APPENDIX 9

PRELIMINARY GEOTECHNICAL INVESTIGATION

FINAL PRELIMINARY GEOTECHNICAL INVESTIGATION REPORT CLASS EA STUDY FOR COLUMBIA WAY BETWEEN HIGHWAY 50 AND CALEDON-KING TOWNLINE SOUTH TOWN OF CALEDON, ONTARIO

Report

to

R.V. Anderson Associates Limited

Karel Furbacher, P.Eng. Geotechnical Engineer

Murray R. Anderson, M.Eng., P.Eng. Senior Geotechnical Engineer

Date: April 21, 2021 File: 26869

TABLE OF CONTENTS

1.	IN	TRO	DUCTION	1
2.	BA	ACKG	ROUND INFORMATION	2
	2.1	Site I	Description	2
	2.2	Exist	ing Pavement Conditions	2
	2.3	Geol	ogy	2
3.	IN	VEST	IGATION PROCEDURES	
	3.1	Field	Investigation	
	3.2	Labo	ratory Testing	5
	3.2	2.1	Geotechnical	5
	3.2	2.2	Geoenvironmental	5
4.	D	ESCR	IPTION OF SUBSURFACE CONDITIONS	5
	4.1	Pave	ment Structure	5
	4.2	Fill		6
	4.3	Alluv	ial Clay	6
	4.4	Silty	Clay	7
	4.5	Silty	Clay Till	7
	4.6	Silt		
	4.7	Sand	I	
	4.8	Grou	ndwater Levels	9
5.	A	IALY	TICAL LABORATORY TESTING RESULTS	10
6.	E١	IGINE	EERING DISCUSSION AND RECOMMENDATIONS	11
	6.1	Pave	ment Design and Construction	
	6.	1.1	Design Analysis	
	6.	1.2	Recommended Pavement Design	13
	6.	1.3	Pavement Subgrade Preparation	
	6.2	Cold	Creek Bridge	15
	6.2	2.1	Preliminary Foundation Design	
	6.2	2.2	Abutment Backfill and Lateral Earth Pressures	
	6.3	Tribu	itary Culvert	
	6.4	Frost	t Cover	
	6.5	Slope	e East of Forest Gate Avenue	
	6.6	Cut S	Slope west of Caledon-King Townline	
	6.7	Muni	cipal Service Installation	
	6.8	Geoe	environmental Considerations	21
	6.9	Deta	iled Geotechnical Investigation	

APPENDICES

- Appendix A Site Photographs
- Appendix B Record of Borehole Sheets
- Appendix C Borehole Location Plans
- Appendix D Geotechnical Laboratory Soil Test Results
- Appendix E
- Appendix F
- Laboratory Certificate of Analysis Soil Management Slope Stability Analysis

1. INTRODUCTION

This report presents the factual findings obtained from a preliminary geotechnical and pavement investigation conducted in support of the Municipal Class Environmental Assessment (EA) Study for Columbia Way from Highway 50 to Caledon-King Townline in the Town of Caledon, Ontario.

Columbia Way is presently a two-lane collector roadway built to a rural cross-section. Current plans call for the urbanization of Columbia Way from Highway 50 to 0.5 km east of Mount Hope Road, and improvements to the rural setting for the remainder of the roadway to Caledon-King Townline in the Town of Caledon, Ontario. The total length of the study corridor is approximately 2.8 km.

The purpose of the geotechnical investigation was to explore the subsurface conditions within the project limits and based on the data obtained, to provide borehole logs, borehole location plans, a written description of the subsurface conditions, and preliminary geotechnical comments and recommendations regarding pavement reconstruction and/or rehabilitation, bridge and culvert foundations, excavation and dewatering and slope stability.

A limited analytical testing program was completed concurrently on selected soil samples to evaluate the environmental quality and provide preliminary management options for excess excavated soils that may be generated during the proposed construction works. Additional sample collection and analyses will be required to meet the requirements of Ontario Regulation (O.Reg.) 406/19, On-Site and Excess Soil Management.

A Contamination Overview Study (COS) was completed concurrently for this project. The results of COS were reported under a separate cover and should be read in conjunction with this report.

The scope of work for this assignment did not include a hydrogeological site assessment to evaluate construction dewatering requirements or address Ontario Ministry of the Environment, Conservation and Parks (MECP) EASR submission or PTTW application.

Thurber Engineering Ltd. (Thurber) carried out the investigation as a sub-consultant to R.V. Anderson Associates Limited who are conducting the EA Study for the Town of Caledon.

It is a condition of this report that Thurber's performance of its professional services is subject to the attached Statement of Limitations and Conditions.

2. BACKGROUND INFORMATION

2.1 Site Description

The study area extends along Columbia Way from Highway 50 to Caledon-King Townline in the Town of Caledon. The total length of the study corridor is approximately 2.8 km.

Columbia Way is an east-west collector road with a posted speed limit of 60 km/h. The roadway presently has a two-lane rural cross section with gravel shoulders. The study corridor generally consists of agricultural land to the north and residential subdivisions to the south of Columbia Way. The eastern 500 m consists of rural residential and wooded areas.

Cold Creek, a tributary of the Humber River, crosses under the road approximately 0.5 km west of Caledon-King Townline, and a seasonal tributary crosses in a culvert approximately 0.9 km east of Highway 50. Steep slopes are present locally within the Cold Creek section, notably an approximate 10 to 12 m high embankment exhibiting downslope movement of the guiderail approximately 0.7 km east of Mount Hope Road, and an eroding cut slope in a section without ditching immediately west of Caledon-King Townline. Typical photographs from the corridor are provided in Appendix A.

2.2 Existing Pavement Conditions

A visual examination of the roadway surface was carried out in August 2020 to obtain a general overview of the existing pavement conditions. It is noted that the pavement was recently resurfaced on this roadway and in that regard, the existing roadway pavement is in excellent condition and did not exhibit any pavement distress manifestations at the time of the review.

Representative photographs of the existing pavement are provided in Appendix A.

2.3 Geology

Based on the information in *The Physiography of Southern Ontario*¹ by Chapman and Putnam (1984), the site is located within the South Slope physiographic region. The South Slope is characterized by low-lying, fine-grained, undulating ground moraine and knolls.

¹ Chapman, L.J. and Putnam, D.F. 1984. The Physiography of Southern Ontario, Ontar]io Geological Survey Special Volume 2, Third Edition. Accompanied by Map P.2715, Scale 1:600,000.

Based on *Surficial Geology of Southern Ontario*², the surficial material of the South Slope is composed of clay and silt till where the materials may have been derived from a glaciolacustrine environment or from the shale bedrock. Ice contact stratified deposits of sand and gravel with minor silt, clay and till are located on the northeast corner of the project limits. Pockets of modern alluvial deposits comprised of clay, silt, sand, gravel and enfolded organic remains are noted within the vicinity of the study area.

According to *Paleozoic Geology of Southern Ontario*³, the site's bedrock is comprised of the Georgian Bay Formation. The unit is composed of shale and limestone. The bedrock depth is variable due to the undulating topography, however, is expected to be approximately 50 to 85 meters.

3. INVESTIGATION PROCEDURES

3.1 Field Investigation

The field investigation for this project was carried out between September 1 to 3, 2020 and comprised a total of nine boreholes (Boreholes 20-01 to 20-09) advanced to depths ranging from 3.7 to 15.5 m. Borehole details are provided in Table 3.1 and in the Record of Borehole sheets included in Appendix B. The approximate locations of the boreholes are shown on the Borehole Location Plans, Drawings 27855-1 to 27855-2, provided in Appendix C.

Facility	Borehole No.	Ground Elevation (m)	Borehole Termination Depth (m)	Borehole Termination Elevation (m)
Tributary Culvert	20-03	258.0	11.3	246.7
Embankment Slope	20-07	242.8	15.5	227.4
Cold Creek Bridge	20-08	228.1	12.6	215.5
Cut Slope	20-09	247.9	5.0	242.9
Pavement Structure, Municipal Services	20-01, 20-02, 20-04, 20-05, 20-06	257.1 to 264.5	3.7	253.4 to 260.8

Table 3.1 – Borehole Details

² Ontario Geological Survey, 2010: Surficial geology of Southern Ontario; Ontario Geological Survey, Miscellaneous Release--Data 128-REV

³ Armstrong, D.K. and Dodge, J.E.P., 2007: Paleozoic geology of southern Ontario; Ontario Geological Survey, Miscellaneous Release--Data 219.

The borehole locations were established in the field by Thurber using a portable GPS receiver and verified relative to existing site features. The ground surface elevations at the borehole locations were determined using a Trimble R10 GNSS receiver.

All borehole locations were cleared of utilities prior to commencement of drilling. The boreholes were repositioned as necessary in consideration of surface features, underground utilities, and overhead wires.

The boreholes were advanced using solid stem augers powered by a truck mounted CME-55 drill rig supplied and operated by DBW Drilling Limited. Soil samples were obtained at selected intervals using a 50 mm outside diameter split-spoon sampler driven in conjunction with the Standard Penetration Test (SPT). The field investigation was carried out under the full-time supervision of Thurber technical staff. All boreholes were logged in the field. Soil samples were identified, placed in labelled containers and transported back to Thurber's laboratory in Oakville for further examination and testing.

Groundwater conditions were observed in the open boreholes throughout the drilling operations. Monitoring wells were installed in Boreholes 20-03, 20-07, 20-08 and 20-09 to permit monitoring of the groundwater levels at the site. The monitoring wells consisted of 50 mm diameter PVC pipe with a slotted screen sealed at a selected depth within the borehole. The installation details are summarized in Table 3.2 below.

Borehole/		Monitoring Well Tip		Slotted	Mid-	Mid-
Monitoring Well (BH/MW) No.	Ground Elevation (m)	Depth (m)	Elevation (m)	Screen Length (m)	Screen Depth (m)	Screen Elev. (m)
20-03	258.0	10.6	247.4	3.0	9.1	248.9
20-07	242.8	15.2	227.6	3.0	13.7	229.1
20-08	228.1	8.5	219.6	3.0	7.0	221.1
20-09	247.9	4.3	243.6	1.5	3.6	244.3

 Table 3.2 – Monitoring Well Details

The boreholes in which no monitoring wells were installed were backfilled in general accordance with Ontario Regulation 903.

3.2 Laboratory Testing

3.2.1 Geotechnical

Geotechnical laboratory testing was carried out at Thurber's laboratory. All recovered soil samples were subjected to visual identification and to natural moisture content determination. Selected samples were also subjected to grain size distribution analysis (hydrometer and/or sieve) and Atterberg Limits testing, where appropriate. Laboratory testing results are summarized on the Record of Borehole sheets included in Appendix B and are presented on the figures included in Appendix D.

3.2.2 Geoenvironmental

For preliminary evaluation of the environmental quality of the on-site soils, representative samples recovered from select boreholes were submitted to SGS for analysis of one or more of metals and inorganic parameters and petroleum hydrocarbons (PHC) Fractions F1 to F4, including benzene, ethylbenzene, toluene and xylenes (BTEX) in accordance with O. Reg. 153/04.

4. DESCRIPTION OF SUBSURFACE CONDITIONS

A generalized description of the subsurface conditions encountered in the boreholes is given in the following sections. Detailed descriptions of the soil conditions at the specific locations drilled are presented on the Record of Borehole sheets in Appendix B and take precedence over the generalized description. It should be recognized and expected that soil conditions will vary between and beyond borehole locations.

The subsurface stratigraphy encountered in the boreholes generally comprises a surficial pavement structure overlying deposits of fill, localized alluvial clay deposits, underlain by native deposits of silt, clay, silty clay till, and sand and silt. Further description of the individual strata are presented below.

4.1 Pavement Structure

A pavement structure was encountered at the ground surface of the boreholes and typically consisted of 35 to 60 mm of asphalt overlying a sand and gravel granular base. The granular materials extended to depths ranging from 570 to 725 mm, locally 1350 mm in Borehole 20-08.

The results of grain size analyses conducted on three samples of the granular material are presented on Figure D1 of Appendix D. The results of the grain size distribution analyses are summarized below:

Soil Particle	Percentage (%)
Gravel	33 to 43
Sand	43 to 61
Silt + Clay	6 to 14

None of the samples tested meet the OPSS Granular A gradation specifications. The samples tested from Boreholes 20-03 and 20-07 met the Granular B Type I gradation specifications. The results may be impacted by the effects of compaction, auger sampling procedures, infiltration of fines with road runoff, or deterioration of the granular material over time.

4.2 Fill

Fill was contacted below the pavement structure in Boreholes 20-03, 20-07 and 20-08.

In Boreholes 20-03 and 20-07, the fill layer consisted of silty clay, was 3.3 to 3.4 m thick, and was penetrated at depths of 4.1 m (Elev. 253.8 and 238.7). SPT 'N' values of 7 to 15 blows per 0.3 m of penetration were recorded in the clay fill layer, indicating a firm to stiff condition. Moisture contents of 13 to 27% were measured. The clay fill contained occasional organic inclusions.

In Borehole 20-08, the fill comprised dark grey silty clay over black silty sand. The silty clay layer was encountered below the pavement structure at a depth of 1.4 m (Elev. 226.7) and was penetrated at 2.6 m (Elev. 225.5). SPT 'N' values of 7 and 11 blows per 0.3 m of penetration were recorded, indicating a firm to stiff consistency. Silty sand fill was contacted below the clay fill at 2.6 m (Elev. 225.5) and was penetrated at 4.1 m (Elev. 224.0). An SPT 'N' value of 2 blows per 0.3 m of penetration was recorded, indicating a very loose condition. The sand fill contained occasional organic inclusions. Measured moisture contents were 16 to 18%.

4.3 Alluvial Clay

Locally, in Borehole 20-08, a 3.1 m thick layer of alluvial silty clay was contacted below the fill at a depth of 4.1 m (Elev. 224.0) and was penetrated at a depth of 7.2 m (Elev. 221.0). SPT 'N' values of 6 blows per 0.3 m of penetration were recorded in the alluvial clay layer, indicating a firm consistency. Occasional organic inclusions were noted in this stratum. Moisture contents of 18% and 23% were measured.

4.4 Silty Clay

A 0.7 m thick layer of silty clay was contacted below the pavement structure in Boreholes 20-04 and 20-05 at 0.8 m depth (Elev. 262.1 and 261.6), and was penetrated at 1.5 m (Elev. 261.4 and 260.9). In Borehole 20-03, the clay was encountered below the clay fill at a depth of 4.1 m (Elev. 253.8) and was contacted to the termination depth of 11.3 m (Elev. 246.7). SPT 'N' values of 11 to 35 blows per 0.3 m of penetration were recorded in the silty clay in Boreholes 20-03 to 20-05, indicating a consistency of stiff to hard. Moisture contents of 17 to 21% were measured, locally 36% in Borehole 20-04.

In Borehole 20-09, a 3.5 m thick layer of silty clay was encountered between 0.6 and 4.1 m depth (Elev. 247.3 and 243.8). SPT 'N' values recorded in the silty clay were 84 to 98 blows per 175 mm of penetration, indicating a hard consistency. Moisture contents of 13 to 16% were measured.

The results of grain size distribution analyses carried out on selected samples of the silty clay are shown on Figure D2 in Appendix D. The results of the grain size distribution analyses are summarized below:

Soil Particle	Percentage (%)
Gravel	0
Sand	6 to 11
Silt	46 to 66
Clay	28 to 43

Atterberg limits testing carried out on two samples of the silty clay measured plastic limits, liquid limits and plasticity indices of 15 and 21, 26 and 43, and 11 and 22, respectively. These results, which are plotted on Figure D5 in Appendix D, indicate that the samples tested consist of low to intermediate plastic silty clay (CL to CI).

4.5 Silty Clay Till

A silty clay till deposit was encountered below the pavement structure in Boreholes 20-01, 20-02, and 20-06 and below the clay at 1.5 m (Elev. 261.4 and 260.9) in Boreholes 20-04 and 20-05, respectively. Boreholes 20-02 and 20-04 to 20-06 were terminated in the till at depths of 3.7 m (Elev. 253.4 to 260.8). The clay till was penetrated at a depth of 3.0 m (Elev. 259.7) in Borehole 20-01. SPT 'N' values ranging from 8 to 50 blows per 0.3 m of penetration were recorded in the clay till deposits, indicating a stiff to hard consistency. Measured moisture contents ranged from 15 to 25%.

Till soils frequently contain cobbles and boulders, and these should be anticipated in any construction operations extending into this deposit.

4.6 Silt

A deposit of silt was encountered below the fill, clay and clay till at depths of 3.0 to 4.1 m (Elev. 238.7 to 259.7) in Boreholes 20-01, 20-07 and 20-09. The silt layer was contacted to the termination depths of 3.7 and 5.0 m (Elev. 259.0 and 242.9) in Boreholes 20-01 and 20-09, respectively. In Borehole 20-07, the silt was contacted to the termination depth of 15.5 m (Elev. 227.4) and contained a layer of sand between 8.7 and 10.0 m depth (Elev. 234.1 and 232.8). The composition of the silt varied from trace sand to sandy and trace clay to clayey with occasional silty clay partings.

SPT 'N' values of 12 to 81 blows per 0.3 m of penetration and up to 50 blows for 25 mm of penetration were recorded, indicating a compact to very dense condition, typically very dense. Moisture contents of 14 to 24% were measured.

The results of grain size analyses conducted on samples of the silt are presented on Figure D4 of Appendix D. The results of the grain size distribution analyses are summarized below:

Soil Particle	Percentage (%)
Gravel	0 to 1
Sand	1 to 29
Silt	59 to 96
Clay	3 to 11

Atterberg limits testing carried out on two samples of the silt measured plastic limits, liquid limits and plasticity indices of 15 and 19, 22 and 20 and 7 and 1, respectively. These results, which are plotted on Figure D6 in Appendix D, indicate that the samples tested consists of clayey silt (CL-ML) and silt (ML).

4.7 Sand

A sand layer was contacted within the silt deposit in Borehole 20-07 and below the alluvial clay in Borehole 20-08 at depths of 8.7 and 7.2 m (Elev. 234.1 and 221.0), respectively. The sand layer was penetrated at 10.0 m depth (Elev. 232.8) in Borehole 20-07; Borehole 20-08 was terminated in the sand at 12.6 m (Elev. 215.5). SPT 'N' values ranging from 28 to 43 blows per 0.3 m of penetration and up to 89 blows for 225 mm of penetration were recorded in the sand deposits,

indicating a relative density of compact to very dense. Measured moisture contents ranged from 5 to 21%.

The results of grain size analyses conducted on samples of the sand are presented on Figure D3 of Appendix D. The results of the grain size distribution analyses are summarized below:

Soil Particle	Percentage (%)
Gravel	0
Sand	75 to 91
Silt + Clay	9 to 25

4.8 Groundwater Levels

During drilling, wet conditions were noted near 15.4 m depth in the sandy silt layer in Borehole 20-07. Upon completion of augering, free water and cave were observed at a depth of 2.6 m (Elev. 254.4) in Borehole 20-06; the remaining boreholes were open and dry.

The groundwater depths and elevations measured in the monitoring wells installed in the boreholes are summarized in Table 5.1.

BH/MW		Mid-Screen Depth (m)	Mid-Screen Elev. (m)	Ground Water Elevation (metres below ground surface)		
No.				Sept. 4, 2020	Oct. 2, 2020	
20-03	258.0	9.1	248.9	Dry	252.7 (5.3)	
20-07	242.8	13.7	229.1	230.7 (12.1)	230.5 (12.3)	
20-08	228.1	7.0	221.1	225.9 (2.2)	226.2 (2.0)	
20-09	247.9	3.6	244.3	Dry	253.7 (4.2)	

 Table 5.1 – Summary of Groundwater Level Observations

In general, the water level in Borehole 20-08 near Cold Creek is expected to be governed by the prevailing water level in the creek. A water level of 4.2 m (Elev. 223.9) was recorded in Cold Creek at the Columbia Way bridge at the time of the drilling investigation.

The above groundwater level measurements are short-term observations and seasonal fluctuations of the creek and groundwater levels are to be expected. Further, groundwater levels may be higher after prolonged periods of precipitation.

5. ANALYTICAL LABORATORY TESTING RESULTS

Based on the conditions encountered during the investigation, it is anticipated that the soils excavated during potential roadway reconstruction works will primarily comprise existing fill materials, native silty clay and silty clay till. In general, no visual and olfactory indications of impact were observed in the soil samples recovered during the geotechnical field investigation program.

Five soil samples obtained from the boreholes were selected for analytical laboratory testing. The sample locations and material types that were selected for analysis are summarized in Table 5.2.

Borehole	Sample ID	Depth (m)	Material	Analysis
20-01	20-01 SS3	1.5 – 2.1	Clay Till	Metals & Inorganics PHCs F1 to F4, BTEX
20-03	20-03 SS5	2.3 – 2.9	Clay Fill	Metals & Inorganics PHCs F1 to F4, BTEX
20-05	20-05 SS5	2.3 – 2.9	Clay Till	Metals & Inorganics
20-08	20-08 SS7	6.1 – 6.7	Clay (Alluvial)	Metals & Inorganics PHCs F1 to F4, BTEX
20-09	20-09 SS5	3.0 - 3.6	Clay	Metals & Inorganics

 Table 5.2 – Soil Samples Selected for Analytical Testing

For preliminary characterization of the on-site soils, the analytical data were compared to the MECP Table 2 "Full Depth Generic Site Condition Standards in a Potable Groundwater Condition" for Residential/Parkland/Institutional (RPI) Property Uses, coarse textured soils (MECP Table 2 RPI Standards) to assess the suitability of the on-site reuse of excavated soils within the subject site as part of the proposed construction works. Considering an existing water body (i.e. creek) that is proximal to the project limits, the analytical data was also compared to the MECP Table 8 "Full Depth Generic Site Condition Standards in a Potable Groundwater Condition" for Residential/Parkland/Institutional/Industrial/Commercial/Community (RPI/ICC) Property Uses within 30 m of a water body, coarse textured soils (MECP Table 8 Standards).

On December 4, 2019, Ministry of Environment, Conservation and Parks (MECP) filed Ontario Regulation (O. Reg.) 406/19 "On-Site and Excess Soil Management" that is to be phased in over a period extending from January 1, 2021 to January 1, 2026 where the Rules for Soil Management and Excess Soil Quality Standards under this regulation are to be adopted on January 1, 2021. In this regard, the analytical data was also compared to Table 1 RPI/ICC Property Uses and Table 2.1 RPI Property Uses of the Excess Soil Quality Standards (ESQS) for Residential/Parkland/Institutional and/or Industrial/Commercial/Community Property Uses, coarse textured soils provided under MECP's Rules for Soil Management and O. Reg. 406/19 for comparison purposes only at this time.

The results of the analytical laboratory testing indicate that the concentrations of the tested parameters met MECP Table 2 and Table 8 Standards with the exception of electrical conductivity (EC).

Comparison to the Table 1 RPI/ICC and Table 2.1 RPA ESQS indicate the concentrations of the tested parameters met the Standards with the exceptions of EC and sodium adsorption ratio (SAR).

Laboratory Certificates of Analysis are included in Appendix E. The measured concentrations and corresponding Standards are shown on the certificates of analysis.

6. ENGINEERING DISCUSSION AND RECOMMENDATIONS

This section of the report provides preliminary geotechnical recommendations for design and construction of the roadway improvements and structure foundations. The recommendations are based on the subsurface soil and groundwater conditions encountered during the preliminary investigation. The soil conditions may vary between and beyond the borehole locations. Additional investigation will be required during the detailed design stage to supplement the subsurface information and confirm the preliminary recommendations.

6.1 Pavement Design and Construction

6.1.1 Design Analysis

Columbia Way is an east-west collector road with a posted speed limit of 60 km/h. The roadway presently has a two-lane rural cross section with gravel shoulders. Current plans call for the urbanization of Columbia Way from Highway 50 to 0.5 km east of Mount Hope Road, and improvements to the rural setting for the remainder of the roadway to Caledon-King Townline.

For the purposes of pavement design analysis, the roadway was divided into the urban and rural sections for separate assessment. The existing and projected peak hour (AM) traffic volumes within these sections, provided by RVA, are presented in Table 6.1. The section east of Kingsview Drive was selected as the most heavily travelled section in the urban area.

Section	Existing (2022)	Future (2032) without Background Development	Future (2032) with Background Development	Average Truck Volume
Urban	837	1021	1070	3%
Rural	377	460	509	3%

Table 6.1 – Columbia Way Traffic Information

The above volumes reflect approximate growth rates of 2% without and 2.5% to 3% with background development, respectively. To calculate traffic volumes over a 20-year design period, it has been assumed that traffic volumes will grow at a rate of 2.5% to 3% for the initial 10 years and 2% beyond.

The traffic data was used to determine the pavement damage caused by the anticipated traffic volumes over the design life of the pavement. Using axle load equivalency factors, different axle loads and axle groups are converted to a standard axle load known as an Equivalent Single Axle Loads (ESALs). The Design ESALs calculation was completed in accordance with the MTO *Procedures for Estimating Traffic Loads for Pavement Designs*. Assuming an average truck factor of 2.2, the number of ESALs during a 20-year design period was computed to be 2.7 million in the urban section (Regional Road 50 to Forest Gate Avenue) and 1.2 million in the rural section (Forest Gate Avenue to Caledon-King Townline)

The pavement design analysis was carried out using the methodology outlined in the 1993 AASHTO "*Guide for the Design of Pavement Structures*", as modified by the Ministry's "*Adaptation and Verification of AASHTO Pavement Design Guide for Ontario Conditions*", and the MTO "*Pavement Design and Rehabilitation Manual*". The AASHTO procedure determines a required Structural Number that characterizes the structural capacity of the pavement layers for a given set of inputs.

The following design inputs were used in the AASHTO design analysis.

- Design Period = 20 years
- Initial serviceability, (Pi) = 4.5 urban, 4.4 rural
- Terminal serviceability (Pt) = 2.5 urban, 2.2 rural
- Reliability level (R) = 90 percent
- Overall standard of deviation (So) = 0.44
- Mean soil resilient modulus (MR) = 30 MPa

The subgrade for the pavement structure is expected to consist primarily of firm to stiff silty clay fill, native firm to stiff silty clay, or stiff to hard silty clay till.

Based on the design input parameters and calculated ESALs, design structural numbers (SN_{Des}) of 119 and 104 mm are required for the west and east sections, respectively. The recommended pavement design thickness, based on the structural requirements, traffic projections, and subgrade conditions, is presented below.

6.1.2 Recommended Pavement Design

Columbia way was recently resurfaced. Based on the borehole data, it appears that the resurfacing program involved pulverizing the existing asphalt layer and placing a 35 to 60 mm thick asphalt overlay. The existing granular thickness typically ranged from 570 to 725 mm. It is presumed that resurfacing was completed as a holding strategy until reconstruction could be carried out. Images of the roadway prior to resurfacing (Google Street View) indicates that the pavement was previously in fair to poor condition with extensive cracking, rutting, distortion and edge breaks.

Considering the condition of the pavement prior to resurfacing and the plan to urbanize the majority of the roadway, complete reconstruction of the pavement structure is recommended. Based on the borehole data, the anticipated traffic volumes, and assuming adequate subgrade drainage, the following preliminary pavement design is recommended for complete reconstruction of Columbia Way:

Component	Urban Section	Rural section
HL1	50 mm	50 mm
HL8	90 mm	70 mm
OPSS Granular A Base	150 mm	150 mm
OPSS Granular B Type II Subbase	450 mm	400 mm

The pavement design thicknesses should be reviewed during detailed design.

Consideration could be given to the use of an HL3 surface course in the rural section subject to continuity with the urban pavement. If full reconstruction is not planned in the rural section, an overlay thickness comprising two 40 mm lifts of HL3 should be provided over the existing resurfaced pavement.

The minimum PGAC grade of virgin asphalt cement should be PG 58-28, increased to PG 64-28 in the surface and top binder course if Columbia Way will be a bus route. Consideration should be given to further upgrading of the PGAC grade to PG 70-28 if rutting has been experienced in other sections of this roadway due to truck traffic. Aggregates for the asphalt mixes should be in accordance with OPSS.MUNI 1003.

Should the Town consider using Superpave asphalt mixes for this project, the recommended HL1 material should be substituted with a Superpave 12.5 FC1 asphalt mix, the HL3 with SP 12.5, and the HL8 asphalt material with SP 19.0. As the 20-year design ESALs was estimated to be 2.7 to 1.2 million, a Traffic Category B designation should be used in preparing all Superpave asphalt mix designs.

All new granular subbase material should consist of OPSS Granular B Type II, while the granular base material should consist of OPSS Granular A. All new granular material should meet the requirements of OPSS.MUNI 1010, and be compacted to 100 percent of the Standard Proctor Maximum Dry Density (SPMDD) within 2 percent of Optimum Moisture Content (OMC). All granular material should be compacted in accordance with the requirements of OPSS.MUNI 501, and should be carried the entire width of the roadway platform to maintain appropriate drainage.

6.1.3 Pavement Subgrade Preparation

Pavement subgrade preparation should include removal of the existing pavement structure and all surficial vegetation, topsoil, organic or compressible material. Grading to the new top of subgrade should match or exceed the thickness of the existing pavement to maintain lateral drainage at the top of subgrade. The exposed subgrade should be compacted and proof-rolled with a heavy roller and examined to identify areas of unstable subgrade. Any soft/wet areas identified shall be subexcavated and replaced with approved material within 2% of Optimum Moisture Content (OMC), and compacted to at least 98% of Standard Proctor Maximum Dry Density (SPMDD).

Bulk fill used to raise the road grade should be constructed as engineered fill, consisting of approved inorganic material, placed in maximum 200 mm thick lifts, within 2% of optimum moisture content, and compacted to at least 98% of SPMDD. Standard side slopes of 2H:1V or flatter should be suitable for embankment construction. Exposed embankment surfaces should be provided with a vegetation cover or otherwise protected against erosion in accordance with OPSS 804.

The top of the compacted subgrade should be graded smooth with a minimum crossfall of 3% towards subdrains. Continuity of drainage should be maintained at transitions from existing pavement to new pavement.

6.2 Cold Creek Bridge

6.2.1 Preliminary Foundation Design

The existing Columbia Way bridge over Cold Creek may require widening and/or replacement as part of the roadway reconstruction project.

The stratigraphy encountered in Borehole 20-08 drilled at the bridge location consisted of a pavement structure and embankment fill extending to a depth of 4.1 m (Elev. 224.0), underlain by firm alluvial clay to a depth of 7.2 m (Elev. 221.0), overlying compact to very dense sand to the exploration depth of 12.6 m. Groundwater was measured in the monitoring well at a depth of 2.0 m (Elev. 226.2). In general, the water level in Borehole 20-08 near Cold Creek is expected to be governed by the prevailing water level in the creek. A water level of 4.2 m (Elev. 223.9) was recorded in Cold Creek at the Columbia Way bridge at the time of the drilling investigation.

Based on the borehole data, the preferred means of supporting the replacement bridge comprises steel H-piles driven into the very dense sand. For preliminary design purposes, a factored geotechnical resistance at ULS of 1,000 kN and a factored geotechnical resistance at SLS of 800 kN are recommended for HP310x110 piles expected to achieve the design resistances at a pile tip depth in the order of 18 m (Elev. 182.0). Additional investigation below the depth of current exploration will be required to confirm the geotechnical resistance values and pile tip depth.

Suitable bearing strata for support of spread footings is available at a depth of approximately 7.2 m (Elev. 221.0). Excavation for footing construction would need to extend through the firm alluvial clay deposits and into the sand below the creek water level. Cofferdam installation and advanced dewatering would be necessary to enable construction of footings in the dry. Factored geotechnical resistances of 450 kPa at ULS and 300 kPa at SLS may be employed for preliminary design of spread footings on the compact to very dense sand at this level. In view of the high

groundwater conditions, spread footings may not be a preferred foundation option to support this structure.

Augered caissons extended to the sand below a depth of approximately 7.2 m could be considered at this site. However, installation of caissons may be problematic due the presence of cohesionless sand deposits and a high groundwater level. Construction will require use of a steel liner to maintain stability of the caisson sidewalls as well as techniques such as drilling slurry to prevent disturbance of the caisson base. As a result, the use of caissons does not appear to provide an advantage over driven piles, and is not recommended from a geotechnical viewpoint.

The impact of new foundation construction on the existing bridge foundations should be considered if widening of the existing bridge is planned. Installation of driven H-piles or cofferdam sheet piles could result in settlement of existing spread footings if present, and a monitoring program and/or mitigative measures such as pre-augering may be required. The design of the existing bridge foundations should be determined prior to development of the new foundation system.

The high groundwater level measured in the monitoring well suggests that an artesian condition exists at the bridge site. Selection of the foundation type and assessment of dewatering requirements must consider the potential presence of artesian pressure. The impact of dewatering on local water wells or other groundwater resources in the area would also need to be assessed prior to construction.

6.2.2 Abutment Backfill and Lateral Earth Pressures

Backfill behind bridge abutments should consist of non-frost susceptible, free-draining granular material conforming to OPS Granular A or Granular B Type II specifications.

The lateral earth pressures acting on the walls, assuming full drainage from behind the walls, may be calculated from the following expression:

	\mathbf{p}_{h}	=	Κ (γh + q)
Where:	\mathbf{p}_{h}	=	horizontal pressure on the wall at depth h (kPa)
	К	=	earth pressure coefficient (see table below)
	Y	=	unit weight of retained soil (see table below)
	h	=	depth below top of fill where pressure is computed (m)
	q	=	value of any surcharge (kPa)

Table 6.2 lists unfactored parameters for design purposes, assuming an essentially level ground surface behind and in front of the walls.

Retained	Unit	Friction Angle (degrees)	Earth Pressure Coefficient		
Material	Weight (kN/m³)		Active (K _a)	At-rest (k₀)	Passive (K _p)
Granular A or B Type II	22.8	35	0.27	0.43	3.7
Granular B Type I	21.2	32	0.31	0.47	3.3

If lateral movement is not permissible and/or the wall is restrained from lateral yielding, the at-rest earth pressure coefficient, K_o , should be used. If the wall design allows lateral yielding (non-rigid structure), the active earth pressure coefficient, K_a , may be used.

The earth pressure coefficients in the table above do not include potential compaction effects that must be included in the design. Compaction effects should be considered as per the CHBDC.

Design of the structures must incorporate measures such as weepholes to permit drainage of the backfill and avoid potential build-up of hydrostatic pressures behind the walls.

6.3 Tributary Culvert

It is understood that the existing corrugated steel pipe (CSP) culvert at the tributary located approximately 0.9 km east of Highway 50 may be extended or replaced with a wider and longer culvert as part of the roadway reconstruction project.

One borehole (Borehole 20-03) was drilled at the location of the existing CSP. The subsurface stratigraphy encountered in this borehole consisted of a pavement structure over silty clay fill to a depth of 4.1 m (Elev. 253.8) underlain by native silty clay till from a depth of 4.1 m (Elev. 253.8) to the exploration depth of 11.3 m (Elev. 246.7). Groundwater was measured at a highest level of 5.3 m (Elev. 252.7).

Based on the borehole information, an extension of the existing CSP or a new CSP or box culvert should be placed on the very stiff to hard silty clay below the level of the fill, at or below Elev. 253.8. A minimum 300 mm thick layer of Granular A bedding material should be provided under the base of the CSP or box culvert. Alternatively, an open footing culvert may be supported on

spread footings founded on very stiff native clay at or below 4.1 m depth (Elev. 253.8) and designed using factored geotechnical resistances of 350 kPa at ULS and 225 kPa at SLS.

Use of a hydraulic excavator should be suitable for excavation in the fill and native materials. The selection of the method of excavation is the responsibility of the contractor and must be based on their equipment, experience and interpretation of the site conditions. The fill, sand and gravel, and till deposits may contain cobbles, boulders and other obstructions and the contractor must be prepared to handle these obstructions

Construction dewatering is not expected to be an issue at the tributary culvert provided excavations are maintained within the silty clay and temporary stream diversion measures are provided seasonally as required.

6.4 Frost Cover

The depth of frost penetration at this site is approximately 1.4 m. All spread footings or pile caps should be provided with a minimum of 1.4 m of earth cover as protection against frost action.

6.5 Slope East of Forest Gate Avenue

The approximate 130 m long section of Columbia Way descending into the Cold Creek valley easterly from approximately 350 m east of Forest Gate Avenue appears to have been constructed by partial fill placement and earth cut along the side of a hill. An approximate 10 to 12 m high slope is present along the north (downhill) side of the road and an 8 to 10 m high cut slope is present on the south (uphill) side of the roadway. Downslope movement and tilting of the guiderail is evident along the crest of the north slope.

The soil stratigraphy encountered in Borehole 20-07 completed in this section of the roadway comprised a pavement structure over silty clay fill extending to 4.1 m depth (Elev. 238.7), underlain by native compact to very dense silt, silty sand and sandy silt to the termination depth of 15.5 m (Elev. 227.4). Groundwater was measured in a monitoring well at a depth of 13.3 m (Elev. 230.5) below the road surface.

Preliminary review of existing slope grades indicates that the overall slope inclination is in the order of 3H:1V, with steeper sections in the order of 2.5H:1V to 2.0H:1V created by road construction. Localized areas inclined at approximately 1H:1V are presented at the top of slope adjacent to the road. Preliminary stability analysis of the slope (Figure F1, Appendix F) indicates that the overall stability of the slope is not a concern, however measures are required to address movement and tilting of the guiderail in the steepened section of slope adjacent to the road.

For conceptual design, the following remedial measures may be considered to stabilize the slope and guiderail, and enable widening of the roadway if required:

- Flatten the steep section of the downhill slope by placement of additional fill to establish an inclination no steeper than 2H:1V. This option would require removal of the existing vegetation and benching of the existing slope prior to placement of the additional fill.
- Construct a retaining wall or install sheet piling along the north side of the road to support the roadway, shoulder and guiderail at the current alignment.
- Excavate and reconstruct the existing roadway embankment fill as a reinforced soil slope inclined at an inclination steeper than 2H:1V and benched into the native soil slope.
- Shift the road alignment to the south by cutting further into the uphill slope. For preliminary design, we would recommend slope inclinations no steeper than 2H:1V. If this inclination is not achievable due to property impacts, it would be recommended to implement similar remedial measures as suggested for the north slope, such as a retaining wall, sheet pile wall or reinforced soil slope.

The preferred option will depend on economic considerations and property constraints. Additional borehole investigation and stability analyses will be required during detailed design to confirm the required slope geometry and design parameters.

For preliminary design, standard slope inclinations no steeper than 2H:1V may be assumed for sections of reconstructed slopes. Mid-height berms comprising 2 m wide benches must be incorporated along the length of embankments with heights exceeding 6 m. Cut or fill slopes must be provided with erosion protection in accordance with OPSS.PROV 804. To minimize the potential for erosion, surface water should be directed away from the embankment slopes and conveyed down the slope in appropriately designed drainage channels.

6.6 Cut Slope west of Caledon-King Townline

Columbia Way passes through an approximately 7 to 8 m high cut section immediately west of Caledon-King Townline. The cut slope on the north side appears to be inclined near 2H:1V and is vegetated by grass. The cut slope on the south side is inclined at 1H:1V to near-vertical and comprises an active eroding slope face in the form of rills and gullies. No ditching is present along the roadsides, and eroded material washes onto the south side of the road. The areas at the top of both slopes appear well vegetated with mature trees, shrubbery and grasses.

The subsurface stratigraphy encountered Borehole 20-09, drilled on the roadway, consisted of a surficial pavement structure underlain by native hard silty clay overlying very dense silt. Based on the surficial geology mapping and visual review of the eroded slope face, the cut slope above the road level is expected to comprise glacial clay till.

Based on the borehole findings and site examination, roadway improvements through the cut section should include provision of drainage ditches at the toe of slope along both sides of the road and re-establishment of the cut slopes at an inclination no steeper than 2H:1V. Cut slopes greater than 6 m in height should be provided with a 2 m wide mid-height berm.

Additional boreholes should be drilled from the top of the slopes during detailed design to confirm the assumed stratigraphy, and slope stability analyses completed to confirm the stability of the recommended slope inclination.

The cut slopes must be provided with erosion protection in accordance with OPSS.MUNI 804. Typically, this will comprise a vegetation cover established on all exposed earth surfaces. Surface water runoff at the slope crest should be directed away from the slope face.

6.7 Municipal Service Installation

In general, excavation for open cut installation of municipal services to an assumed maximum depth of 3.0 m will extend through the existing roadway pavement structure, sand and clay fill materials, and into native silty clay, silty clay till and silt. Use of a hydraulic excavator should be suitable for trench excavation within these materials.

All temporary excavations must be carried out in accordance with the current Occupational Health and Safety Act (OHSA) of Ontario and local regulations. In general, the native soils are classified as Type 3 soils above the groundwater level, and Type 4 soils if excavation extends below the water level without prior dewatering. Groundwater is not expected to pose construction issues during excavation of relatively shallow trenches.

Prior to placement of the pipe bedding, the base of the trench should be maintained in a dry condition, free of loose or disturbed material. The pipe must be placed on a uniformly competent subgrade. Pipe bedding materials, compaction and cover should follow OPSD 802.030 to 803.034, and/or Town of Caledon specifications.

Trench backfill materials should be placed in loose lift thicknesses not exceeding 200 mm and compacted to at least 98% of its SPMMD. Where utility trenches are located beneath the roadway, OPSS Granular A or B material, or unshrinkable fill should be employed as backfill.

For trenches located outside of the roadway, the portion of the trench above the pipe cover can be backfilled with excavated soil provided it is unfrozen and free of organics, debris and other deleterious materials. The placement moisture content should be within about 2% of the optimum moisture content for efficient compaction, and the till must be adequately broken down and compacted in the trench.

6.8 Geoenvironmental Considerations

The chemical sampling and testing program carried out during this investigation was completed for due diligence purposes to obtain a general understanding of the environmental quality of the soils on site. The environmental characteristics of the soils were inferred from a limited number of samples and sampling locations, and the extent of materials that may be encountered during construction was not delineated. As such, the environmental data and comments are provided as guidance to the contractor on the requirements for reuse or disposal of materials generated during construction and should not be used to estimate quantities.

Where excavation of existing pavement structures is required, the asphalt from the existing pavement structure may be separated for transfer to a recycling facility, although asbestos testing should be carried out prior to stripping. Asphalt should not be mixed with excess soil as fill receivers may not accept excess soils containing asphalt. Excavated road granular materials may be reused on site for general fill purposes subject to geotechnical approval and verification analytical testing.

The results of the analytical laboratory testing indicate that the concentrations of the tested parameters met MECP Table 2 and Table 8 Standards with the exception of electrical conductivity (EC).

Comparison to the Table 1 RPI/ICC and Table 2.1 RPA ESQS indicate the concentrations of the tested parameters met the Standards with the exceptions of EC and sodium adsorption ratio (SAR).

Elevated EC and SAR are likely the result of de-icing activities on the roadway. The presence of SAR or EC does not impose a risk to human health, but rather may only impact the physical composition of the soil which could affect the growth of vegetation. Where salt has been applied on a highway for the purposes of keeping the highway safe for traffic under conditions of snow or ice or both, the applicable site conditions standard is deemed not to be exceeded under Section 48 (3) of O. Reg. 153/04.

In this regard, the EC and SAR impacted materials that are free of staining and odour may generally be suitable for reuse on Site provided the excavated materials are appropriate from a geotechnical perspective, or possibly reused off-site at properties requiring fill for a beneficial purpose. Prior to reuse, the environmental quality of embankment fills should be checked to verify the appropriate end use of the materials. This can be completed through additional testing prior to construction, or screened during construction through segregating into separate stockpiles, and sampled and tested.

There may be restrictions to the on- and off-site re-use of the fill materials due to the marginally elevated SAR value (e.g. placed in areas more than 30 m from the waterbody, 2 m from the groundwater table, and at least 100 m from a potable water supply etc.). Receiving site authorities will need to be notified of the salt-related impacts and provide consent in writing of their acceptance of the materials.

A more comprehensive level of testing should be carried out for the off-site reuse of excess fill or native soils to verify that the environmental quality of the excess soils meets the site's analytical requirements and the requirements of O. Reg. 406/19 and the Excess Soil Quality Standards. In this regard and depending on the project design details, management strategies and receiving site requirements, the documentation and sampling and testing criteria of O. Reg. 406/19 may need to be met.

Alternatively, the excavated materials may be disposed of off-site at a licensed landfill facility with an ECA to receive this waste type. TCLP analysis will be required during construction on the actual materials to be disposed, if any, to verify the waste classification and the acceptance criteria of the waste management facility selected by the Contractor has been met.

Additional analytical testing of excavated soils will be required during detailed design to further evaluate the environmental quality of the soil and confirm reuse and disposal requirements.

The "new" O. Reg. 406/19 may or may not apply to the infrastructure project subject to specific design details (i.e. excavated quantities, soil management strategies involving excess soils that are to be reused off-site, receiving site analytical requirements). If the regulation applies, additional documentation, sampling and testing procedures (including prescribed leachate analysis) may be required to meet the criteria of O. Reg. 406/19. The regulation does not apply to the reuse of excavated soils on Site, and the project may be exempt from the registration, planning and sampling requirements of the regulation if excess soils are to be reused as part of another infrastructure project owned by the Project Leader (as defined by the Regulation) or public body.

No statement made herein should be construed as relieving the Contractor's responsibility to comply with all applicable federal and provincial regulations, municipal by-laws and guidelines related to the handling or disposal of excavated materials (and/or discharge of extracted groundwater).

6.9 Detailed Geotechnical Investigation

The information presented in this report is provided for preliminary design and planning purposes only. Detailed geotechnical investigation will be required to confirm the subsurface conditions and recommendations. This work should incorporate:

- A detailed pavement investigation including additional boreholes within the existing roadway pavement and widening areas to further define the subgrade conditions and confirm the pavement design recommendations;
- Boreholes within the envelope of all bridge foundation units to confirm the subsurface conditions at the structure location and develop detailed geotechnical recommendations for design and construction of the bridge foundations. This should include further investigation of the potential artesian groundwater condition;
- Additional investigation and stability analysis of the slopes to the east of Forest Gate Avenue and west of Caledon-King Townline;
- Further assessment of dewatering requirements and the need for a PTTW; and
- Supplemental chemical testing to confirm the requirements for reuse or disposal of excavated material.

STATEMENT OF LIMITATIONS AND CONDITIONS

1. STANDARD OF CARE

V@#AÜ/][¦d^@ee/å\^}Á;l^] æt^åÅgi Áns&&[¦åægi &r^, ãr@A*/}^!æjå&&x}] &råÅk}*äj^^läj*A[!Å?;cā[}{ ^}cæk/&[}*`|cij*Á;!æstca&/•Ági Ás@-Áse]]|a8æaa|/Ási¦äråa8ca[}ÈÄ Þ[Á]c@:!Á]æs!ægic*É%cg]¦^••^åÅ[!Áa[]]a?åÊ556-Ágic*}åråA[!Á]æaå^ÈÄ

2. COMPLETE REPORT

CE[Áŝ[&č{^}œ ÉdA &{|å•Édáæææðæ) á Áa*/•Éð,@ c@:Á*|^&d[}&&{|}&e^*É*/>^!æ*á Áæe Ájædót, Ác@ábe•a"} { ~}œ Áæ* Áæá Áæ Áu^]: ['dÉ, @ &@ éba*á { ÁæA •`{{æ* Ájæč !^Áæ} Áfa Á; [díbj c*} å^á Átj Á cæ}á Áæ{]}^Á, ã@ čdA ^*!^} & Atj Ác@ Ág •d * &a; } Atj Áv@ !à^!Áa Ác@ ÁO]a> dÉ&{{{`}} 38ææti} + Áe^c, ^^) Á V@ !à^!Áæ}á Å@ ÁO]a> dÉ&; á Ác@ ÁA^]['e Éd, [][•æ+ Á;!Ás[& {^} œ A;!^] æ*á Ásî Á/@ !à^!Átj Áx@ ÁO]a> dA /ææti^Atj Ác@ Á] ^ &ãææti} + Áe^c, ^^) Á V@ !à^!Áæ}á Å@ ÁO]a> dÉ&; á Ác@ ÁA^]['e Éd, [][•æ+ Á;!Ás[& {^} œ A;!^] æ*á Ásî Á/@ !à^!Átj Áx@ ÁO]a> dA /ææti^Atj Ác@ Á] ^ &ãæA ác^ ác^ à AcA (?] a*á Ásî Á/@ !à^!Átj Áx@ ÁO]a> dA /ææti^Atj Áx@ Á] ^ &ãæA ác^ ác^ à AcA (?] a*á Ásî Á/@ !à^!Átj Áx@ ÁO]a> dA /æti A (?] * a*á Ásî Á AcA (?] * a*á Ásî Á (?] * a*á Ásî Ásî A (?] * a*á Ásî Ásî A (?] * a*á Ásî A (?] * a*á ásî A (?] * a*á A

œÁJÜÖÖÜÁUÁŰÜUÚÖÜŠŸÁNÞÖÖÜÙVŒÐŐÁPÒÂMŐŐÖÙVQÞÙÄÜÓÔUTT ÒÞÖŒØDÞÙÁÐÐÓÁJÚŒQÞÙÁÒÝÚÜÒÙÙĊŎÆŎÜÒZÖÜÞÔÒÁT WÌVÁÓÁ TŒŎÁUÁPÒÝ PUŠÒÁJØÁPÒÃIŎÚUÜVÄ/PWŰÓŎÜAQÁEUVÁÌÒÙÚUÞÙØŠÒÆJUÜÁNÙÒŐŸÁDĒŸÁſŒVŸÁJØÁUŰVQÞÙÁJØÁPÒŨŎĹUŰVÁY QPUVWÁÜÒZŎÜÒÞÔÒÁ VUÁPÒÝ PUŠÒÁIŎÚUŰVĂ

3. BASIS OF REPORT

V@AÜ^][¦dÁœze Ás^^}Á;\^] æð^åÁ[¦Áv@A]^8ãæAá ær Ébá^ç^|[]{ ^}dÉbá^e ær}} Åjàb8cæj^• ÁejåÅj`;][•^• ÁvœæAý ^!^Aáv•&iæråiAi Áv@kö]æ}dáj`*] æj]]ææaiajær ÁejåÅ^|ææaiajær Áj-Áe@Ajåaj*• ÉÁ^&[{ { ^}åææaj}• ÉÁ`**^• caj}• ÉÅ\∱]ājaj}• Ákc]i^• e^Aáj Áv@ki/][¦dÉA`àb/8cæj Aj*i][e^a/åÅ @!^aj Ébæb^Á;}]^kæabäak[ko@Árco}okoeg Áu/][¦d%rcj!/••[^Áeæáikai+•^• Á;[]][•^åÅa^c/[]{ ^}dÉs^• æ]}Å;àb/8cæjr• AejåÅ``;][e^• ÉbejåÅi @!^aj Ébæb^Á;}]^kæabäak[ko@Árco}okoeg Áu/][¦d%rcj!/••[^Áeæáikai+•-^• Á;[]][•^åÅa^c/[]{ ^}dÉs^• æ]Å;àb/8cæjr• AejåÅ;`;][e^• ÉbejåÅa ^cc/}okoegeAc@!^Á@æÅa^}Å;[A]@æ^iæabjæc'!æaaj}Åi[Å;Ajcæäææaj}Åi[{ Aej^Â;Ac@ÁræabiÅs^• &i]a;aj}• Åi[[çæa*àÅt[Å/@ià^!ÉŠ]/•• Á/@ià^iAæÅi]^8aæae]^Â !^~`~•cåÅa^Ac@ÅO[a}oki[Å^cæ], ÁejåÅrçæ_Aæ@ÅU^][]ofajÅæ@ájA* & &@Aeder!ææaj}Åi[Å;Ajcæäææaj}ĚÅ

4. USE OF THE REPORT

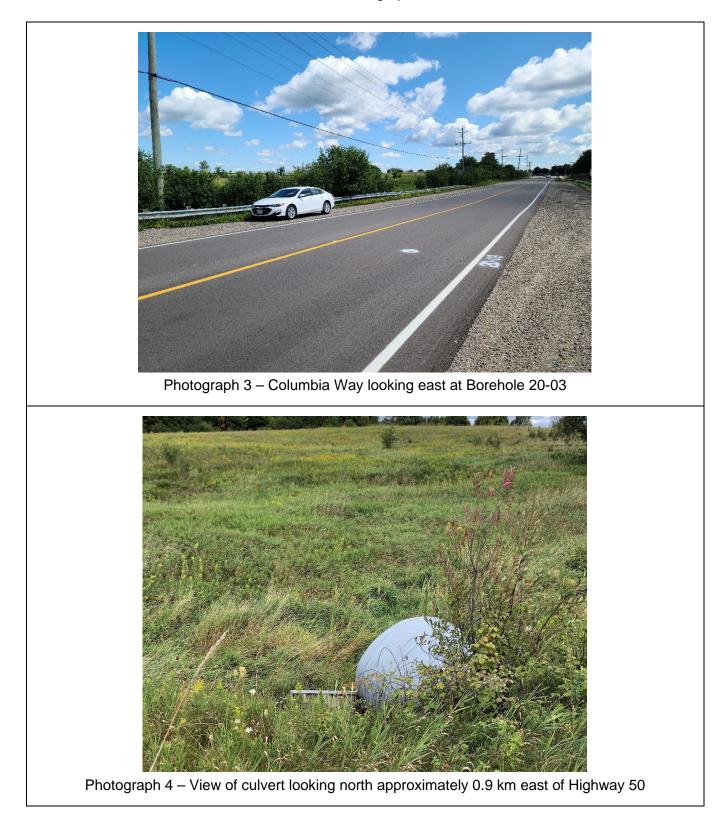
V@Áġ.{¦{æaā}}ÁġāÁ]ājāj•Á¢]¦^••^àÁġÁœÁÜ^][¦ÆÄ;kæj^Áġ[&`{^}œÁ[k];a*á∱A±o∯A±o@ÁÜ^][¦Æå±^Á;kæA[|^Áæ^Á[]^kæ^A[]^kæ]A ÚŒÚVŸĂTŒŸÁNUÒÁUŮÄÜŎŠŸÁNÚUÞÁ/PÓÄÜÒÚUÜVÁUÜÁÆÞŸÁÚUÜVQUÞÁ/PŎÜÒUØÁYQVPUWVÁ/PWŰÓŎÜ¢ÙÁYÜQVÒÞÁÔUÞÙÒÞVÁÆÞÖÂUNÔPÁ NÙÒÂJPŒŠŠÁŎÒÁJÞÂWÔPÁ/ŎÜTÙÁÆÞÖÂŪUÞÖQYQUÞÙÁEÙÁ/PWŰÓŎÜÁTŒŸÁÔÝÚÜÒÙŮŠŸÁEĽÚÚÜUXÒĚAJ.}^\;@jájábjåÁ{]^¦ã@Á{|Á@Á&[}~}o}oÁ [ÁœÁÜ^][¦má^[[}*ÁţÁ/@¦à^¦ÉÆ9;Á*•^Á;@&@Áekénk@aåÁjæcÁ;æ^•Á;ÁœÆÜ^][¦Œã#ÁœÁ[]^!aāāāÁ;Á±Á*&@Ab@aåAjæcÉV@¦à^¦áæ&A]@Á [^o#aāāāćÁ;@ær[^ç^¦Áţ¦káæ{æ*^AÁ*~~\!^åÅa`A⊕Å@äÅjæcÁ^•*|@j*Ák[{Á*•AjkáœÆÛ^][¦o∯aā@`óV@¦à^!qÁ¢]]!\~•Á;łæ?ÅjA^{\@

5. INTERPRETATION OF THE REPORT

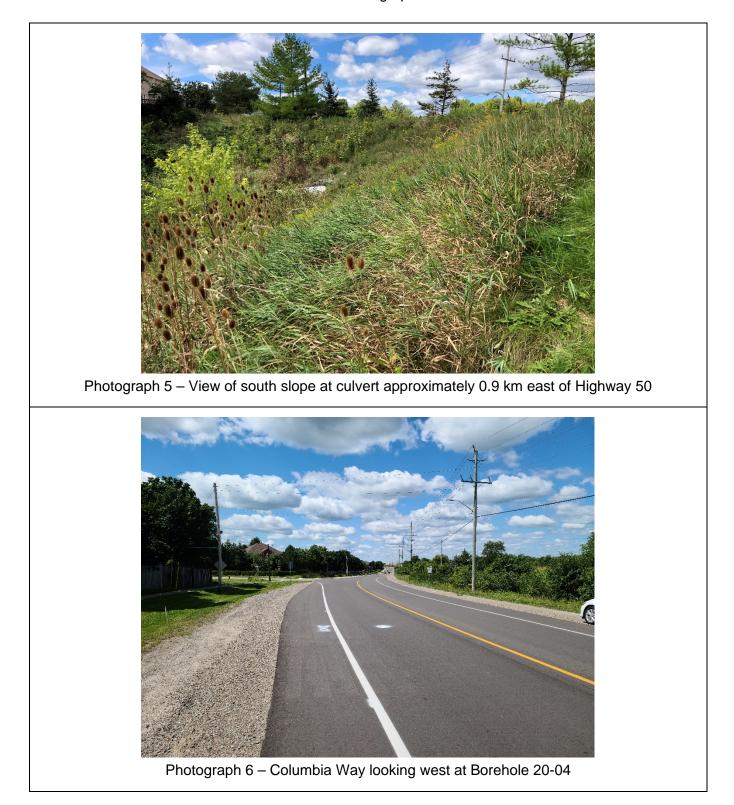
6. RELEASE OF POLLUTANTS OR HAZARDOUS SUBSTANCES

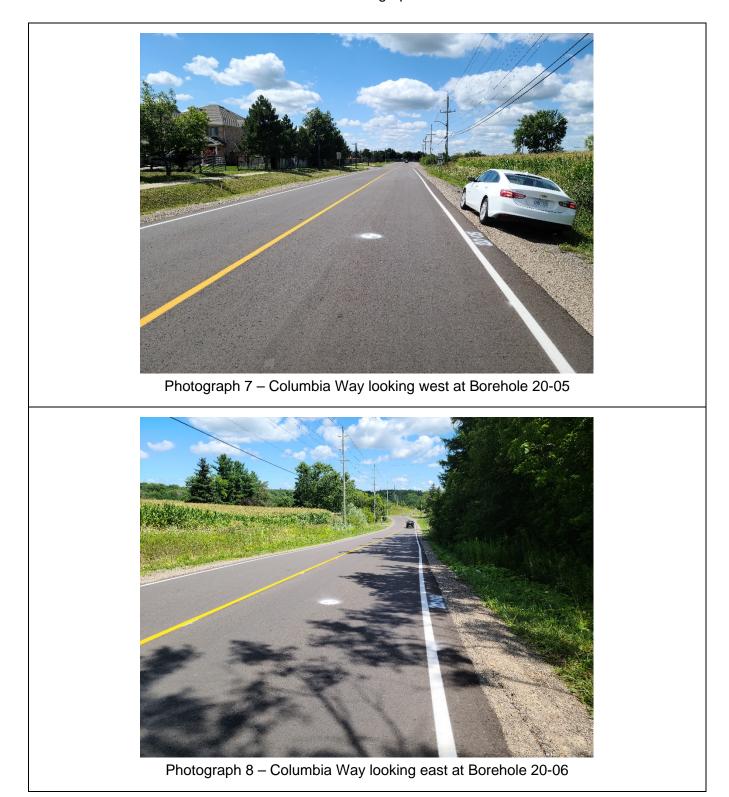
7. INDEPENDENT JUDGEMENTS OF CLIENT

V@ Ág + [{æati} Ěág c*]] ^^cæati} • Ág á Ág [}&l] • ág á á@ Áu^][lónbet^Ásæ ^ á Aev à Á v@ là^lor (fg c*l] !^cæati} Á Ák[} á atil }• Á^c^ad á ág c^• ct æatil } Á &[} ǎ & c*à Á ã cog Áská ^ aj ^ å Á & []^Á - Á^l; czv• Ěv@ là^lÁs[^• Á [onbet Asia 2* ^ å Af [} á ätá] * Á / (f Asia 2* à Asia 2* - à Asia 2* -


Appendix A

Site Photographs



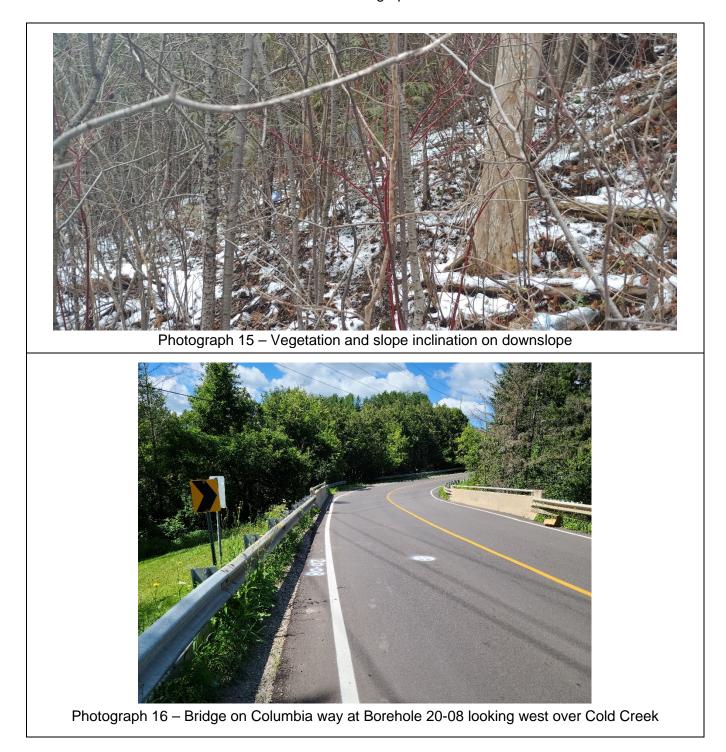




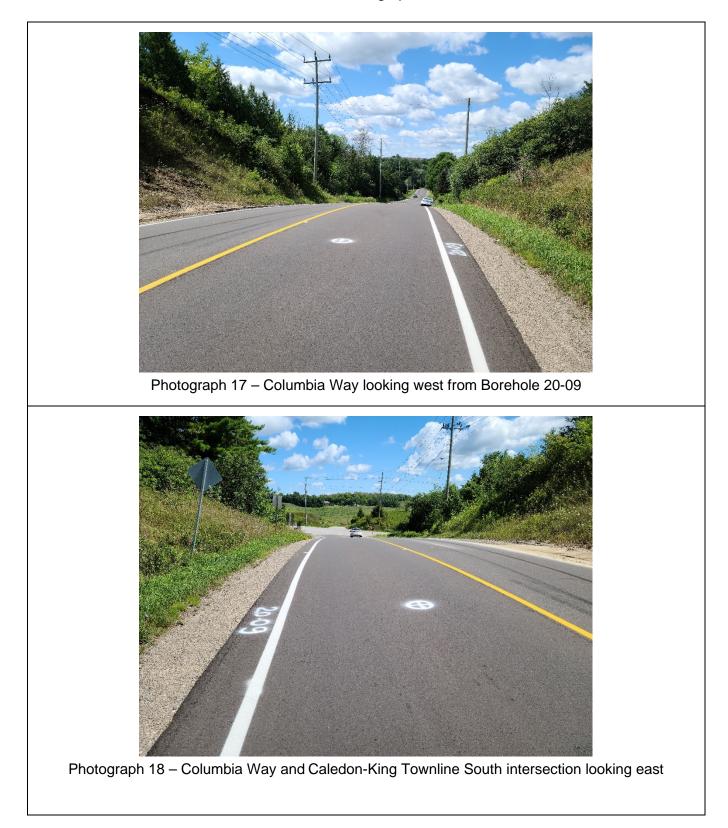
Photograph 11 – Trees on upslope near eastern limit

Photograph 12 - Columbia Way looking west at eastern limit of upslope

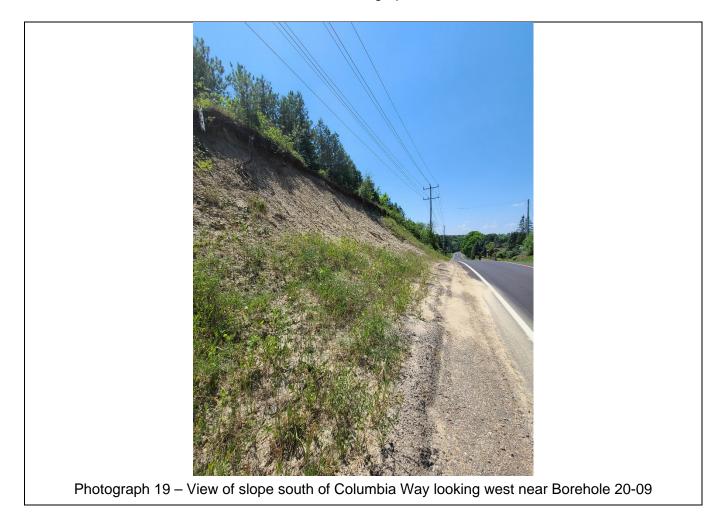
Columbia Way Class EA Study Between Highway 50 and Caledon-King Townline South Site Photographs


Photograph 13 – View of guardrail looking south towards guardrail movement

Photograph 14 – Guardrail and downslope on north side of roadway



Columbia Way Class EA Study Between Highway 50 and Caledon-King Townline South Site Photographs



Columbia Way Class EA Study Between Highway 50 and Caledon-King Townline South Site Photographs

Columbia Way Class EA Study Between Highway 50 and Caledon-King Townline South Site Photographs

Appendix B

Record of Borehole Sheets

SYMBOLS, ABBREVIATIONS AND TERMS USED ON RECORDS OF BOREHOLES

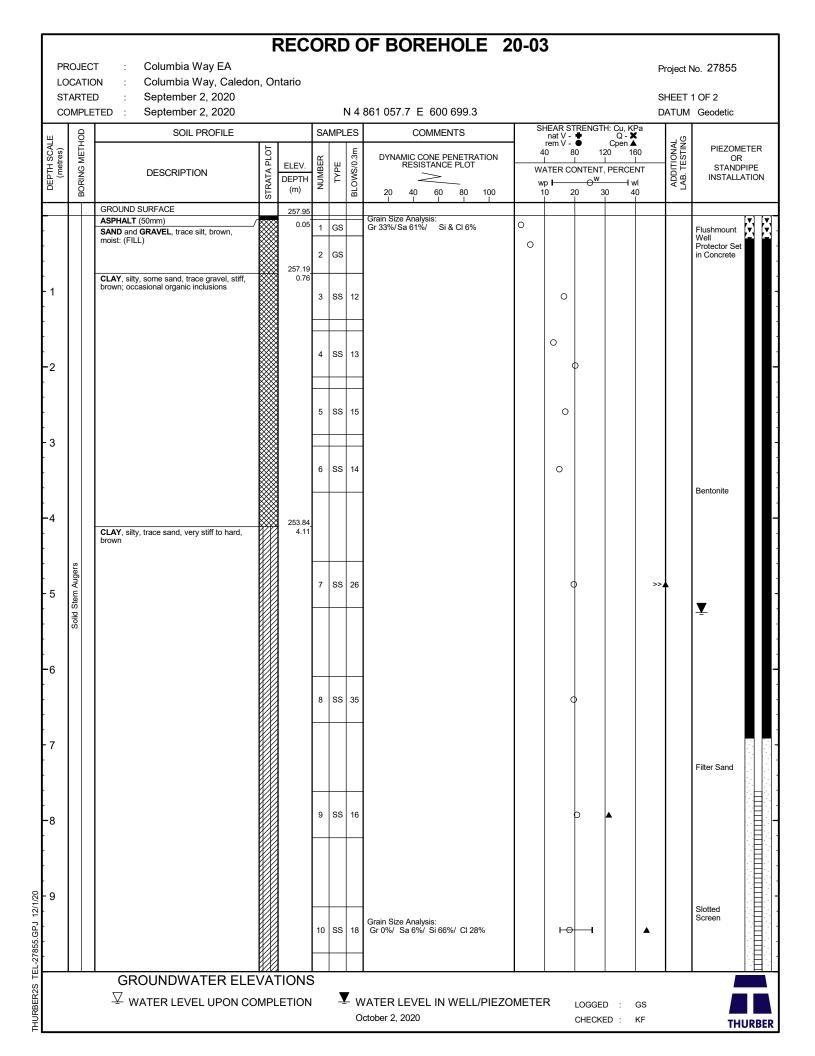
1. <u>TEXTURAL CLASSIFICATION OF SOILS</u>

2.

3.

4.

5.


	PARTICLE SIZE Greater than 200mm	VISUAL IDENTIFICATION
Boulders Cobbles	75 to 200mm	same
	4.75 to 75mm	same
Gravel		5 to 75mm
Sand	0.075 to 4.75mm	Not visible particles to 5mm
Silt	0.002 to 0.075mm	Non-plastic particles, not visible to
	I 1 0.000	the naked eye
Clay	Less than 0.002mm	Plastic particles, not visible to the naked eye
<u>COARSE GRAIN SOIL D</u>	ESCRIPTION (50% greater than 0.07)	
TERMINOLOGY		PROPORTION
Trace or Occasional		Less than 10%
Some		10 to 20%
Adjective (e.g. silty or sand	lv)	20 to 35%
And (e.g. sand and gravel)	-57	35 to 50%
TERMS DESCRIBING CO	NSISTENCY (COHESIVE SOILS O	NLY)
DESCRIPTIVE TERM	UNDRAINED SHEAR	APPROXIMATE SPT ⁽¹⁾ N'
	STRENGTH (kPa)	VALUE
Very Soft	12 or less	Less than 2
Soft	12 to 25	2 to 4
Firm	25 to 50	4 to 8
Stiff	50 to 100	8 to 15
Very Stiff	100 to 200	15 to 30
Hard	Greater than 200	Greater than 30
NOTE: Hierarchy of Soil S	2) Fie 3) La 4) SF	boratory Triaxial Testing eld Insitu Vane Testing boratory Vane Testing YT value ocket Penetrometer
		NT X7
TERMS DESCRIBING DE	ENSITY (COHESIONLESS SOILS O	<u>NLY)</u>
TERMS DESCRIBING DE	ENSITY (COHESIONLESS SOILS O SPT "N" VALUE	<u>NLY)</u>
		<u>NLY)</u>
DESCRIPTIVE TERM	SPT "N" VALUE	<u>NLY)</u>
DESCRIPTIVE TERM Very Loose Loose	SPT "N" VALUE Less than 4	<u>NLY)</u>
DESCRIPTIVE TERM Very Loose	SPT "N" VALUE Less than 4 4 to 10	<u>NLY)</u>
DESCRIPTIVE TERM Very Loose Loose Compact	SPT "N" VALUE Less than 4 4 to 10 10 to 30	<u>NLY)</u>
DESCRIPTIVE TERM Very Loose Loose Compact Dense	SPT "N" VALUE Less than 4 4 to 10 10 to 30 30 to 50 Greater than 50	<u>NLY)</u>
DESCRIPTIVE TERM Very Loose Loose Compact Dense Very Dense LEGEND FOR RECORDS	SPT "N" VALUE Less than 4 4 to 10 10 to 30 30 to 50 Greater than 50 S OF BOREHOLES	
DESCRIPTIVE TERM Very Loose Loose Compact Dense Very Dense <u>LEGEND FOR RECORDS</u> SYMBOLS AND	SPT "N" VALUE Less than 4 4 to 10 10 to 30 30 to 50 Greater than 50 S OF BOREHOLES SS Split Spoon Sample WS	Wash Sample AS Auger (Grab) Sample
DESCRIPTIVE TERM Very Loose Loose Compact Dense Very Dense <u>LEGEND FOR RECORDS</u> SYMBOLS AND ABBREVIATIONS	SPT "N" VALUE Less than 4 4 to 10 10 to 30 30 to 50 Greater than 50 S OF BOREHOLES SS Split Spoon Sample WS TW Thin Wall Shelby Tube Samp	Wash Sample AS Auger (Grab) Sample le TP Thin Wall Piston Sample
DESCRIPTIVE TERM Very Loose Loose Compact Dense Very Dense <u>LEGEND FOR RECORDS</u> SYMBOLS AND	SPT "N" VALUE Less than 4 4 to 10 10 to 30 30 to 50 Greater than 50 S OF BOREHOLES SS Split Spoon Sample WS	Wash Sample AS Auger (Grab) Sample le TP Thin Wall Piston Sample lic Pressure PM Sampler Advanced by Manual Pre
DESCRIPTIVE TERM Very Loose Loose Compact Dense Very Dense <u>LEGEND FOR RECORDS</u> SYMBOLS AND ABBREVIATIONS FOR SAMPLE TYPE	SPT "N" VALUE Less than 4 4 to 10 10 to 30 30 to 50 Greater than 50 S OF BOREHOLES SS Split Spoon Sample WS TW Thin Wall Shelby Tube Samp PH Sampler Advanced by Hydrau WH Sampler Advanced by Self St Undisturbed Shear Strength	Wash Sample AS Auger (Grab) Sample le TP Thin Wall Piston Sample lic Pressure PM Sampler Advanced by Manual Pre
DESCRIPTIVE TERM Very Loose Loose Compact Dense Very Dense <u>LEGEND FOR RECORDS</u> SYMBOLS AND ABBREVIATIONS FOR	SPT "N" VALUE Less than 4 4 to 10 10 to 30 30 to 50 Greater than 50 SOF BOREHOLES SS Split Spoon Sample WS TW Thin Wall Shelby Tube Samp PH Sampler Advanced by Hydrau WH Sampler Advanced by Self St	Wash Sample AS Auger (Grab) Sample le TP Thin Wall Piston Sample lic Pressure PM Sampler Advanced by Manual Pre
DESCRIPTIVE TERM Very Loose Loose Compact Dense Very Dense <u>LEGEND FOR RECORDS</u> SYMBOLS AND ABBREVIATIONS FOR SAMPLE TYPE	SPT "N" VALUE Less than 4 4 to 10 10 to 30 30 to 50 Greater than 50 SOF BOREHOLES SS Split Spoon Sample WS TW Thin Wall Shelby Tube Samp PH Sampler Advanced by Hydrau WH Sampler Advanced by Self St Undisturbed Shear Strength	Wash Sample AS Auger (Grab) Sample le TP Thin Wall Piston Sample lic Pressure PM Sampler Advanced by Manual Pre

SPT 'N' Value Standard Penetration Test 'N' Value – refers to the number of blows from a 63.5kg hammer free falling a height of 0.76m to advance a standard 50 mm outside diameter split spoon sampler for 0.3 m depth into undisturbed ground.
 DCPT Dynamic Cone Penetration Test – Continuous penetration of a 50 mm outside diameter, 60° conical steel point attached to "A" size rods driven by a 63.5 kg hammer free falling a height of 0.76 m. The resistance to cone

penetration is the number of hammer blows required for each 0.3 m advance of the conical point into undisturbed ground.

				REC	0	RD) (OF BOREHOLE 2	20-0	1					
	ROJE DCAT	,	on. O	ntario									Ρ	roject N	lo. 27855
ST	ART		, .			I	N 4	860 644.4 E 600 098.2					D	HEET 1 ATUM	I OF 1 Geodetic
щ	ДO	SOIL PROFILE			SA	MPL	ES	COMMENTS		SHEAR ST nat V - rem V -		H: Cu, KF Q - X	Pa	цĞ	
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100	N N	40 8 │ /ATER CC wp	0 1: L DNTENT	20 16	50 NT 1	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
_	$\left \right $	GROUND SURFACE ASPHALT (50mm)	/ 🗙	262.64					-						
		SAND and GRAVEL, some silt, brown, moist: (FILL)		261.88	1	GS		Grain Size Analysis: Gr 43%/Sa 43%/ Si & Cl 14%	0						
- 1	s	CLAY, silty, some sand, trace gravel, very stiff, brown: (TILL)	P	0.76	2	ss	15			0			>>,		
-2	Solid Stem Augers		0		3	ss	13			0		•			
	0,		0	259.67	4	ss	8				0		•		
- 3 - -		SILT, sandy, some clay, compact, grey, moist; with occasional silty clay seams		2.97 258.98	5	ss	12	Grain Size Analysis: Gr 1%/ Sa 29%/ Si 59%/ Cl 11%		<u>-</u>	но				
-4 -4		END OF BOREHOLE AT 3.66m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE, ASPHALT AT SURFACE.		3.66											
- 5 -															
-6															
-															
- 7 - -															
- -8															
- - - 9															
		GROUNDWATER ELE					L v	I		I R	LOGGEI	D : 1	GS		
YOH											CHECK	ED :	KF		THURBER

PROLING: W: Columbia Way EA: E. COLUMNA WAY EA: SUBJECT: COLUMNA					REC	0	RE) (OF BOREHOLE 2	20-02	2					
Status September 2, 2020 Setter 1/61 Setter 1/61 UMPLETED Setter 1/61 Solu PROFILE So				n O	ntario									Pi	roject N	lo. 27855
No. Sold PROFILE SAMPLES COMMENTS SPEAR STRENCT OUT OF TWO TO THE STRATEGY OF TWO THE CONTENT FRANCE OUT THE STRATEGY OF TWO THE STRATEGY OF TWO THE STRATEGY OF TWO THE STRATEGY OF TWO THE OUT THE STRATEGY OF TWO THE STRATEGY OF TWO THE OUT THE STRATEGY OF TWO THE	ST	FARTE	ED : September 2, 2020	, , O	intario											
No. 00 B DESCRIPTION ELC No. 00 B No. 00 DESCRIPTION No. 00 B No. 00 DESCRIPTION No. 00 B No. 00 DESCRIPTION No. 00 B No. 00 DESCRIPTION No. 00 DESCRIPTION <td></td> <td></td> <td></td> <td></td> <td></td> <td>SA</td> <td></td> <td></td> <td></td> <td>S</td> <td>HEAR ST</td> <td>RENGT</td> <td>H: Cu, KP</td> <td></td> <td></td> <td>Geodetic</td>						SA				S	HEAR ST	RENGT	H: Cu, KP			Geodetic
Image: control of the second contrelice of the second contrel of the second contrel of	DEPTH SCALE (metres)	BORING METHO		STRATA PLOT	DEPTH				DYNAMIC CONE PENETRATION RESISTANCE PLOT	W	40 8 │ ATER CC /p	0 12	20 16 , PERCEN w	0 NT I	ADDITIONAL LAB. TESTING	OR STANDPIPE
-1	_			0	264.48											
1 CLAV, sity, some send, face gravel, very with the disconce (ThL) 2 05 2 0 1 1 1 4 1 1 1 1 5 1 1 1 1 6 1 1 1 1 7 1 1 1 1 8 1 1 1 1			SAND and GRAVEL, some silt, brown,		0.06	1	GS									
-2 -3 -3 -3 -3 -3 -0 -3 -3 -4 -4 -5 -5 -5 -7 0 -3 -4 -5 -6 -5 -3 -6 -7 <t< td=""><td>-</td><td></td><td>CLAY, silty, some sand, trace gravel, very</td><td></td><td></td><td></td><td>GS</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	-		CLAY, silty, some sand, trace gravel, very				GS									
3 Image: Construct and Source Construction of POREHOLE AT 3.66m. 4 Image: Construction of POREHOLE AT 3.66m. 9 8 1 Image: Construction of POREHOLE AT 3.66m. 1 Image: Construction of POREHOLE AT 3.66m. 200.00 3.36 1 Image: Construction of POREHOLE AT 3.66m. 200.00 3.36 1 Image: Construction of POREHOLE AT 3.66m. 200.00 3.36 1 Image: Construction of POREHOLE AT 3.66m. 200.00 3.36 1 Image: Construction of POREHOLE AT 3.66m. 200.00 3.36 1 Image: Construction of POREHOLE AT 3.66m. 200.00 3.36 1 Image: Construction of POREHOLE AT 3.66m. 1 Image: Construc	- 1		stiff to hard, brown: (TILL)	6		3	ss	19			0					
3 Image: Construct and Source Construction of POREHOLE AT 3.66m. 4 Image: Construction of POREHOLE AT 3.66m. 9 8 1 Image: Construction of POREHOLE AT 3.66m. 1 Image: Construction of POREHOLE AT 3.66m. 200.00 3.36 1 Image: Construction of POREHOLE AT 3.66m. 200.00 3.36 1 Image: Construction of POREHOLE AT 3.66m. 200.00 3.36 1 Image: Construction of POREHOLE AT 3.66m. 200.00 3.36 1 Image: Construction of POREHOLE AT 3.66m. 200.00 3.36 1 Image: Construction of POREHOLE AT 3.66m. 200.00 3.36 1 Image: Construction of POREHOLE AT 3.66m. 1 Image: Construc		em Augers		0		4	ss	31			0			>>		
-3	-2	Solid St		8												
4 6 58 32 20.82 3.86 3.86 3.86 3.86 6 8 1 BENTONTE, ASPHALT AT SURFACE.	-			P		5	ss	37			0			>>		
-4 END OF BOREHOLE AT 3.66 3.66 DORHOLE AT 3.66 DORHOLE AT 3.66 ODMENTION TE ASPHALT AT SURFACE. -5 -6 -7 -8	- 3					6	ss	32			0			>>		
BOREHOLE BACKFILLED WITH BENTONITE, ASPHALT AT SURFACE. -5 -6 -7 -8			BOREHOLE OPEN AND DRY UPON													
	-4		BOREHOLE BACKFILLED WITH BENTONITE, ASPHALT AT SURFACE.													
	-															
	- 5															
	-6															
	- 7															
9 GROUNDWATER ELEVATIONS ↓ WATER LEVEL UPON COMPLETION ↓ WATER LEVEL IN WELL/PIEZOMETER LOGGED : GS CHECKED : KF	-8															
9 Image: Sector of the se																
GROUNDWATER ELEVATIONS	- 9															
GROUNDWATER ELEVATIONS	0.000															
Y ✓ WATER LEVEL UPON COMPLETION ✓ WATER LEVEL IN WELL/PIEZOMETER LOGGED :: GS Image: CHECKED :: KF THURBE							1		I	1	<u>I</u>	I	1			
			$\overline{\mathcal{Y}}$ water level upon co	OMPI		I	7	L v	VATER LEVEL IN WELL/PIEZO	DMETE						THURBER

				F	REC	O	RC) (OF BOREHOLE	20-03		
	ROJE				torio						Project I	No. 27855
	DCA ⁻ TAR ⁻		•	on, Or	itario						SHEET	2 OF 2
C	OMP	PLE	TED : September 2, 2020				I	۷4	861 057.7 E 600 699.3		DATUM	Geodetic
щ	Ģ		SOIL PROFILE		-	SA	MPL	ES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - ● Q - X rem V - ● Cpen ▲	чõ	
DEPTH SCALE (metres)	RORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	40 80 120 160 40 80 120 160 WATER CONTENT, PERCENT wp	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
- 11 - 12 - 13 - 13 - 14 - 15 - 16 - 17 - 18			END OF BOREHOLE AT 11.28m. Piezometer installation consists of 50mm diameter Schedule 40 PVC pipe with a 3.05m slotted screen. WATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m) Sep 04/20 Dy - Oct 02/20 5.25 252.70		246.67 11.28		SS				>>	
- 19 - 19 - 19 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10			GROUNDWATER ELE						ATER LEVEL IN WELL/PIEZ	OMETER LOGGED : GS CHECKED : KF		THURBER

			F	REC	0	RE) (OF BOREHOLE	20-	04						
	ROJEC		n Or	otario										Ρ	roject N	lo. 27855
ST	ARTE		n, Oi	Itano		I	N 4	861 169.5 E 601 060.3							HEET 1 ATUM	I OF 1 Geodetic
щ	8	SOIL PROFILE			SA	MPL	ES	COMMENTS		SHEA	AR ST at V -		H: Cu, KF Q - X Cpen ▲	a	. ت	
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT		40 	8 ER CC	0 1 L DNTENT	20 16	50 NT /I	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
		GROUND SURFACE ASPHALT (50mm)	/	262.88					0	_						
-		SAND and GRAVEL, trace to some silt, brown, moist: (FILL)			2	GS GS										
- 1		CLAY, silty, some sand, trace gravel, stiff, brown		262.12 0.76		ss	12						0			
- -	Solid Stem Augers	CLAY, silty, some sand, trace gravel, very stiff, brown: (TILL)		261.44 1.45		SS	17					0		>>,		
-2	Solid St		0													
- - 3			0		5	SS	27				0			>>,		
			0	259.23	6	SS	29				C	þ		>>,		
- 4 - -		END OF BOREHOLE AT 3.66m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE, ASPHALT AT SURFACE.		3.66												
- 5																
- - -6																
- 7																
- - - 8																
		GROUNDWATER ELE						I				10005		<u> </u>	<u> </u>	
							- •					LOGGE		GS KF		THURBER

LOCAT START COMP	TION TED PLETED ON UNITED	September 3, 2020 September 3, 2020 SOIL PROFILE DESCRIPTION UND SURFACE HALT (35mm) D and GRAVEL, trace to some silt, e, brown, moist: (FILL) Y, silty, some sand, trace gravel, stiff,	n, On	ELEV. DEPTH (m) 262.32	NUMBER		ES	COMMENTS	4	HEAR S1 nat V - rem V - 40 8		H: Cu, KF Q - X Cpen A	S D Pa	HEET 1 ATUM	1 OF 1 Geodetic
DEPTH SCALE (metres) BORING METHOD	CLAN	September 3, 2020 September 3, 2020 SOIL PROFILE DESCRIPTION UND SURFACE HALT (35mm) D and GRAVEL, trace to some silt, e, brown, moist: (FILL) Y, silty, some sand, trace gravel, stiff,		ELEV. DEPTH (m) 262.32		MPL	ES	COMMENTS	4	HEAR S1 nat V - rem V - 40 8	RENGTI ● 0 11	H: Cu, KF Q - X Cpen A	D	ATUM	Geodetic
DEPTH SCALE (metres) BORING METHOD	PLETED	: September 3, 2020 SOIL PROFILE DESCRIPTION UND SURFACE HALT (35mm) D and GRAVEL, trace to some silt, e, brown, moist: (FILL) Y, silty, some sand, trace gravel, stiff,	STRATA PLOT	DEPTH (m) 262.32		MPL	ES	COMMENTS	4	HEAR S1 nat V - rem V - 40 8	RENGT	H: Cu, KF Q - X Cpen ▲	D	ATUM	Geodetic
	LOCATION III Columbitive Values operated as a set of the set of th														
- - - - - - - - - -	ASPH SANI loose	HALT (35mm) D and GRAVEL, trace to some silt, e, brown, moist: (FILL) Y, silty, some sand, trace gravel, stiff,	/				BLO	\geq	- v	/p	L DNTENT, O ^W	I III , PERCEN	NT I	ADDITIO LAB. TESI	OR STANDPIPE
- 1	SANI loose CLAY brown	D and GRAVEL, trace to some silt, b, brown, moist: (FILL) Y, silty, some sand, trace gravel, stiff,	΄	0.04	1	<u> </u>									
- 1	browi			261.56											
	CLAY			0.76	3	SS	11	Grain Size Analysis: Gr 0%/ Sa 11%/ Si 46%/ Cl 43%			p		⊣ »,		
Stern Augers	stiff to	Y, silty, some sand, trace gravel, very o hard, brown: (TILL)				SS	17			0			>>,		
- Solid			10/1		5	SS	29			0			>>,		
- 3 - 3															
			P	050.00	6	SS	50			0			>>		
-4	BOR COM BOR	EHOLE OPEN AND DRY UPON IPLETION. EHOLE BACKFILLED WITH													
- 5															
- - -6															
- - 7 -															
- - -8															
:L-27855.GPJ 1.															
THURBER2S TEL-27855.GPJ 12/1/20						Ţ	<u> </u>	/ATER LEVEL IN WELL/PIEZO	DMETE	R	IOGGEI	<u>ה י</u>	00		

				REC	O	RD) (OF BOREHOLE 2	20-06	3				
	ROJE	,		ntaria								Pr	roject N	lo. 27855
ST	FART	ED : September 3, 2020	JII, UI	Intario									HEET 1	
	-	LETED : September 3, 2020						861 640.1 E 601 465.3	s	HEAR STRE	ENGTH: Cu. KF		ATUM	Geodetic
DEPTH SCALE (metres)	BORING METHOD	SOIL PROFILE	Б			MPL	1		- 4	nat V - 🕈 rem V - 🌢 0 80	NGTH: Cu, KF Q - X Cpen ▲ 120 16	60	ADDITIONAL LAB. TESTING	PIEZOMETER
PTH S (metre	NG M	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	ТҮРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT		ATER CONT	I I IENT, PERCEI		DDITIC B. TES	OR STANDPIPE INSTALLATION
DE	BOR		STRA	(m)	Ŋ		BLO	20 40 60 80 100	w 1	p 0 20	⊖ ^w w 30 40		LAI	
		GROUND SURFACE ASPHALT (50mm)	_/ 🔆	257.05		GS			0					
		SAND and GRAVEL, some silt, grey, moist: (FILL)			-				0					
		CLAY, silty, some sand, trace gravel, stiff to very stiff, brown, moist: (TILL)		256.36 0.69		GS								
- 1		to very stiff, brown, moist: (TILL)			3	ss	13			d		>>		
	ş													
ŀ	n Auge			2										
-2	Solid Stem Augers		19		4	SS	20			0		>>		
	Sol													
-			10		5	ss	16			0		>>		
- 3														
			0		6	SS	22			0		>>		
ŀ		END OF BOREHOLE AT 3.66m.		253.39 3.66										
-4		WATER LEVEL AND CAVE AT 2.6m UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE, ASPHALT AT SURFACE.												
		BENTONITE, ASPHALT AT SURFACE.												
-														
- 5														
ľ														
-6														
·														
-														
- 7														
-8														
ŀ														
- 9-79														
12/1/2														
55.GPJ														
THURBER2S TEL-27855.GPJ 12/1/20														
22S TE							,							
URBEF		abla water level upon G	ompi	LETION	l	7	Ľ ₩	ATER LEVEL IN WELL/PIEZO	OMETE			GS KF		
₹														THURBER

PHOLET: Columbia Way EA Prejust No. 22805 SHEFT: Statute 3, 3203 SHEFT: 0.7 COMMENT: Signer Mer. 3, 2004 N. 4.805.084.2.E.00.160.2.1 DATUM Consort Total Science 7100 Statute 3, 3203 N. 4.805.084.2.E.00.160.2.1 DATUM Consort Total Science 7100 Statute 3, 3203 N. 4.805.084.2.E.00.160.2.1 DATUM Consort Total Science 7100 Statute 3, 3203 COMMENT: Statute 3, 3203 Statute 3, 3203 Total Science 7100 Statute 3, 3203 COMMENT: Statute 3, 3203 Statute 3, 3203 Total Science 7100 Statute 3, 3203 COMMENT: Statute 3, 3203 Statute 3, 3203 Total Science 7100 Statute 3, 3203 Statute 3, 3203 Statute 3, 3203 Statute 3, 3203 Total Science 7100 Statute 3, 3203 Total Science 7100 Statute 3, 3203 Statute 3, 3203<					REC	O	RC) (OF BOREHOLE 2	20-0	7				
STATE September 3, 2020 Sett 1072 COMPLETED Sequences 3, 2020 N 4 801 884 2 E 601 602.1 DESCREPTION 100 000000000000000000000000000000000			-											Project I	No. 27855
CONFERENCE : September 3, 2020 N 4 861 884.2 E 601 602.1 COMMENTS Outcome contract Outcome contract <td></td> <td></td> <td>-</td> <td>n, O</td> <td>ntario</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>SHEET</td> <td>1 OF 2</td>			-	n, O	ntario									SHEET	1 OF 2
State State <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>۷4</td><td>861 884.2 E 601 602.1</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>							1	۷4	861 884.2 E 601 602.1						
State State Construct Construction State Construction State State <t< td=""><td>щ</td><td>дон</td><td>SOIL PROFILE</td><td></td><td></td><td>SA</td><td>MPL</td><td>ES</td><td>COMMENTS</td><td>5</td><td>HEAR S nat V -</td><td></td><td>H: Cu, KPa Q - X Cnen ▲</td><td>ы Б</td><td></td></t<>	щ	дон	SOIL PROFILE			SA	MPL	ES	COMMENTS	5	HEAR S nat V -		H: Cu, KPa Q - X Cnen ▲	ы Б	
AMPHALT grown mod, Pikl, increased, taxes sit, increase, mod, pikl, increased, taxes gravel, time a static compact between product or bat a static compact between product between product or bat a static compact between prod	DEPTH SCA (metres)	BORING METH	DESCRIPTION	STRATA PLOT	DEPTH	NUMBER	ТҮРЕ	BLOWS/0.3m	\geq	N V	40 /ATER C vp	80 12 L ONTENT, 	20 160 , PERCENT wl	ADDITIONA LAB. TESTIN	OR STANDPIPE
1 And and Carlow Lines and Lines 1 os of a 30x/5 5 6%. 5 & A C 1%. 0 0	-			/					Grain Size Analysis:						
-1 <	·		SAND and GRAVEL, trace silt, brown,	′ 👹	0.05	1	GS		Gr 36%/Sa 56%/ Si & Cl 8%						Well L
1 I	ŀ					2	GS								Protector Set in Concrete
-2 -3 -4 -5 -5 -6 -5 -6 -7 -6 -5 -7 <td< td=""><td>- 1</td><td></td><td>to stiff, brown: (FILL)</td><td></td><td></td><td>3</td><td>SS</td><td>9</td><td></td><td></td><td>0</td><td>þ</td><td></td><td></td><td></td></td<>	- 1		to stiff, brown: (FILL)			3	SS	9			0	þ			
-2 -3 -4 -5 -5 -6 -5 -6 -7 -6 -5 -7 <td< td=""><td>ŀ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	ŀ														
-3 -4 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -6 -5 -7 -7 -5 29 -7 -7 -7 -5 29 -7 <	-2					4	SS	8				0			
-3 -4	ŀ														
-4 -5 -5 -5 -6 -8 10 0<	ł					5	SS	7				0			
-4 Sult, some clay to clayey, trace to some sand, compact to dense, brown, moist, with occasional partings of sity clay 238.71 - - - 0	- 3														
But of some carly to days, trace to some back of some back of some most, with and comparing of sity clay. 24.11 0 -5 Igg group of sity clay. 7 SS 29 0 -6 8 SS 23 0 0 -7 9 SS 37 0 0 0 -8 SAND, sity, very dense, brown, moist 23.14 8.69 0 0 0	ŀ					6	SS	10				0			
But of some carly to days, trace to some back of some back of some most, with and comparing of sity clay. 24.11 0 -5 Igg group of sity clay. 7 SS 29 0 -6 8 SS 23 0 0 -7 9 SS 37 0 0 0 -8 SAND, sity, very dense, brown, moist 23.14 8.69 0 0 0															
-5 Brue good -7 SS 29 -6 -6 -8 -8 -8 -7 -8 0 </td <td>-4</td> <td></td> <td>SILT, some clay to clayey, trace to some sand, compact to dense, brown, moist; with</td> <td>R</td> <td></td>	-4		SILT, some clay to clayey, trace to some sand, compact to dense, brown, moist; with	R											
-6	ŀ	gers	occasional partings of silty clay												
-6	- 5	Stem Au				7	SS	29				0			
-6 -7 -8 -8 -8 -8 0 0 -8 -8 -8 -8 -8 0 0 0 SAND, silty, very dense, brown, moist -234.14 -8 0 0 0 0	-	Solid													
-7 8 SS 23 -8 9 SS 37 SAND, silty, very dense, brown, moist 234.14 8.69	[Bentonite
7 9 SS 37 -8 -3 SAND, silty, very dense, brown, moist -234.14 8.69	-														
-8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -	ŀ					8	SS	23				0			
SAND, silty, very dense, brown, moist 234.14 8.69	- 7														
SAND, silty, very dense, brown, moist 234.14 8.69	ŀ														
SAND, silty, very dense, brown, moist 234.14 8.69	-							27							
SAND, silty, very dense, brown, moist 8.69	-8					9	33	51							-
	•														
GROUNDWATER ELEVATIONS	8 - 9		SAND, silty, very dense, brown, moist		8.69										
GROUNDWATER ELEVATIONS	PJ 12/1					10	SS	88/	Grain Size Analysis:						
GROUNDWATER ELEVATIONS	27855.G					╞		u.27	Gi U /ur Ga / 3 /0/ Gi 24 /0/ Gi 1 //						
WATER LEVEL UPON COMPLETION VATER LEVEL IN WELL/PIEZOMETER LOGGED : GS October 2, 2020 CHECKED : KF THURBER			GROUNDWATER ELE	U VA		L	<u> </u>								
Ctober 2, 2020 CHECKED : KF THURBER	RBER2(1			ОМЕТЕ	R	LOGGEI	D : GS		
	INH							С	october 2, 2020			CHECKE	ED : KF		THURBER

13 50 DECRM FLAT 5 0 2 <th2< th=""> 2 2 <th2< th=""> <th< th=""><th></th><th></th><th></th><th></th><th>REC</th><th>0</th><th>RD</th><th>) (</th><th>F BOREHOLE 2</th><th>0-07</th><th></th><th></th></th<></th2<></th2<>					REC	0	RD) (F BOREHOLE 2	0-07		
STATED ::::::::::::::::::::::::::::::::::::				on Oi	ntario						Project N	No. 27855
SOL PROFILE SAMPLES COMMENTS Served served for the determinant of the de			D : September 3, 2020	011, O1	Intario						SHEET	2 OF 2
0.5 million	CC	1									DATUM	Geodetic
Image: state of the s	ALE	HOD	SOIL PROFILE			SA	MPL		COMMENTS	nat V - ● Q - X rem V - ● Cpen ▲	RGAL	
Image: second	TH SC/ metres)	NG MET	DESCRIPTION	A PLO		ABER	PE	/S/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	WATER CONTENT, PERCENT	DITION . TESTI	OR STANDPIPE
11 Image: set of the) DEP	BORIN		STRAT		NUN	L L	BLOW	20 40 60 80 100		ADI LAB	INSTALLATION
11 Image: state stat	-		SILT, sandy, trace clay, very dense, brown, moist		10.00							
12 85 66 0 Flare Sland 12 85 66 0 0 Slotted 13 0 0 0 0 Slotted Slotted 14 0 0 0 0 Slotted Slotted 15 0 0 0 0 0 Slotted 16 0 0 13 0 0 0 0 18 0 0 0 0 0 0 0 0												
13 becoming gray, wet 13 85 500 14 becoming gray, wet 227.37 14 85 800 16 FMD OF BOREHOLE AT 15.46m. Precomber installation consists of 50mm 30m alofted screen 227.37 14 85 800 16 VATER LEVEL READINGS: DATE MADE TO 12.34 220.69 226.90 15.46 200 17 Image: Construct of the construction of the const	- 11 -				· · ·	11	SS	81		0		
13 Image: state of the stat		igers										Filter Sand
13 Image: state of the stat	-12	id Stem Au			· · · ·	10						
-16 -27.37 14 SS 867 0 -16 -27.37 14 SS 867 0 -16 -27.37 15.46 -2.20 -17 -3.05m slotted screen. -15.46 -2.20 -17 -18 -12.34 230.49	-	Sol				12	55	20				
END OF BOREHOLE AT 15.46m. 227.37 14 SS 867 Piezometer instalation consists of 50mm diameter Schedule 40 PVC pie with a 3.05m slotted screen. 15.46 0.200 WATER LEVEL READINGS: DATE DEPTH(m) ELEV (m) Sep 04/20 12.34 230.49 14 -17 -18 -18 -18 -18 -18 -18	- 13											
-16 -27.37 14 SS 867 0 -16 -27.37 14 SS 867 0 -16 -27.37 15.46 -2.20 -17 -3.05m slotted screen. -15.46 -2.20 -17 -18 -12.34 230.49	-					13	SS	50/ 0.025				Slotted Screen
-16 -27.37 14 SS 867 0 -16 -27.37 14 SS 867 0 -16 -27.37 15.46 0.200 -16 -27.37 15.46 0.200 -17 -29.09 12.44 230.69 -18 -18 -18 -18	-											
END OF BOREHOLE AT 15.46m. 227.37 14 SS 86/ Piezometer installation consists of 50mm diameter Schedule 40 PVC pie with a 3.05m slotted screen. 15.46 0.200 WATER LEVEL READINGS: DATE WATER LEVEL (m) Sep 0.420 12.34 230.49 17 14 30.5m 14 14 18 1 1 1 1	-		becoming grey, wet									
Piezometer installation consists of 50mm diameter Schedule 40 PVC pipe with a 3.05m slotted screen. -16 WATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m) Sep 04/20 12.14 230.69 Oct 02/20 12.34 230.49	- 13				227.37	14	SS	86/).200		0		
-17 -18	-16		Piezometer installation consists of 50mm diameter Schedule 40 PVC pipe with a		13.40							
			DATE DEPTH(m) ELEV.(m) Sep 04/20 12.14 230.69									
	- 17											
	-											
	- 18											
19 Image: Second State St												
13 GROUNDWATER ELEVATIONS Variable Variable	-											
GROUNDWATER ELEVATIONS												
GROUNDWATER ELEVATIONS												
Image: Section of the section of t	27	<i>,</i> , , , , , , , , , , , , , , , , , ,										
			✓ WATER LEVEL UPON C	OMPI	LETION							THURBER

				REC	0	RC) (OF BOREHOLE	20-0	8						
	OJEC		n, Oi	ntario									Ρ	roject I	No. 27855	
	ARTE	D : September 1, 2020 TED : September 1, 2020				1	N 4	861 923.8 E 601 793.8					D		1 OF 2 Geodetic	
Ш	дон	SOIL PROFILE	_		SA	MPL	ES	COMMENTS		SHEAR S nat V · rem V ·	TRENG	TH: Cu, KF Q - X Cpen ▲		10 L		
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	туре	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100		40 VATER C wp I		120 16	50 NT 1	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION	
- - -		GROUND SURFACE ASPHALT (50mm) SAND and GRAVEL, some silt to silty, compact, brown, moist: (FILL)		228.13 0.05	1	GS			0						Flushmount Well Protector Set in Concrete	V V
- 1		CLAY eithe same could trace group firm		226.72 1.40		ss	16		0							
-2		CLAY, silty, some sand, trace gravel, firm to stiff, dark grey; occasional organic inclusions: (FILL)		× 1.40	3	ss	7			0					Ţ	
- 3		SAND, silty, trace gravel, compact to very loose, black, wet; occasional organic inclusions: (FILL)		225.48 2.64	4	ss	11			o c					Bentonite	
				*	5	SS	2			0						
-4	s	CLAY, silty, some sand, trace gravel, firm, black to grey; occasional organic inclusions (ALLUVIAL)		224.01 4.11												
- 5	Solid Stem Augers				6	ss	6			С	,				Filter Sand	
6																•
- - - 7		SAND, trace to some silt, compact to very		220.96 7.16		SS	6				0				Slotted	
-8		dense, grey, wet			8	ss	28	Grain Size Analysis: Gr 0%/ Sa 91%/ Si 5%/ Cl 4%			o					
- - - - - 9																
					9	SS	43			0						
		GROUNDWATER ELE	VA	I TIONS	L											
		\overline{Y} water level upon co				<u> </u>		VATER LEVEL IN WELL/PIE2 october 2, 2020	ZOMETI	ER	LOGGE CHECK		GS KF		THURBE	ER


				F	REC	0	RE) (OF BOREHOLE 2	20-08		
		JEC ⁻ ATIC	,	n, Or	ntario						Project N	lo. 27855
s	TA	RTE		,			ı	N 4	861 923.8 E 601 793.8		SHEET 2 DATUM	2 OF 2 Geodetic
щ		QО	SOIL PROFILE			SA	MPL	ES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - ● Q - X rem V - ● Cpen ▲	ц С Г	
DEPTH SCALE (metres)	(BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100 1 1 1 1	40 10 10 160 4 1 1 160 160 WATER CONTENT, PERCENT wp www.mw www.mw 10 20 30 40 10 20 30 40 10 <t< td=""><td>ADDITIONAL LAB. TESTING</td><td>PIEZOMETER OR STANDPIPE INSTALLATION</td></t<>	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
- 11 - 11 - 12 - 12 - 13 - 13	Lilov.		END OF BOREHOLE AT 12.57m. Piezometer installation consists of 50mm diameter Schedule 40 PVC pipe with a 3.05m slotted screen. WATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m) Sep 04/20 2.24 225.89 Oct 02/20 1.96 226.17		215.55 12.57		ss			0		
-14 - - - 15 - - - - 16 - -												
- - 17 -												
- 												
THURBER2S TEL-27855.GPJ 12/1/20												
2S TE							_					
THURBEF			$\overline{\Sigma}$ water level upon CC	OMPL	ETION		7		ATER LEVEL IN WELL/PIEZC ctober 2, 2020	DMETER LOGGED : GS CHECKED : KF		THURBER

				RE	CO	R	\mathbf{O}	OF BOREHOLE	20-0	9				
	ROJE	ECT : Columbia Wa FION : Columbia Wa	-	Ontario								Project I	No. 27855	
	ART		-	Ontario								SHEET	1 OF 1	
cc	OMP	LETED : September 1	, 2020				N 4	862 218.2 E 602 026.8				DATUM	Geodetic	
Ч	ДОН	SOIL PF			S	AMPL	1	COMMENTS	S	HEAR STRENG nat V - 🗣 rem V - ●	GTH: Cu, KPa Q - X Cpen ▲	ZG	DIFTON	
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	J	STRATA PLOT (m) (m) (m) (m)	- =	ТҮРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	ı . W	40 80 ATER CONTEN	120 160	ADDITIONAL LAB. TESTING	PIEZOMI OR STANDI INSTALL	PIPE
В	BOR	GROUND SURFACE		_			BLO	20 40 60 80 100		vp H 0 ^V 10 20	30 40			
		ASPHALT (40mm)	/	247.	_									
		SAND and GRAVEL, trace silt moist: (FILL)		247.		GS			0				Flushmount Well Protector Set in Concrete	× ×
- - 1		CLAY, silty, trace sand, hard,	brown, moist	0.	61 2	ss	84/ 0.175			0			Bentonite	
	gers						0.170							i. i.
-2	Solid Stem Augers				3	ss	92/ 0.175			0				
	Solid				4	ss	84/						Filter Sand	
- 3							0.175			0				
- 3					5	ss	98/ 0.175	5		0				
-													Slotted Screen	
-4		SILT , trace sand, very dense, moist	brown,	243. 4.									Ŧ	
					6	ss	100/ 0.200			а				
- 5		END OF BOREHOLE AT 4.98 Piezometer installation consist diameter Schedule 40 PVC pip 1.52m slotted screen.	8m. Is of 50mm be with a	242. 4.			0.200							
-6		Sep 04/20 Dry	ELEV.(m) -											
		Oct 02/20 4.23	243.70											
- - 7														
- -8														
-														
- 2 - 9														
- 27	_	GROUNDWAT				_	_		_	_	_	_		
		abla water level	UPON CON	<i>I</i> PLETIC	N	Ţ		VATER LEVEL IN WELL/PIE ctober 2, 2020	ZOMETE		ED : GS KED : KF		ТН	URBER

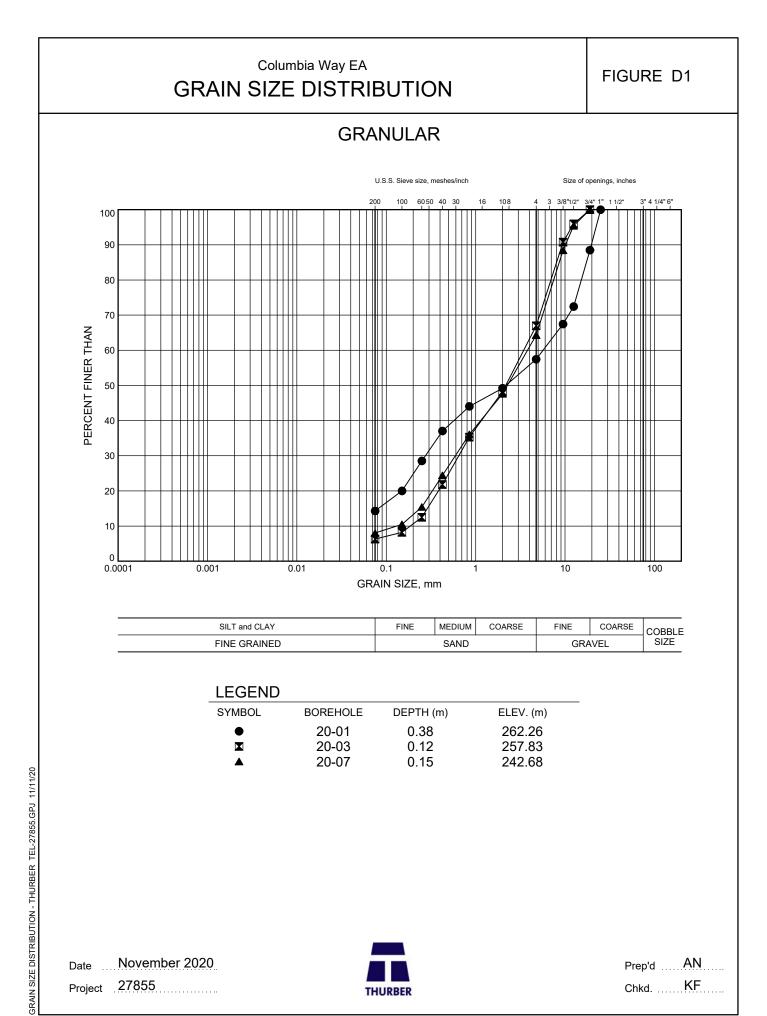
Appendix C

Borehole Location Plans

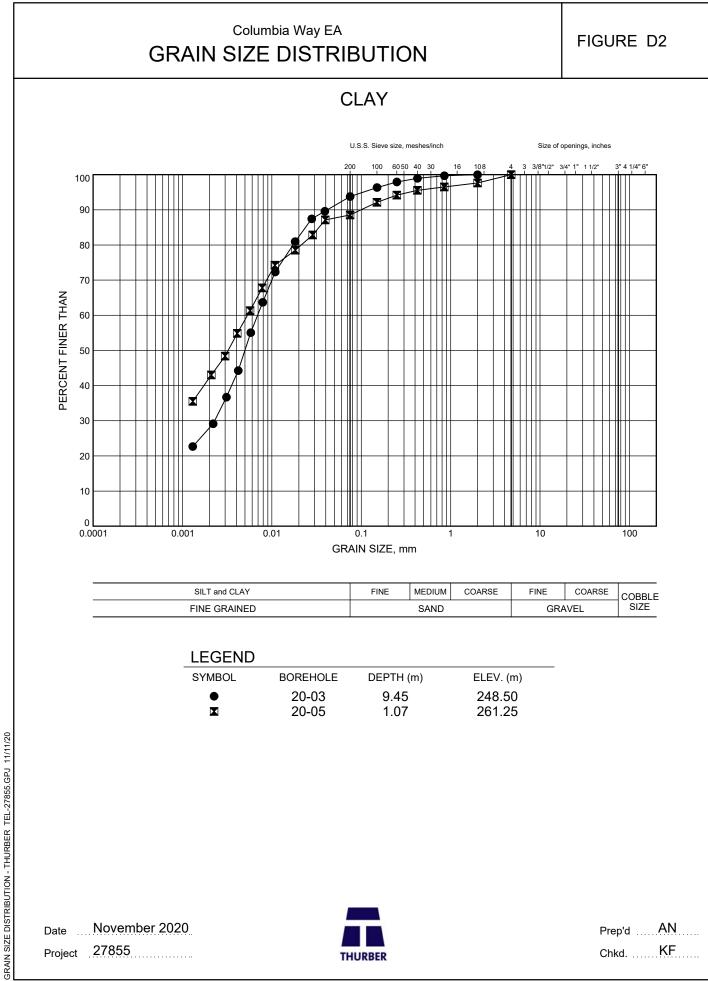
NE	THURBER ENGINEERING LTD.									
	PREPARED :	DRAWN :	APPROVED :							
	KF	BH	MRA							
	DATE :	SCALE :	DRAWING No.							
	NOVEMBER 2020	1:2000	27855-1							

FILENAME: H:\Drafting\27000\27856\TED-27855-BHPL.dv PLOTDATE: Nov 20, 2020 - 8:28 AM

LEGEND	R.V. Anderson Associates Limited
BOREHOLE (BH) LOCATION BOREHOLE (BH) LOCATION WITH MONITORING WELL (MW)	CLASS EA STUDY FOR COLUMBIA WAY BETWEEN HWY 50 & CALEDON-KING TOWNLINE TOWN OF CALEDON, ONTARIO
	0 80 BOREHOLE LOCATION PLAN
	JOB# 27855

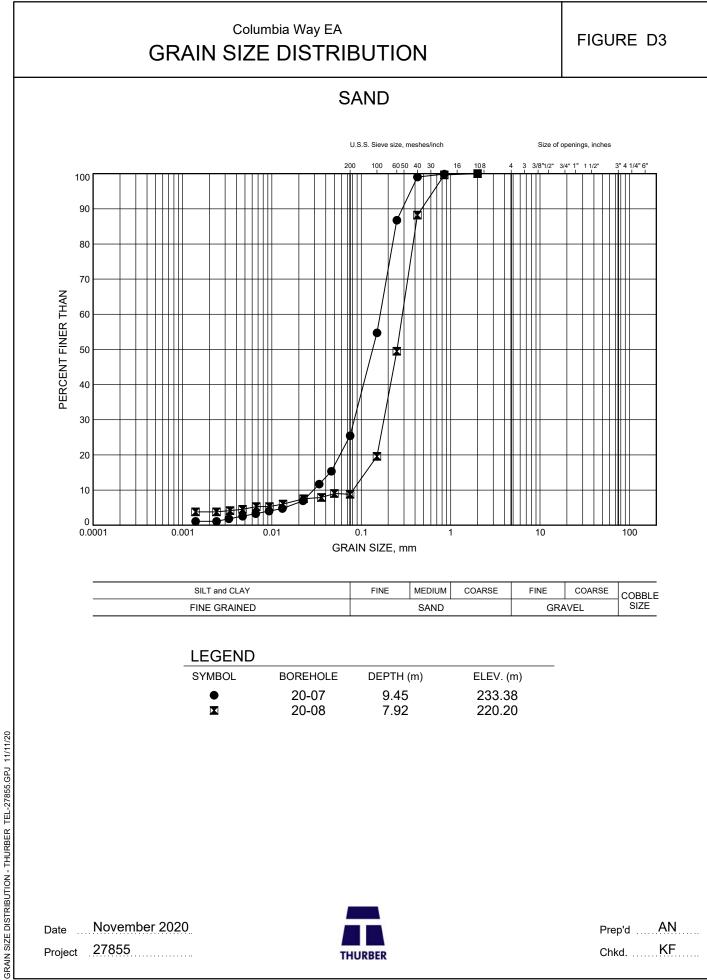

NE	THURBER ENG	INEERING LTD.								
	PREPARED :	DRAWN :	APPROVED :							
	KF	BH	MRA							
	DATE :	SCALE :	DRAWING No.							
	NOVEMBER 2020	1:2000	27855-2							

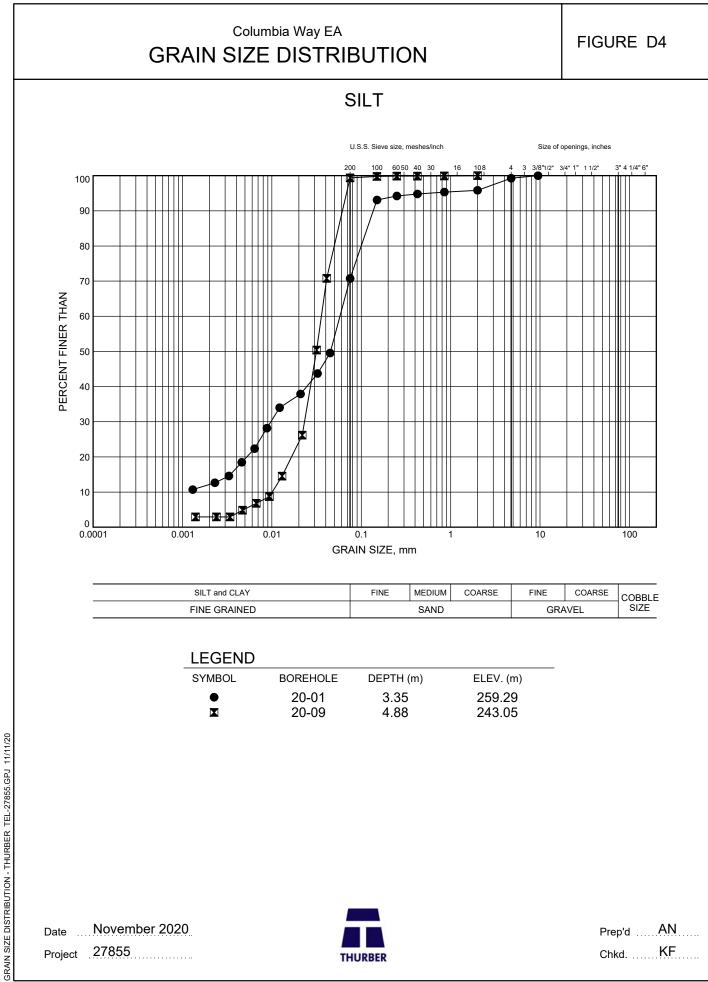
FILENAME: H:\Drafting\27000\27855\TED-27855-BHPL.dw PLOTDATE: Nov 20, 2020 - 8:28 AM

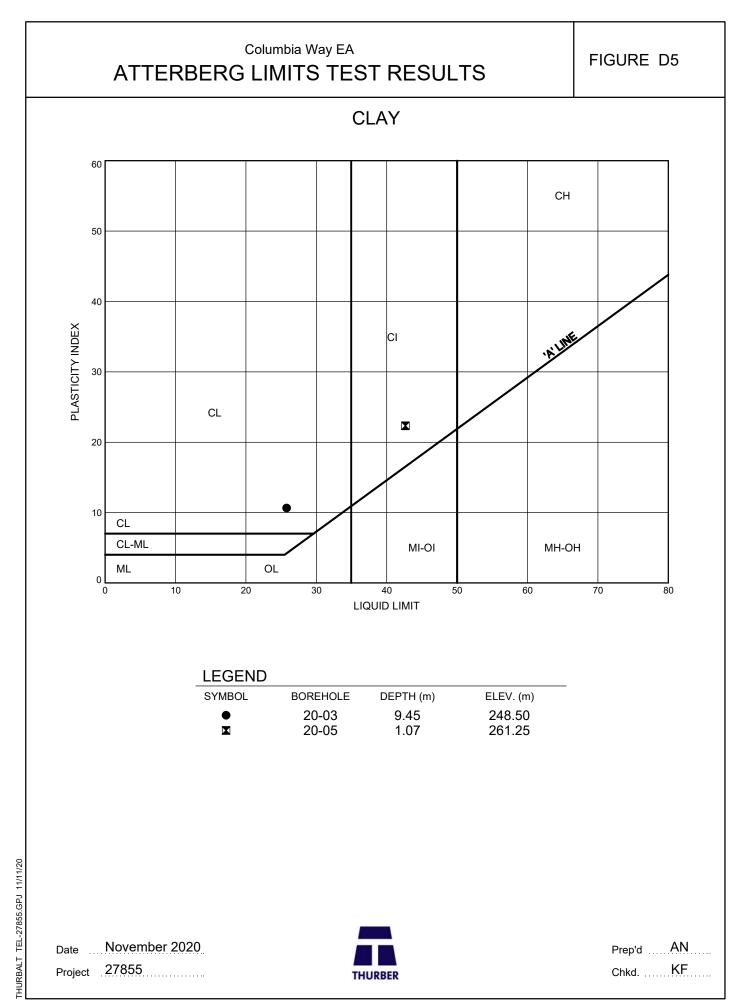


Appendix D

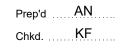
Geotechnical Laboratory Soil Test Results

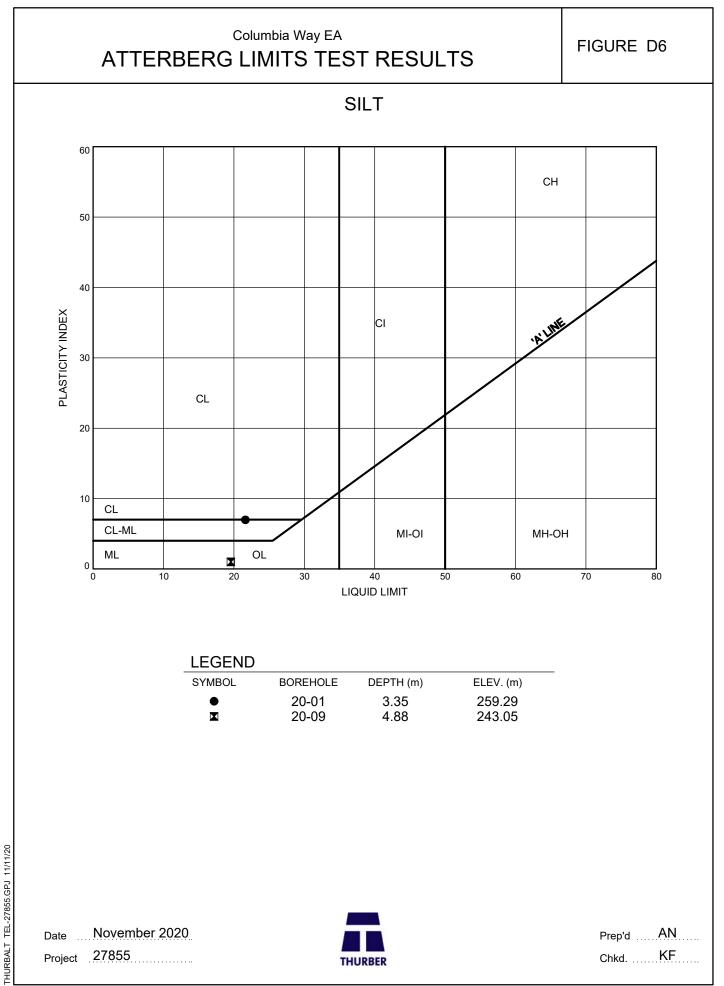



Project 27855



Date November 2020 Project 27855





THURBER

Appendix E

Laboratory Certificates of Analysis – Soil Management

CA14172-SEP20 R1

27855, Columbia Way EA

Prepared for

Thurber Engineering Ltd.

First Page

CLIENT DETAILS		LABORATORY DETAILS	
Client	Thurber Engineering Ltd.	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	103 2010 Winston Park Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Oakville, ON		
	L6H 5R7. Canada		
Contact	Karel Furbacher	Telephone	705-652-2143
Telephone	289-455-7296	Facsimile	705-652-6365
Facsimile		Email	brad.moore@sgs.com
Email	kfurbacher@thurber.ca	SGS Reference	CA14172-SEP20
Project	27855, Columbia Way EA	Received	09/09/2020
Order Number		Approved	09/15/2020
Samples	Soil (5)	Report Number	CA14172-SEP20 R1
		Date Reported	09/25/2020

COMMENTS

CCME Method Compliance: Analyses were conducted using analytical procedures that comply with the Reference Method for the CWS for Petroleum Hydrocarbons in Soil and have been validated for use at the SGS laboratory, Lakefield, ON site.

Quality Compliance: Instrument performance / calibration quality criteria were met and extraction and analysis limits for holding times were met.

nC6 and nC10 response factors within 30% of response factor for toluene: YES

nC10, nC16 and nC34 response factors within 10% of the average response for the three compounds: YES

C50 response factors within 70% of nC10 + nC16 + nC34 average: YES

Linearity is within 15%: YES

F4G - gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons. The results for F4 and F4G are both reported and the greater of the two values is to be used in application to the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

Temperature of Sample upon Receipt: 6 degrees C Cooling Agent Present:Yes Custody Seal Present:Yes

Chain of Custody Number:1

SIGNATORIES

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-6
Exceedance Summary	7
QC Summary	3-13
Legend	. 14
Annexes	. 15

CA14172-SEP20 R1

Client: Thurber Engineering Ltd.

Project: 27855, Columbia Way EA

Project Manager: Karel Furbacher

PACKAGE: REG153 - BTEX (SOIL)		San	nple Number	11	12	14			
			S	ample Name	20-01 SS3	20-03 SS5	20-08 SS7			
1 = REG153 / SOIL / COARSE - TABLE 2 - Residential/Parkland - UNDEFINED				ample Matrix	Soil	Soil	Soil			
2 = REG153 / SOIL / COARSE - TABLE 8 - Re	esidential/Parkland/Industrial - UNDEFI	NED		Sample Date	02/09/2020	02/09/2020	01/09/2020			
Parameter	Units	RL	L1	L2	Result	Result	Result			
TEX										
Benzene	μg/g	0.02	0.21	0.02	< 0.02	< 0.02	< 0.02			
Ethylbenzene	μg/g	0.05	1.1	0.05	< 0.05	< 0.05	< 0.05			
Toluene	μg/g	0.05	2.3	0.2	< 0.05	< 0.05	< 0.05			
Xylene (total)	μg/g	0.05	3.1	0.05	< 0.05	< 0.05	< 0.05			
m/p-xylene	μg/g	0.05			< 0.05	< 0.05	< 0.05			
o-xylene	hð/ð	0.05			< 0.05	< 0.05	< 0.05			
ACKAGE: REG153 - Hydride	es (SOIL)		Sar	nple Number	11	12	13	14	15	
-			s	ample Name	20-01 SS3	20-03 SS5		~~~~~~		
= REG153 / SOIL / COARSE - TABLE 2 - Residential/Parkland - UNDEFINED Sample Matrix					20-01-000	20-03 335	20-05 SS5	20-08 SS7	20-09 SS5	
= REG153 / SOIL / COARSE - TABLE 2 - Re	esidential/Parkland - UNDEFINED			•	Soil	Soil	20-05 SS5 Soil	20-08 SS7 Soil	20-09 SS5 Soil	
		1ED	Si	•						
		NED RL	Si	ample Matrix	Soil	Soil	Soil	Soil	Soil	
= REG153 / SOIL / COARSE - TABLE 8 - Re Parameter	esidential/Parkland/Industrial - UNDEFI		Si	ample Matrix Sample Date	Soil 02/09/2020	Soil 02/09/2020	Soil 03/09/2020	Soil 01/09/2020	Soil 01/09/2020	
= REG153 / SOIL / COARSE - TABLE 8 - Re Parameter	esidential/Parkland/Industrial - UNDEFI		Si	ample Matrix Sample Date	Soil 02/09/2020	Soil 02/09/2020	Soil 03/09/2020	Soil 01/09/2020	Soil 01/09/2020	
e = REG153 / SOIL / COARSE - TABLE 8 - Re Parameter lydrides	esidential/Parkland/Industrial - UNDEFII Units	RL	Sa t L1	ample Matrix Sample Date L2	Soil 02/09/2020 Result	Soil 02/09/2020 Result	Soil 03/09/2020 Result	Soil 01/09/2020 Result	Soil 01/09/2020 Result	

CA14172-SEP20 R1

Client: Thurber Engineering Ltd.

Project: 27855, Columbia Way EA

Project Manager: Karel Furbacher

			0	anla Niumhan	11	12	13	14	15
PACKAGE: REG153 - Metals and Ino	organics		San	nple Number	11	12	13	14	15
(SOIL)									
		S	ample Name	20-01 SS3	20-03 SS5	20-05 SS5	20-08 SS7	20-09 SS5	
L1 = REG153 / SOIL / COARSE - TABLE 2 - Residential/P	arkland - UNDEFINED		S	ample Matrix	Soil	Soil	Soil	Soil	Soil
L2 = REG153 / SOIL / COARSE - TABLE 8 - Residential/P	Parkland/Industrial - UNDEFIN	NED		Sample Date	02/09/2020	02/09/2020	03/09/2020	01/09/2020	01/09/2020
Parameter	Units	RL	L1	L2	Result	Result	Result	Result	Result
Metals and Inorganics									
Moisture Content	%	0.1			21.6	17.3	13.7	20.8	14.8
Barium	hð\ð	0.1	390	220	94	115	106	59	60
Beryllium	hð\ð	0.02	4	2.5	0.82	0.96	0.71	0.21	0.35
Boron	µg/g	1	120	36	4	6	8	4	6
Cadmium	µg/g	0.02	1.2	1.2	0.15	0.13	0.08	0.06	0.06
Chromium	µg/g	0.5	160	70	25	26	22	8.1	14
Cobalt	µg/g	0.01	22	22	10	12	10	3.2	5.2
Copper	µg/g	0.1	140	92	12	26	27	6.3	13
Lead	µg/g	0.1	120	120	11	10	10	3.7	4.4
Molybdenum	µg/g	0.1	6.9	2	0.3	0.3	0.2	0.4	0.3
Nickel	µg/g	0.5	100	82	19	26	23	5.9	11
Silver	µg/g	0.05	20	0.5	0.07	< 0.05	< 0.05	< 0.05	< 0.05
Thallium	hð\ð	0.02	1	1	0.14	0.15	0.15	0.04	0.09
Uranium	µg/g	0.002	23	2.5	0.66	0.46	0.52	0.29	1.1
Vanadium	µg/g	3	86	86	32	36	30	13	21
Zinc	hð\ð	0.7	340	290	91	64	50	19	29
Water Soluble Boron	hð\ð	0.5	1.5	1.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

CA14172-SEP20 R1

Client: Thurber Engineering Ltd.

Project: 27855, Columbia Way EA

Project Manager: Karel Furbacher

			_						
PACKAGE: REG153 - Other (ORP)	(SOIL)		San	mple Number	11	12	13	14	15
			S	ample Name	20-01 SS3	20-03 SS5	20-05 SS5	20-08 SS7	20-09 SS5
= REG153 / SOIL / COARSE - TABLE 2 - Residential/Parkland - UNDEFINED			S	ample Matrix	Soil	Soil	Soil	Soil	Soil
L2 = REG153 / SOIL / COARSE - TABLE 8 - Residentia	2 = REG153 / SOIL / COARSE - TABLE 8 - Residential/Parkland/Industrial - UNDEFINED			Sample Date	02/09/2020	02/09/2020	03/09/2020	01/09/2020	01/09/2020
Parameter	Units	RL	L1	L2	Result	Result	Result	Result	Result
Other (ORP)									
Mercury	ug/g	0.05	0.27	0.27	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Sodium Adsorption Ratio	No unit	0.2	5	5	0.7	0.2	2.6	< 0.2	1.8
SAR Calcium	mg/L	0.09			89.7	32.9	45.8	65.8	46.3
SAR Magnesium	mg/L	0.02			14.0	4.0	13.4	8.7	15.1
SAR Sodium	mg/L	0.15			27.7	5.4	78.1	4.4	55.1
Conductivity	mS/cm	0.002	0.7	0.7	0.80	0.21	0.75	0.41	0.66
рН	pH Units	0.05			7.03	7.70	7.83	7.49	7.99
Chromium VI	ha\a	0.2	8	0.66	< 0.2	0.2	< 0.2	< 0.2	< 0.2
Free Cyanide	hð\ð	0.05	0.051	0.051	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

CA14172-SEP20 R1

Client: Thurber Engineering Ltd.

Project: 27855, Columbia Way EA

Project Manager: Karel Furbacher

PACKAGE: REG153 - PHCs (SOIL)			San	nple Number	11	12	14
			S	ample Name	20-01 SS3	20-03 SS5	20-08 SS7
1 = REG153 / SOIL / COARSE - TABLE 2 - Residential/Parkland - UNDEFINED			Sr	ample Matrix	Soil	Soil	Soil
L2 = REG153 / SOIL / COARSE - TABLE 8 - Residential/Pa	arkland/Industrial - UNDEFINI	ED	{	Sample Date	02/09/2020	02/09/2020	01/09/2020
Parameter	Units	RL	L1	L2	Result	Result	Result
PHCs							
F1 (C6-C10)	hð\ð	10	55	25	< 10	< 10	< 10
F1-BTEX (C6-C10)	µg/g	10			< 10	< 10	< 10
F2 (C10-C16)	µg/g	10	98	10	< 10	< 10	< 10
F3 (C16-C34)	µg/g	50	300	240	< 50	< 50	< 50
F4 (C34-C50)	µg/g	50	2800	120	< 50	< 50	< 50
Chromatogram returned to baseline at	Yes / No	-			YES	YES	YES
nC50							

EXCEEDANCE SUMMARY

Parameter	Method	Units	Result	REG153 / SOIL / COARSE - TABLE 2 - Residential/Parklan d - UNDEFINED L1	REG153 / SOIL / COARSE - TABLE 8 - Residential/Parkla nd/Industrial - UNDEFINED L2
20-01 SS3					
Conductivity	EPA 6010/SM 2510	mS/cm	0.80	0.7	0.7
20-05 SS5					
Conductivity	EPA 6010/SM 2510	mS/cm	0.75	0.7	0.7

Conductivity

Method: EPA 6010/SM 2510 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover (%	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0179-SEP20	mS/cm	0.002	<0.002	2	10	99	90	110	NA		

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ref	r.
	Reference			Blank	RPD	AC	Spike		ery Limits	Spike	Recove	ry Limits
						(%)	Recovery	(%)	Recovery	(9	%)
							(%)	Low	High	(%)	Low	High
Free Cyanide	SKA5030-SEP20	hð\ð	0.05	<0.05	ND	20	96	80	120	97	75	125

Hexavalent Chromium by SFA

Method: EPA218.6/EPA3060A | Internal ref.: ME-CA-[ENVISKA-LAK-AN-012

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chromium VI	SKA5042-SEP20	ug/g	0.2	<0.2	4	20	92	80	120	90	75	125

Mercury by CVAAS

Method: EPA 7471A/EPA 245 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	latrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury	EMS0054-SEP20	ug/g	0.05	<0.05	ND	20	102	80	120	90	70	130

Metals in aqueous samples - ICP-OES

Method: MOE 4696e01/EPA 6010 | Internal ref.: ME-CA-IENVISPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
SAR Calcium	ESG0041-SEP20	mg/L	0.09	<0.09	1	20	105	80	120	101	70	130
SAR Magnesium	ESG0041-SEP20	mg/L	0.02	<0.02	1	20	103	80	120	104	70	130
SAR Sodium	ESG0041-SEP20	mg/L	0.15	<0.15	1	20	101	80	120	101	70	130

Metals in Soil - Aqua-regia/ICP-MS

Method: EPA 3050/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	icate	LC	S/Spike Blank		Ma	atrix Spike / Ref	
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover (%	•	Spike Recovery		ry Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Silver	EMS0054-SEP20	ug/g	0.05	<0.05	1	20	97	70	130	93	70	130
Arsenic	EMS0054-SEP20	ug/g	0.5	<0.5	0	20	101	70	130	98	70	130
Barium	EMS0054-SEP20	ug/g	0.1	<0.1	5	20	105	70	130	109	70	130
Beryllium	EMS0054-SEP20	ug/g	0.02	<0.02	1	20	95	70	130	112	70	130
Boron	EMS0054-SEP20	ug/g	1	<1	5	20	105	70	130	105	70	130
Cadmium	EMS0054-SEP20	ug/g	0.02	<0.02	4	20	93	70	130	101	70	130
Cobalt	EMS0054-SEP20	ug/g	0.01	<0.01	0	20	96	70	130	104	70	130
Chromium	EMS0054-SEP20	ug/g	0.5	<0.5	0	20	97	70	130	110	70	130
Copper	EMS0054-SEP20	ug/g	0.1	<0.1	8	20	100	70	130	98	70	130
Molybdenum	EMS0054-SEP20	ug/g	0.1	<0.1	10	20	99	70	130	112	70	130
Nickel	EMS0054-SEP20	ug/g	0.5	<0.5	1	20	94	70	130	102	70	130
Lead	EMS0054-SEP20	ug/g	0.1	<0.1	5	20	99	70	130	98	70	130
Antimony	EMS0054-SEP20	ug/g	0.8	<0.8	ND	20	97	70	130	100	70	130
Selenium	EMS0054-SEP20	ug/g	0.7	<0.7	ND	20	103	70	130	104	70	130
Thallium	EMS0054-SEP20	ug/g	0.02	<0.02	4	20	101	70	130	102	70	130
Uranium	EMS0054-SEP20	ug/g	0.002	<0.002	1	20	97	70	130	84	70	130
Vanadium	EMS0054-SEP20	ug/g	3	<3	1	20	96	70	130	111	70	130
Zinc	EMS0054-SEP20	ug/g	0.7	<0.7	1	20	99	70	130	103	70	130

Petroleum Hydrocarbons (F1)

Method: CCME Tier 1 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	latrix Spike / Re	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
F1 (C6-C10)	GCM0183-SEP20	hð\ð	10	<10	ND	30	117	80	120	104	60	140

Petroleum Hydrocarbons (F2-F4)

Method: CCME Tier 1 | Internal ref.: ME-CA-IENVIGC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery	Recover (%	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
F2 (C10-C16)	GCM0186-SEP20	hð\ð	10	<10	ND	30	115	80	120	116	60	140
F3 (C16-C34)	GCM0186-SEP20	µg/g	50	<50	ND	30	115	80	120	116	60	140
F4 (C34-C50)	GCM0186-SEP20	µg/g	50	<50	ND	30	115	80	120	116	60	140

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		Ma	atrix Spike / Re	əf.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ery Limits (%)
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	ARD0028-SEP20	pH Units	0.05		0	20	100	80	120			

Volatile Organics

Method: EPA 5035A/5030B/8260C | Internal ref.: ME-CA-IENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Ma	atrix Spike / Ref	i.
	Reference			Blank	RPD	AC	Spike	Recover (%	•	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Benzene	GCM0183-SEP20	µg/g	0.02	<0.02	ND	50	115	60	130	98	50	140
Ethylbenzene	GCM0183-SEP20	µg/g	0.05	<0.05	ND	50	104	60	130	94	50	140
m/p-xylene	GCM0183-SEP20	µg/g	0.05	<0.05	ND	50	112	60	130	101	50	140
o-xylene	GCM0183-SEP20	µg/g	0.05	<0.05	ND	50	103	60	130	94	50	140
Toluene	GCM0183-SEP20	µg/g	0.05	<0.05	ND	50	109	60	130	96	50	140

Water Soluble Boron

Method: O.Reg. 15 3/04 | Internal ref.: ME-CA-IENVI SPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	latrix Spike / R	əf.
	Reference			Blank	RPD	AC	Spike		ery Limits (%)	Spike Recovery		ery Limits (%)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Water Soluble Boron	ESG0032-SEP20	hð\ð	0.5	<0.5	ND	20	102	80	120	114	70	130

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- $\ensuremath{\textbf{NA}}$ The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

SGS Environment, Health & Safety	- Lakefield: 185 Conces	sion St., La	kefield, ON KC	L 2H0 Phone:	- Lakefield: 185 Concession St., Lakefield, ON KOL 2H0 Phone: 705-652-2000 Fax: 705-652-6365 V		Web: www.sgs.com/environment			Baa 1 .
Received By: Anned Al-N cudalan		Labc Received By (signature):	Laborat signature):	tory Inform	Laboratory Information Section - Lab use only Received By (signature):	b use only	アイ			
Received Date (mm/dd/yy): 09/09/09/00	55	Custody Seal Present: Custody Seal Intact:	Present:		Cooling Ag Temperatu	Cooling Agent Present: \square Temperature Upon Receipt (°C) \measuredangle	at of o	LAB LIMS #:	15# CA-14172	H2-Sep20
REPORT INFORMATION	OANI	INVOICE INFORMATION	RMATION	C		C	PROJECT INFORMATION	FORMATION		
Company: Thurber Engineering Ltd.	(same as Report Information)	rt Informat	lion)		Quotation #:		P.O. #:			
Contact: Karel Furbacher	Company:	100 March 100 Ma			Project #: 27855	and the second second	Site Location/ID:	ID: Columbia Way EA	Vay EA	
Address: 103-2010 Winston Park Drive	Contact:	1 - There is a	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			л	TURNAROUND TIME (TAT) REQUIRED	E (TAT) REQUIR	ËD	
	Address:				Regular TAT (5-7days)	T (5-7days)	TAT's are quot Samples receiv	ed in business days ed after 6pm or on v	TAT's are quoted in business days (exclude statutory holidays & weekends). Samples received after 6pm or on weekends: TAT begins next business day	lidays & weekends). s next business day
Phone: 289-455-7296		1. 19 A.		1 F 40	RUSH TAT (Additional Charges May Apply):	al Charges May Ap	ply): 1 Day	2 Days	3 Days 🗌 4 Days	The star and
Email: kfurbacher@thurber.ca	Phone:				PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION	RUSH FEASIBILITY	WITH SGS REPR	ESENTATIVE PR	RIOR TO SUBMISS	SION
Email:	Email:				Specify Due Date:		Rush Confirmation ID:	ation ID:		
REG	REGULATIONS				NOTE: [DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED WITH SGS DRINKING WATER CHAIN OF CUSTODY	KING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTIC SUBMITTED WITH SGS DRINKING WATER CHAIN OF CUSTODY	LES FOR HUMA	N OF CUSTODY	I MUST BE
Regulation 153/04:	Other Regulations:		Sewei	Sewer By-Law:	and the second second second	ANALYSIS	ANALYSIS REQUESTED			
R/P/I Soil Te	Reg 347/558 (3 Day min TAT)	Day min TA		Sanitary	ıll) 🗌			у		
Table 3.1 RPI 0. Reg. 406/19		Other:	Municipality:	pality:	cs SVOC(Ignit.	SISTIVI		
RECORD OF SITE CONDITION (RSC)	VES VNO				orgar	TEX	BN [y/R		
SAMPLE IDENTIFICATION	DATE SAMPLED S	TIME SAMPLED	# OF BOTTLES	MATRIX	Field Filtered Metals & Inc PAH ABM PCB Total	PHC F1-F4[BTEX BT VOC B Pesticides (TCLP M&I	B(a)P Al Water Pkg Sewer Use:	Corrosivit		
1 20-01 SS3	9/2/20 9	9:20 A.M.	4	SOIL						
2 20-03 SS5	9/2/20 1	1:30 P.M.	4	SOIL						
3 20-05 SS5	9/3/20 2	2:45 P.M.	2	SOIL						
4 20-08 SS7	9/1/20 1	1:00 P.M.	4	SOIL						
5 20-09 SS5	9/1/20 10	10:00 A.M.	2	SOIL						
6			1. Sec. 1.							
7										
8			P. P. C. W. B.							
9										
10		1. Sec. 14.		*						
11										
12				Strange 1						
Observations/Comments/Special Instructions				allo bar ter						
Sampled By (NAME): Greg Stanhope	Si	Signature:				Date: 09/09/20	N. S. S. S. ANGER	(mm/dd/yy)	Pink Copy - Client	- Client
Relinguished by (NAME): Karel Furbacher	Sig	Signature:	Karel	Digitally Date: 20	Digitally signed by Karel Date: 2020.09.09 11:01:08 -04'00'	Date: 09/09/20	0	(mm/dd/yy)	Yellow & W	Yellow & White Copy - SGS
	A REAL PROPERTY AND A REAL								The second	I I I I I I I I I I I I I I I I I I I

CA14172-SEP20 R1

27855, Columbia Way EA

Prepared for

Thurber Engineering Ltd.

First Page

CLIENT DETAILS		LABORATORY DETAILS	
Client	Thurber Engineering Ltd.	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	103 2010 Winston Park Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Oakville, ON		
	L6H 5R7. Canada		
Contact	Karel Furbacher	Telephone	705-652-2143
Telephone	289-455-7296	Facsimile	705-652-6365
Facsimile		Email	brad.moore@sgs.com
Email	kfurbacher@thurber.ca	SGS Reference	CA14172-SEP20
Project	27855, Columbia Way EA	Received	09/09/2020
Order Number		Approved	09/15/2020
Samples	Soil (5)	Report Number	CA14172-SEP20 R1
		Date Reported	12/03/2020

COMMENTS

CCME Method Compliance: Analyses were conducted using analytical procedures that comply with the Reference Method for the CWS for Petroleum Hydrocarbons in Soil and have been validated for use at the SGS laboratory, Lakefield, ON site.

Quality Compliance: Instrument performance / calibration quality criteria were met and extraction and analysis limits for holding times were met.

nC6 and nC10 response factors within 30% of response factor for toluene: YES

nC10, nC16 and nC34 response factors within 10% of the average response for the three compounds: YES

C50 response factors within 70% of nC10 + nC16 + nC34 average: YES

Linearity is within 15%: YES

F4G - gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons. The results for F4 and F4G are both reported and the greater of the two values is to be used in application to the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

Temperature of Sample upon Receipt: 6 degrees C Cooling Agent Present:Yes Custody Seal Present:Yes

Chain of Custody Number:1

SIGNATORIES

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-6
Exceedance Summary	7
QC Summary	8-13
Legend	14
Annexes	15

Client: Thurber Engineering Ltd.

Project: 27855, Columbia Way EA

Project Manager: Karel Furbacher

Samplers: Greg Stanhope

			Sec	mala Numbar	11	12	14			
PACKAGE: REG406 - BTEX (SOIL)				mple Number						
			S	ample Name	20-01 SS3	20-03 SS5	20-08 SS7			
.1 = REG406 / SOIL / Appendix 1 Table 1 - Residential/Parkland/Institutional/Industrial/Commercial/Community			s	ample Matrix	Soil	Soil	Soil			
.2 = REG406 / SOIL / Appendix 1 Table 2.1 - Residential/Parkla		EFINED		Sample Date	02/09/2020	02/09/2020	01/09/2020			
Parameter	Units	RL	L1	L2	Result	Result	Result			
TEX										
Benzene	µg/g	0.02	0.02	0.02	< 0.02	< 0.02	< 0.02			
Ethylbenzene	µg/g	0.05	0.05	0.05	< 0.05	< 0.05	< 0.05			
Toluene	µg/g	0.05	0.2	0.2	< 0.05	< 0.05	< 0.05			
Xylene (total)	µg/g	0.05	0.05	0.091	< 0.05	< 0.05	< 0.05			
m/p-xylene	µg/g	0.05			< 0.05	< 0.05	< 0.05			
o-xylene	µg/g	0.05			< 0.05	< 0.05	< 0.05			
			Sa	mple Number	11	12	13	14	15	
PACKAGE: REG406 - Hydrides (SOIL)				-						
				ample Name	20-01 SS3	20-03 SS5	20-05 SS5	20-08 SS7	20-09 SS5	
.1 = REG406 / SOIL / Appendix 1 Table 1 - Residential/Parkland/Institutional/Industrial/Commercial/Community			s	ample Matrix	Soil	Soil	Soil	Soil	Soil	
2 = REG406 / SOIL / Appendix 1 Table 2.1 - Residential/Parkla		EFINED		Sample Date	02/09/2020	02/09/2020	03/09/2020	01/09/2020	01/09/2020	
Parameter	Units	RL	L1	L2	Result	Result	Result	Result	Result	
Hydrides										
Antimony	µg/g	0.8	1.3	7.5	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	
Arsenic	µg/g	0.5	18	18	1.9	3.7	3.2	1.8	2.0	
Selenium	µg/g	0.7	1.5	2.4	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	

Client: Thurber Engineering Ltd.

Project: 27855, Columbia Way EA

Project Manager: Karel Furbacher

									Samplers: Greg Stanhope	
PACKAGE: REG406 - Metals and I	norganics		Sa	nple Number	11	12	13	14	15	
(SOIL)			s	ample Name	20-01 SS3	20-03 SS5	20-05 SS5	20-08 SS7	20-09 SS5	
L1 = REG406 / SOIL / Appendix 1 Table 1 - Residential/Parkland/Institutional/Industrial/Commercial	I/Community - UNDEFINED		S	ample Matrix	Soil	Soil	Soil	Soil	Soil	
L2 = REG406 / SOIL / Appendix 1 Table 2.1 - Reside	ential/Parkland/Industrial - UND	EFINED		Sample Date	02/09/2020	02/09/2020	03/09/2020	01/09/2020	01/09/2020	
Parameter	Units	RL	L1	L2	Result	Result	Result	Result	Result	
Metals and Inorganics										
Moisture Content	%	0.1			21.6	17.3	13.7	20.8	14.8	
Barium	µg/g	0.1	220	390	94	115	106	59	60	
Beryllium	hð\ð	0.02	2.5	4	0.82	0.96	0.71	0.21	0.35	
Boron	hð\ð	1	36	120	4	6	8	4	6	
Cadmium	hð\ð	0.02	1.2	1.2	0.15	0.13	0.08	0.06	0.06	
Chromium	hð\ð	0.5	70	160	25	26	22	8.1	14	
Cobalt	hð\ð	0.01	21	22	10	12	10	3.2	5.2	
Copper	hð\ð	0.1	92	140	12	26	27	6.3	13	
Lead	hð\ð	0.1	120	120	11	10	10	3.7	4.4	
Molybdenum	hð\ð	0.1	2	6.9	0.3	0.3	0.2	0.4	0.3	
Nickel	hð\ð	0.5	82	100	19	26	23	5.9	11	
Silver	hð\ð	0.05	0.5	20	0.07	< 0.05	< 0.05	< 0.05	< 0.05	
Thallium	hð\ð	0.02	1	1	0.14	0.15	0.15	0.04	0.09	
Uranium	hð\ð	0.002	2.5	23	0.66	0.46	0.52	0.29	1.1	
Vanadium	hð\ð	3	86	86	32	36	30	13	21	
Zinc	hð\ð	0.7	290	340	91	64	50	19	29	
Water Soluble Boron	hð\ð	0.5		1.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	

Client: Thurber Engineering Ltd.

Project: 27855, Columbia Way EA

Project Manager: Karel Furbacher

Samplers: Greg Stanhope

PACKAGE: REG406 - Other (ORP) (S	SOIL)		Sar	nple Number	11	12	13	14	15
			s	ample Name	20-01 SS3	20-03 SS5	20-05 SS5	20-08 SS7	20-09 SS5
1 = REG406 / SOIL / Appendix 1 Table 1 -			S	ample Matrix	Soil	Soil	Soil	Soil	Soil
Residential/Parkland/Institutional/Industrial/Commercial/Con	mmunity - UNDEFINED								
L2 = REG406 / SOIL / Appendix 1 Table 2.1 - Residentia	al/Parkland/Industrial - UNDE	EFINED		Sample Date	02/09/2020	02/09/2020	03/09/2020	01/09/2020	01/09/2020
Parameter	Units	RL	L1	L2	Result	Result	Result	Result	Result
Other (ORP)									
Mercury	ug/g	0.05	0.27	0.27	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Sodium Adsorption Ratio	No unit	0.2	2.4	5	0.7	0.2	2.6	< 0.2	1.8
SAR Calcium	mg/L	0.09			89.7	32.9	45.8	65.8	46.3
SAR Magnesium	mg/L	0.02			14.0	4.0	13.4	8.7	15.1
SAR Sodium	mg/L	0.15			27.7	5.4	78.1	4.4	55.1
Conductivity	mS/cm	0.002	0.57	0.7	0.80	0.21	0.75	0.41	0.66
рН	pH Units	0.05			7.03	7.70	7.83	7.49	7.99
Chromium VI	hð\ð	0.2	0.66	8	< 0.2	0.2	< 0.2	< 0.2	< 0.2
Free Cyanide	hð/ð	0.05	0.051	0.051	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

Client: Thurber Engineering Ltd.

Project: 27855, Columbia Way EA

Project Manager: Karel Furbacher

Samplers: Greg Stanhope

ACKAGE: REG406 - PHCs (SOIL)			Sar	mple Number	11	12	14
			s	Sample Name	20-01 SS3	20-03 SS5	20-08 SS7
= REG406 / SOIL / Appendix 1 Table 1 -			s	ample Matrix	Soil	Soil	Soil
esidential/Parkland/Institutional/Industrial/Commercial/Com	munity - UNDEFINED						
2 = REG406 / SOIL / Appendix 1 Table 2.1 - Residential/	Parkland/Industrial - UNDE	FINED		Sample Date	02/09/2020	02/09/2020	01/09/2020
Parameter	Units	RL	L1	L2	Result	Result	Result
PHCs							
F1 (C6-C10)	hð\ð	10	25	25	< 10	< 10	< 10
F1-BTEX (C6-C10)	hð\ð	10			< 10	< 10	< 10
F2 (C10-C16)	hð\ð	10	10	10	< 10	< 10	< 10
F3 (C16-C34)	hð\ð	50	240	240	< 50	< 50	< 50
F4 (C34-C50)	hð\ð	50	120	2800	< 50	< 50	< 50
Chromatogram returned to baseline at	Yes / No	-			YES	YES	YES
nC50							

EXCEEDANCE SUMMARY

				REG406 / SOIL /	REG406 / SOIL / -
				Appendix 1 Table 1	Appendix 1 Table
				-	2.1 -
				Residential/Parklan	Residential/Parkl
				d/Institutional/Indus	nd/Industrial -
				trial/Commercial/C	UNDEFINED
				ommunity -	
				UNDEFINED	
Parameter	Method	Units	Result	L1	L2
01 SS3					
Conductivity	EPA 6010/SM 2510	mS/cm	0.80	0.57	0.7
-05 SS5					
Conductivity	EPA 6010/SM 2510	mS/cm	0.75	0.57	0.7
Sodium Adsorption Ratio	MOE 4696e01/EPA 6010	No unit	2.6	2.4	
-09 SS5					
Conductivity	EPA 6010/SM 2510	mS/cm	0.66	0.57	

Conductivity

Method: EPA 6010/SM 2510 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	CS/Spike Blank		Matrix Spike / Ref.		
	Reference		Blank RPD AC Spike (%) Recovery	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)					
						(%)	(%)	Low	High	(%)	Low	High
Conductivity	EWL0179-SEP20	mS/cm	0.002	<0.002	2	10	99	90	110	NA		

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike		ery Limits	Spike	Recove	ry Limits
						(%)	Recovery	(%)		Recovery	(9	%)
						(70)	(%)	Low	High	(%)	Low	High
Free Cyanide	SKA5030-SEP20	hð\ð	0.05	<0.05	ND	20	96	80	120	97	75	125

Hexavalent Chromium by SFA

Method: EPA218.6/EPA3060A | Internal ref.: ME-CA-[ENVISKA-LAK-AN-012

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		f.
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chromium VI	SKA5042-SEP20	ug/g	0.2	<0.2	4	20	92	80	120	90	75	125

Mercury by CVAAS

Method: EPA 7471A/EPA 245 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.			
	Reference Blank	RPD AC		Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)					
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Mercury	EMS0054-SEP20	ug/g	0.05	<0.05	ND	20	102	80	120	90	70	130	

Metals in aqueous samples - ICP-OES

Method: MOE 4696e01/EPA 6010 | Internal ref.: ME-CA-IENVISPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
SAR Calcium	ESG0041-SEP20	mg/L	0.09	<0.09	1	20	105	80	120	101	70	130
SAR Magnesium	ESG0041-SEP20	mg/L	0.02	<0.02	1	20	103	80	120	104	70	130
SAR Sodium	ESG0041-SEP20	mg/L	0.15	<0.15	1	20	101	80	120	101	70	130

Metals in Soil - Aqua-regia/ICP-MS

Method: EPA 3050/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	icate	LC	S/Spike Blank		Ma	atrix Spike / Re	i.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover (%	-	Spike Recovery		ory Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Silver	EMS0054-SEP20	ug/g	0.05	<0.05	1	20	97	70	130	93	70	130
Arsenic	EMS0054-SEP20	ug/g	0.5	<0.5	0	20	101	70	130	98	70	130
Barium	EMS0054-SEP20	ug/g	0.1	<0.1	5	20	105	70	130	109	70	130
Beryllium	EMS0054-SEP20	ug/g	0.02	<0.02	1	20	95	70	130	112	70	130
Boron	EMS0054-SEP20	ug/g	1	<1	5	20	105	70	130	105	70	130
Cadmium	EMS0054-SEP20	ug/g	0.02	<0.02	4	20	93	70	130	101	70	130
Cobalt	EMS0054-SEP20	ug/g	0.01	<0.01	0	20	96	70	130	104	70	130
Chromium	EMS0054-SEP20	ug/g	0.5	<0.5	0	20	97	70	130	110	70	130
Copper	EMS0054-SEP20	ug/g	0.1	<0.1	8	20	100	70	130	98	70	130
Molybdenum	EMS0054-SEP20	ug/g	0.1	<0.1	10	20	99	70	130	112	70	130
Nickel	EMS0054-SEP20	ug/g	0.5	<0.5	1	20	94	70	130	102	70	130
Lead	EMS0054-SEP20	ug/g	0.1	<0.1	5	20	99	70	130	98	70	130
Antimony	EMS0054-SEP20	ug/g	0.8	<0.8	ND	20	97	70	130	100	70	130
Selenium	EMS0054-SEP20	ug/g	0.7	<0.7	ND	20	103	70	130	104	70	130
Thallium	EMS0054-SEP20	ug/g	0.02	<0.02	4	20	101	70	130	102	70	130
Uranium	EMS0054-SEP20	ug/g	0.002	<0.002	1	20	97	70	130	84	70	130
Vanadium	EMS0054-SEP20	ug/g	3	<3	1	20	96	70	130	111	70	130
Zinc	EMS0054-SEP20	ug/g	0.7	<0.7	1	20	99	70	130	103	70	130

Petroleum Hydrocarbons (F1)

Method: CCME Tier 1 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	latrix Spike / Re	
	Reference			Blank	RPD	AC	Spike		əry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
F1 (C6-C10)	GCM0183-SEP20	hð\ð	10	<10	ND	30	117	80	120	104	60	140

Petroleum Hydrocarbons (F2-F4)

Method: CCME Tier 1 | Internal ref.: ME-CA-IENVIGC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery	Recover (%	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
F2 (C10-C16)	GCM0186-SEP20	hð\ð	10	<10	ND	30	115	80	120	116	60	140
F3 (C16-C34)	GCM0186-SEP20	µg/g	50	<50	ND	30	115	80	120	116	60	140
F4 (C34-C50)	GCM0186-SEP20	µg/g	50	<50	ND	30	115	80	120	116	60	140

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		Ma	atrix Spike / Re	əf.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ery Limits (%)
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	ARD0028-SEP20	pH Units	0.05		0	20	100	80	120			

Volatile Organics

Method: EPA 5035A/5030B/8260C | Internal ref.: ME-CA-IENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recover (%	-	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Benzene	GCM0183-SEP20	µg/g	0.02	<0.02	ND	50	115	60	130	98	50	140
Ethylbenzene	GCM0183-SEP20	µg/g	0.05	<0.05	ND	50	104	60	130	94	50	140
m/p-xylene	GCM0183-SEP20	µg/g	0.05	<0.05	ND	50	112	60	130	101	50	140
o-xylene	GCM0183-SEP20	µg/g	0.05	<0.05	ND	50	103	60	130	94	50	140
Toluene	GCM0183-SEP20	µg/g	0.05	<0.05	ND	50	109	60	130	96	50	140

Water Soluble Boron

Method: O.Reg. 15 3/04 | Internal ref.: ME-CA-IENVI SPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / R	əf.
	Reference			Blank	RPD	AC	Spike	(%)		Spike Recovery		very Limits (%)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Water Soluble Boron	ESG0032-SEP20	hð\ð	0.5	<0.5	ND	20	102	80	120	114	70	130

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

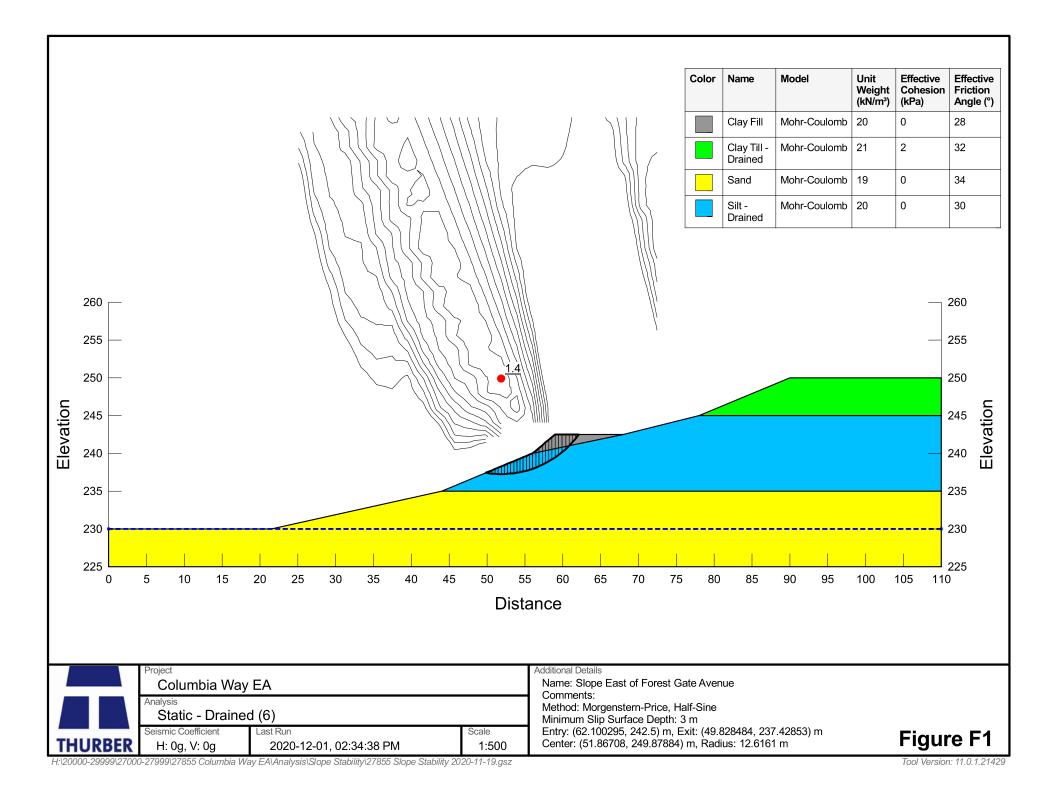
- RL Reporting Limit.
- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- $\ensuremath{\textbf{NA}}$ The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.


-- End of Analytical Report --

SGS Environment, Health & Safety	- Lakefield: 185 Conces	sion St., La	kefield, ON KO	DL 2H0 Phone:	- Lakefield: 185 Concession St., Lakefield, ON KOL 2H0 Phone: 705-652-2000 Fax: 705-652-6365 J		Web: www.sgs.com/environment			B 20 1 of 1
Received By: Anned Al-N cudalan		Labc Received By (signature):	Labora:	tory Inform	Laboratory Information Section - Lab use only Received By (signature):	o use only	フト			
Received Date (mm/dd/yy): 09/09/09/00	55	Custody Seal Present: Custody Seal Intact:	Present:		Cooling Age Temperatur	Cooling Agent Present:	at con	LAB LIMS #:	CAL	UI72-Sep20
REPORT INFORMATION	OANI	INVOICE INFORMATION	RMATION	C		c	PROJECT IN	PROJECT INFORMATION		
Company: Thurber Engineering Ltd.	✓ (same as Report Information)	rt Informat	ion)		Quotation #:		P.O. #:			
Contact: Karel Furbacher	Company:				Project #: 27855		Site Location/ID:	ID: Columbia Way EA	Nay EA	
Address: 103-2010 Winston Park Drive	Contact:	- Alexandre				1	TURNAROUND TIME (TAT) REQUIRED	E (TAT) REQUIR	RED	
	Address:				Regular TAT (5-7days)	Г (5-7days)	TAT's are quot Samples receiv	ed in business days ved after 6pm or on	s (exclude statutor weekends: TAT b	TAT's are quoted in business days (exclude statutory holidays & weekends). Samples received after 6pm or on weekends: TAT begins next business day
Phone: 289-455-7296				1 AU	RUSH TAT (Additional Charges May Apply):	al Charges May Ap	ply): 1 Day	2 Days	3 Days 4 D	4 Days
Email: kfurbacher@thurber.ca	Phone:			N. A.	PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION	RUSH FEASIBILITY	WITH SGS REPF	RESENTATIVE P	RIOR TO SUBN	VISSION
Email:	Email:				Specify Due Date:		Rush Confirmation ID:	nation ID:		
REG	REGULATIONS				NOTE: [DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED WITH SGS DRINKING WATER CHAIN OF CUSTODY	KING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTIC SUBMITTED WITH SGS DRINKING WATER CHAIN OF CUSTODY	IES FOR HUM	IN OF CUSTOD	rion must be Υ
Regulation 153/04:	Other Regulations:		Sewe	Sewer By-Law:	and the second second second	ANALYSIS	ANALYSIS REQUESTED			
R/P/I Soil Te	Reg 347/558 (3 Day min TAT)	Day min TA		Sanitary	ıll) 🗌			y		
Table 3. A/O Medium		Other:	Municipality:	ipality:	cs SVOC(Ignit.	sistivi		
RECORD OF SITE CONDITION (RSC)	VES VNO				orgar	TEX	BN [y/R		
SAMPLE IDENTIFICATION	DATE SAMPLED S	TIME SAMPLED	# OF BOTTLES	MATRIX	Field Filtered Metals & Inc PAH ABM PCB Total	PHC F1-F4[BTEX BT VOC B Pesticides (TCLP M&I	B(a)P Al Water Pkg Sewer Use:	Corrosivit		
1 20-01 SS3	9/2/20 9	9:20 A.M.	4	SOIL						
2 20-03 SS5	9/2/20 1	1:30 P.M.	4	SOIL						
3 20-05 SS5	9/3/20 2	2:45 P.M.	2	SOIL						
4 20-08 SS7	9/1/20 1	1:00 P.M.	4	SOIL						
5 20-09 SS5	9/1/20 10	10:00 A.M.	2	SOIL						And a second
6			1							「「「ない」」、「「ない」」、
7		時代の								
8										
9										
10		1.25		1. A.						
11										
12				Strange 10						
Observations/Comments/Special Instructions				Allo 181 187						
sampled By (NAME): Greg Stanhope	Si	Signature:				Date: 09/09/20		(mm/dd/yy)	Pink C	Pink Copy - Client
Relinguished by (NAME): Karel Furbacher	Sig	Signature:	Karel	Digitally Date: 20	Digitally signed by Karel Date: 2020.09.09 11:01:08 -04'00'	Date: 09/09/20	0	(mm/dd/yy)	Yellow	Yellow & White Copy - SGS
	A REAL PROPERTY AND A REAL								and the second se	

Appendix F

Slope Stability Analysis

