11/12 TECH 5832936 2018/11/12 2018/11/13 AT 5833105 2018/11/14 2018/11/14 IC/SPEC 5831518 2018/11/10 2018/11/14 HSGC/MSFD 5834644 N/A 2018/11/13 GC/FID 583389 2018/11/13 2018/11/13 ICP/MS 5831332 2018/11/13 2018/11/12 BAL 5828411 N/A 2018/11/14 AT 5833853 2018/11/13 2018/11/14 AT 5832549 2018/11/13 2018/11/14 AT 5832549 2018/11/13 2018/11/13

Maxxam ID:	IFK543
Sample ID:	BH7 SS1
Matrix:	Soil

Collected: 2018/11/02 Shipped: **Received:** 2018/11/06

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	5826988	N/A	2018/11/15	Automated Statchk
Hot Water Extractable Boron	ICP	5832167	2018/11/12	2018/11/12	Suban Kanapathippllai
Free (WAD) Cyanide	TECH	5832936	2018/11/12	2018/11/13	Louise Harding
Conductivity	AT	5833105	2018/11/14	2018/11/14	Barbara Kalbasi Esfahani
Hexavalent Chromium in Soil by IC	IC/SPEC	5831518	2018/11/10	2018/11/14	Rupinder Sihota
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	5834644	N/A	2018/11/13	Georgeta Rusu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5833889	2018/11/13	2018/11/13	Anna Stuglik Rolland
Strong Acid Leachable Metals by ICPMS	ICP/MS	5831332	2018/11/10	2018/11/12	Daniel Teclu
Moisture	BAL	5828411	N/A	2018/11/08	Min Yang
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	5833853	2018/11/13	2018/11/14	Mitesh Raj
pH CaCl2 EXTRACT	AT	5832549	2018/11/13	2018/11/13	Gnana Thomas
Sodium Adsorption Ratio (SAR)	CALC/MET	5826989	N/A	2018/11/15	Automated Statchk

Maxxam ID: Sample ID: Matrix:	IFK546 BH 4 Solid					Collected: Shipped: Received:	2018/10/18 2018/11/06
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Asbestos by PLM - 0.5 RD	L	MIC	5827918	N/A	2018/11/09	Romeo Sa	mson
Maxxam ID: Sample ID: Matrix:	IFK546 Dup BH 4 Solid					Collected: Shipped: Received:	2018/10/18 2018/11/06
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Asbestos by PLM - 0.5 RD	L	MIC	5827918	N/A	2018/11/09	Romeo Sa	mson

Page 7 of 16

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.600 Site Location: HIGHWAY 410

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	IFK547 BH 6 Solid					Collected: Shipped: Received:	2018/11/01 2018/11/06	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst		
Ashestos by PLM - 0.5 RD	1	MIC	5827918	N/A	2018/11/09	Romeo Sar	nson	

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	1.0°C
Package 2	20.0°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.600 Site Location: HIGHWAY 410

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RPI	כ
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5833853	D10-Anthracene	2018/11/13	84	50 - 130	86	50 - 130	86	%		
5833853	D14-Terphenyl (FS)	2018/11/13	79	50 - 130	81	50 - 130	80	%		
5833853	D8-Acenaphthylene	2018/11/13	83	50 - 130	84	50 - 130	80	%		
5833889	o-Terphenyl	2018/11/13	91	60 - 130	89	60 - 130	92	%		
5834644	1,4-Difluorobenzene	2018/11/13	101	60 - 140	102	60 - 140	102	%		
5834644	4-Bromofluorobenzene	2018/11/13	98	60 - 140	100	60 - 140	97	%		
5834644	D10-Ethylbenzene	2018/11/13	87	60 - 140	102	60 - 140	83	%		
5834644	D4-1,2-Dichloroethane	2018/11/13	99	60 - 140	99	60 - 140	98	%		
5828411	Moisture	2018/11/08							1.5 (1)	20
5831332	Acid Extractable Antimony (Sb)	2018/11/12	90	75 - 125	103	80 - 120	<0.20	ug/g	4.0 (1)	30
5831332	Acid Extractable Arsenic (As)	2018/11/12	94	75 - 125	104	80 - 120	<1.0	ug/g	2.2 (1)	30
5831332	Acid Extractable Barium (Ba)	2018/11/12	NC	75 - 125	99	80 - 120	<0.50	ug/g	1.2 (1)	30
5831332	Acid Extractable Beryllium (Be)	2018/11/12	95	75 - 125	101	80 - 120	<0.20	ug/g	3.3 (1)	30
5831332	Acid Extractable Boron (B)	2018/11/12	88	75 - 125	98	80 - 120	<5.0	ug/g	3.3 (1)	30
5831332	Acid Extractable Cadmium (Cd)	2018/11/12	94	75 - 125	100	80 - 120	<0.10	ug/g	NC (1)	30
5831332	Acid Extractable Chromium (Cr)	2018/11/12	NC	75 - 125	104	80 - 120	<1.0	ug/g	4.2 (1)	30
5831332	Acid Extractable Cobalt (Co)	2018/11/12	99	75 - 125	103	80 - 120	<0.10	ug/g	2.6 (1)	30
5831332	Acid Extractable Copper (Cu)	2018/11/12	95	75 - 125	101	80 - 120	<0.50	ug/g	0.83 (1)	30
5831332	Acid Extractable Lead (Pb)	2018/11/12	91	75 - 125	103	80 - 120	<1.0	ug/g	3.4 (1)	30
5831332	Acid Extractable Mercury (Hg)	2018/11/12	93	75 - 125	105	80 - 120	<0.050	ug/g	NC (1)	30
5831332	Acid Extractable Molybdenum (Mo)	2018/11/12	97	75 - 125	103	80 - 120	<0.50	ug/g	NC (1)	30
5831332	Acid Extractable Nickel (Ni)	2018/11/12	92	75 - 125	102	80 - 120	<0.50	ug/g	3.0 (1)	30
5831332	Acid Extractable Selenium (Se)	2018/11/12	93	75 - 125	104	80 - 120	<0.50	ug/g	NC (1)	30
5831332	Acid Extractable Silver (Ag)	2018/11/12	94	75 - 125	98	80 - 120	<0.20	ug/g	NC (1)	30
5831332	Acid Extractable Thallium (TI)	2018/11/12	92	75 - 125	101	80 - 120	<0.050	ug/g	2.2 (1)	30
5831332	Acid Extractable Uranium (U)	2018/11/12	95	75 - 125	103	80 - 120	<0.050	ug/g	3.3 (1)	30
5831332	Acid Extractable Vanadium (V)	2018/11/12	NC	75 - 125	100	80 - 120	<5.0	ug/g	5.5 (1)	30
5831332	Acid Extractable Zinc (Zn)	2018/11/12	NC	75 - 125	106	80 - 120	<5.0	ug/g	1.0 (1)	30
5831518	Chromium (VI)	2018/11/14	41 (2)	70 - 130	87	80 - 120	<0.2	ug/g	NC (1)	35
5832167	Hot Water Ext. Boron (B)	2018/11/12	97	75 - 125	101	75 - 125	<0.050	ug/g	NC (1)	40

QUALITY ASSURANCE REPORT(CONT'D)

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.600 Site Location: HIGHWAY 410

		Matrix Spike SPIKED BLANK Method Blank Date % Recovery QC Limits % Recovery QC Limits Value UNITS Value (%) 2018/11/13 100 97 - 103 0.76 (1) 0.76 (1) 2018/11/13 85 75 - 125 94 80 - 120 <0.01 ug/g 2.2 (1) 2018/11/14 104 90 - 110 <0.002 mS/cm 0.35 (1)	RPI)						
QC Batch Parameter		Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5832549	Available (CaCl2) pH	2018/11/13			100	97 - 103			0.76 (1)	N/A
5832936	WAD Cyanide (Free)	2018/11/13	85	75 - 125	94	80 - 120	<0.01	ug/g	2.2 (1)	35
5833105	Conductivity	2018/11/14			104	90 - 110	<0.002	mS/cm	0.35 (1)	10
5833853	1-Methylnaphthalene	2018/11/13	108	50 - 130	109	50 - 130	<0.0050	ug/g	NC (1)	40
5833853	2-Methylnaphthalene	2018/11/13	97	50 - 130	95	50 - 130	<0.0050	ug/g	NC (1)	40
5833853	Acenaphthene	2018/11/13	87	50 - 130	87	50 - 130	<0.0050	ug/g	NC (1)	40
5833853	Acenaphthylene	2018/11/13	78	50 - 130	78	50 - 130	<0.0050	ug/g	NC (1)	40
5833853	Anthracene	2018/11/13	81	50 - 130	80	50 - 130	<0.0050	ug/g	NC (1)	40
5833853	Benzo(a)anthracene	2018/11/13	90	50 - 130	87	50 - 130	<0.0050	ug/g	NC (1)	40
5833853	Benzo(a)pyrene	2018/11/13	85	50 - 130	85	50 - 130	<0.0050	ug/g	NC (1)	40
5833853	Benzo(b/j)fluoranthene	2018/11/13	89	50 - 130	92	50 - 130	<0.0050	ug/g	NC (1)	40
5833853	Benzo(g,h,i)perylene	2018/11/13	81	50 - 130	79	50 - 130	<0.0050	ug/g	NC (1)	40
5833853	Benzo(k)fluoranthene	2018/11/13	91	50 - 130	91	50 - 130	<0.0050	ug/g	NC (1)	40
5833853	Chrysene	2018/11/13	89	50 - 130	89	50 - 130	<0.0050	ug/g	NC (1)	40
5833853	Dibenz(a,h)anthracene	2018/11/13	85	50 - 130	82	50 - 130	<0.0050	ug/g	NC (1)	40
5833853	Fluoranthene	2018/11/13	88	50 - 130	90	50 - 130	<0.0050	ug/g	NC (1)	40
5833853	Fluorene	2018/11/13	95	50 - 130	93	50 - 130	<0.0050	ug/g	NC (1)	40
5833853	Indeno(1,2,3-cd)pyrene	2018/11/13	84	50 - 130	83	50 - 130	<0.0050	ug/g	NC (1)	40
5833853	Naphthalene	2018/11/13	84	50 - 130	83	50 - 130	<0.0050	ug/g	NC (1)	40
5833853	Phenanthrene	2018/11/13	85	50 - 130	85	50 - 130	<0.0050	ug/g	NC (1)	40
5833853	Pyrene	2018/11/13	84	50 - 130	85	50 - 130	<0.0050	ug/g	NC (1)	40
5833889	F2 (C10-C16 Hydrocarbons)	2018/11/13	100	50 - 130	99	80 - 120	<10	ug/g	7.6 (1)	30
5833889	F3 (C16-C34 Hydrocarbons)	2018/11/13	95	50 - 130	94	80 - 120	<50	ug/g	NC (1)	30
5833889	F4 (C34-C50 Hydrocarbons)	2018/11/13	94	50 - 130	92	80 - 120	<50	ug/g	NC (1)	30
5834644	Benzene	2018/11/13	73	60 - 140	104	60 - 140	<0.020	ug/g	NC (1)	50
5834644	Ethylbenzene	2018/11/13	77	60 - 140	104	60 - 140	<0.020	ug/g	NC (1)	50
5834644	F1 (C6-C10) - BTEX	2018/11/13					<10	ug/g	NC (1)	30
5834644	F1 (C6-C10)	2018/11/13	86	60 - 140	101	80 - 120	<10	ug/g	NC (1)	30
5834644	o-Xylene	2018/11/13	76	60 - 140	101	60 - 140	<0.020	ug/g	NC (1)	50
5834644	p+m-Xylene	2018/11/13	77	60 - 140	103	60 - 140	<0.040	ug/g	NC (1)	50

QUALITY ASSURANCE REPORT(CONT'D)

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.600 Site Location: HIGHWAY 410

		_	Matrix	Spike	SPIKED	BLANK	Method B	lank	RPD)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5834644	Toluene	2018/11/13	80	60 - 140	109	60 - 140	<0.020	ug/g	NC (1)	50
5834644	Total Xylenes	2018/11/13					<0.040	ug/g	NC (1)	50

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Duplicate Parent ID

(2) The matrix spike recovery was below the lower control limit. This may be due in part to the reducing environment of the sample. The sample was reanalyzed with the same results.

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.600 Site Location: HIGHWAY 410

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

Banu Gurgen-Keough, Supervisor

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

CAM FCD-0)1191/3									CI	HAIR	OF	CUST	ODY	RECO	ORD		1	1		e		100	1.1	
Invoice Information		Report	Informatio	on (if d	iffers I	rom in	voice)				Proj	ect Infor	mation (v	where ap	plicable	1)	Turnaround Time (TAT) Required								
pany Name: Wood	Compa	ny Name:								Quotat	ion #:	B61973	3				X Regular TAT (5-7 days) Most analyses						2	59	e
act Name: Accounts Payable	Contact	t Name:	Alessand	iro Pell	erito					P.O. #/	AFE#: >				×		PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS								
ess: 50 Vogell road, Units 3 and 4, Richmond	Hill, Address	s;	_							Project	#:	TPB166	6090.6000)	8.5	150	Rush TAT (Surcharges will be applied)	1							
e: 905-415-2632						_		-	_	Site Loo	cation:	Highwa	iy 410		- 4		1 Day 2 Days 3-4 Days								
C. ex	Phone:	a pollorite		late t	Fax:			-	*	Site #:		_		1.1		1									
AP GTAEAST@woodplc.com	Email:	shami.ma	alla@wo	odpl	c.con	n			1	Sample	d By:	Moham	mad Safa	rnanah			Date Required:					2			
MOE REGULATED DRINKING WATER OR W	ATER INTENDED FOR	HUMAN CON	SUMPT:ON	MUST	BE SL	BMITT	ED ON	THE M	AXXAN	A DRINKI	NG WA	TER CHA	IN OF CU	STODY			Rush Confirmation #:						9		
able 1 Res/Park Med/Fine	Other Re	gulations		F	-	_	-	-	_	Analys	is Requ	ested		100 LUN			LABORATORY USE ONLY	·							
able 2 Ind/Comm Coarse able 3 Agri/ Other able 9 OR RSC (PLEASE CIRCLE) Y / N	MISA Storm	m Sewer Bylaw	v		als / Hg / CrVI			ICS		(E -)	D.						CUSTODY SEAL V / N COOLER TEMPERATURES Present Intact			1					
e Criteria on Certificate of Analysis: Y / N	KEG 558 (MIN. 3 D	DAY TAT REQU	IRED)	MITTE	E) Met		1	ORGAN		s, HWS	Swe		1				AC AL DOLD No.	- (*)		•					
AMPLES MUST BE KEPT COOL (< 10 °C) FROM TIME OF	SAMPLING UNTIL DE	ELIVERY TO M	AXXAM	ERS SUB	(CIRCL)			S& INC		S Meta	多		11			INALYZ	TO 10 20120 Cooling Helin								
SAMPLE IDENTIFICATION	DATE SAMPLED (YYYY/MM/DD)	TIME SAMPLED (HH:MM)	MATRIX	TOF CONTAIN	HELD FILTERED	ITEX/ PHC F1	MC5 F2 - F4	EG 153 META	AHs	EG 153 METAI Ig. Cr VI, ICPM	sbestos 🖗					ID- DO NOT /		18	×						
BH5 SS2	11/1/2018	9:40	Soil	4				02	9	a; ±	×		╀╌╄	++	-	¥	1								
BH5 SS9	11/1/2018	1:00	Soil	4						10	+		++	+	-	X									
BH7 SS1	11/2/2018	8:30	Soil 2	4							\square		++	++	-	x								3	
BH7 SS7	11/2/2018	9:40	Soil	4							\uparrow		++			x									
TCLP	11/2/2018	NA	Soil	2												X									
BH 4	10/18/2018	9:00	Asphalt	1							x				-										
BH 6	11/1/2018	9:00	Asphalt	4							x				+										
			L			2											06-Nov-18 14:48					2			
/															+		Gina Baybayan						165		
RELINQUISHED BY: (Signature / Print)																	TO THE ALL DRIVEN THE CARD AND A DRIVEN AND A DRIVEN AND A DRIVEN AND A DRIVEN AND A DRIVEN AND A DRIVEN AND A						,		
Alessandro Pellerito	(YYYY/MM/DD)	TIME: (HH:M	IM)	R	ECEIV	ED BY:	(Signat	ture/P	rint)		DAT	E: (YYYY/	MM/DD) TIN	1E: (HH:	MM)	в8Т5664							<i>i</i> i	
A W	MUJOS	11. a	Di	yw	12	ngt	DI	PIKA	Sn	UG A	20	18/1	1/06	1	4:	48	GID ENV-1127							2	

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.600 Project name: HIGHWAY 410 Client ID: BH5 SS2

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited Client Project #: TPB166090.600 Project name: HIGHWAY 410 Client ID: BH7 SS1

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.