## TOWN OF CALEDON PLANNING RECEIVED

Jul 15, 2020

#### TRAFFIC IMPACT STUDY

PROPOSED SERVICE STATION
10819 HIGHWAY 9
TOWN OF CALEDON,
REGIONAL MUNICIPALITY OF PEEL

PREPARED FOR: LIONS GROUP INC.

#### PREPARED BY:

C.F. CROZIER & ASSOCIATES INC. 2800 HIGH POINT DRIVE, SUITE 100 MILTON, ONTARIO L9T 6P4

**APRIL 2020** 

**CFCA FILE NO. 1651-5095** 

The material in this report reflects best judgment in light of the information available at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. C.F. Crozier & Associates Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.



## TOWN OF CALEDON PLica NING 10819 Highway 9, Town of Caledon

Traffic Impact Study April 2020

| K  | Revision Number Da |      |      | Comments       |
|----|--------------------|------|------|----------------|
| Ju | IR9V50 2020        | Apri | 2020 | 1st Submission |



Juc. 15 Sozie 20 Ciates Inc. (Crozier) was retained by Lions Group Inc. (the client) to prepare a Traffic Impact Study in support of the development application for the proposed service station at 10819 Highway 9 in the Town of Caledon, Regional Municipality of Peel (the site). The purpose of the study is to evaluate the transportation-related impacts of the proposed service station on the boundary road network and to recommend any required mitigation measures, if warranted.

Per the Development Concept Plan prepared by Glen Schnarr and Associates Inc. (updated March 2020), the elements envisioned for the development include:

- The removal of the existing automotive services shop;
- The construction of a gas station with six fueling positions; and
- The construction of a retail store and accessory restaurant with a gross floor area (GFA) of 2,800 square feet.

The development proposes the removal of the portion of the existing westerly access to Highway 9 on the subject property which would result in the westerly access being solely for the adjacent 10795 Highway 9 property. Access to the site is proposed via the existing south approach of the signalized intersection of Highway 9 and Tottenham Road. The existing south approach will be reconfigured to provide auxiliary turn lanes.

The study has been completed in accordance with the Ministry of Transportation of Ontario (MTO)'s "Guidelines for the Preparation of Traffic Impact Studies" (September 2014). The analysis contained within this report includes the intersections of Highway 9 and Tottenham Road.

The 2022, 2027 and 2032 horizon years were analyzed to reflect assumed full build-out and the fiveand ten-year horizons, respectively. Based on calculated growth rates from historical traffic data in the study area, a growth rate of two percent compounded annually was applied to all movements on the boundary road network to forecast 2022, 2027 and 2032 future background traffic volumes.

The proposed service station development is expected to generate approximately 76 and 84 trips in the weekday a.m. and p.m. peak hours, respectively.

The study intersections operate well with a LOS "B" or better under 2019 existing conditions and are forecasted to continue operating with a LOS "C" or better under 2022 through 2032 future background and future total traffic volume conditions.

Under 2032 future background and future total conditions, the eastbound left-turn movement is expected to operate near capacity and the forecasted 95th percentile queue lengths for the southbound left-turn and eastbound left-turn movements are expected to exceed their respective designated storage lengths. These metrics are attributed to background traffic growth over a 13-year horizon at an arterial-to-arterial intersection with heavy traffic volumes.

However, it is noted that the overall intersection delay, eastbound left-turn volume-to-capacity ratio and eastbound left-turn 95<sup>th</sup> percentile queue length are all expected to slightly decrease under future total conditions. This is attributed to the pass-by diversions applied to traffic for the critical eastbound left-turn movement with the build-out of the proposed gas station.

The intersection of Highway 9 and Tottenham Road is still expected to operate at overall satisfactory levels of service. These operations indicate that the addition of site traffic to the intersection is expected to minimally impact traffic operations.

## TOWN OF CALEDON PLica MINING 10819 Highway 9, Town of Caledon

Traffic Impact Study April 2020

Therefore, the proposed development is supportable from a traffic operations perspective.

Sepsitivity spokss of 2032 future background and total conditions with a seasonal adjustment factor to the existing traffic volumes indicates that the addition of site traffic to the road network is still expected to minimally impact traffic operations and that no external roadway improvements are required to accommodate the proposed development.

Analysis of safety components for the proposed development indicate that:

- The development proposal satisfies the MTO's access spacing and density guidelines;
- The proposed site layout provides adequate store length for the outbound (northbound) turn lanes which can accommodate the forecasted outbound 95<sup>th</sup> percentile queue lengths under future total conditions and can accommodate a typical fuel truck exiting the site;
- The proposed site layout is not likely to result in queueing for inbound passenger cars at the site access; and
- There are no expected maneuverability constraints within the site for typica fuel trucks nor delivery trucks.

The analysis undertaken herein was prepared using the most recent Development Concept Plan. Any minor changes to the development proposal will not materially affect the conclusions contained within this report.

In conclusion, the proposed development can be supported from a transportation operations and safety perspective.

## **TOWN OF CALEDON** PLICA NAME OF CONTENTS

| أدما | 1.04 = | Execut     | iye Summary                          | .iii |
|------|--------|------------|--------------------------------------|------|
| Ju   | 2.0    | Introdu    | ZU<br>uction                         | 1    |
| -    |        | 2.1        | Background                           |      |
|      |        | 2.2        | Development Proposal                 |      |
|      |        | 2.3        | Purpose and Scope                    | 1    |
| 3    | 3.0    | Existing   | g Conditions                         | 1    |
|      |        | 3.1        | Development Lands                    |      |
|      |        | 3.2        | Study Intersections                  |      |
|      |        | 3.3        | Boundary Road Network                |      |
|      |        | 3.4        | Traffic Data                         |      |
|      |        | 3.5<br>3.6 | Traffic Modelling                    |      |
|      |        |            | Intersection Operations              |      |
| 4    | 4.0    |            | Background Conditions                |      |
|      |        | 4.1<br>4.2 | Horizon Years                        |      |
|      |        | 4.2        | Growth Rate Future Road Improvements |      |
|      |        | 4.4        | Intersection Operations              |      |
|      | 5.0    |            | enerated Traffic                     |      |
| •    | 5.0    | 5.1        | Trip Generation                      |      |
|      |        | 5.2        | Trip Distribution and Assignment     |      |
|      |        | 5.3        | Primary Trips                        |      |
|      |        | 5.4        | Pass-By Trips                        | 7    |
|      | 6.0    | Future     | Total Conditions                     | 7    |
|      |        | 6.1        | Basis of Assessment                  |      |
|      |        | 6.2        | Site Access Configuration            | 7    |
|      |        | 6.3        | Intersection Operations              | 8    |
| 7    | 7.0    | Sensitiv   | vity Analysis                        | 9    |
|      |        | 7.1        | Seasonal Adjustment Factor           |      |
|      |        | 7.2        | Intersection Operations              | 10   |
| 8    | 8.0    | Safety     | Analysis                             | 11   |
|      |        | 8.1        | Access Management                    | 11   |
|      |        | 8.2        | Access Offset                        |      |
|      |        | 8.3        | Internal Vehicle Circulation         | 11   |
| 9    | 9.0    | Conclu     | usions                               | 12   |

#### Traffic Impact Study April 2020

ECEIVED LIST OF TABLES

| ĺ | ၂ adl ြေး ့ အြေးကြသြော Road Network – Roadways                           | 2   |
|---|--------------------------------------------------------------------------|-----|
|   | Table 2: Boundary Road Network – Study Intersections                     |     |
|   | Table 3: Peak Hour Factors                                               |     |
|   | Table 4: 2019 Existing Levels of Service                                 |     |
|   | -                                                                        |     |
|   | Table 5: 2022 Future Background Levels of Service                        |     |
|   | Table 6: 2027 Future Background Levels of Service                        |     |
|   | Table 7: 2032 Future Background Levels of Service                        |     |
|   | Table 8: Proposed Service Station Trip Generation                        |     |
|   | Table 9: 2022 Future Total Levels of Service                             |     |
|   | Table 10: 2027 Future Total Levels of Service                            |     |
|   | Table 11: 2032 Future Total Levels of Service                            |     |
|   | Table 12: 2032 Future Background and Total Sensitivity Levels of Service | .10 |

#### LIST OF APPENDICES

**Appendix A:** Site Plan

**Appendix B:** Official Plan Excerpts

**Appendix C:** Traffic Data

**Appendix D:** Level of Service Definitions

**Appendix E:** Detailed Capacity Analysis Worksheets

**Appendix F:** Growth Rate Analysis

**Appendix G:** ITE Trip Generation Excerpts

**Appendix H:** Vehicle Turning Analysis

#### Traffic Impact Study April 2020



Juligur 1: 2020 te Location Plan

LIST OF FIGURES

Figure 2: Boundary Road Network

**Figure 3:** 2019 Existing Traffic Volumes

Figure 4: 2022 Future Background Traffic Volumes
Figure 5: 2027 Future Background Traffic Volumes
Figure 6: 2032 Future Background Traffic Volumes

Figure 7: Primary Trip Distribution

Figure 8: Pass-By Trip Distribution

Figure 9: Primary Trip Assignment

Figure 10: Pass-By Trip Assignment

Figure 11: 2022 Future Total Traffic Volumes
Figure 12: 2027 Future Total Traffic Volumes
Figure 13: 2032 Future Total Traffic Volumes

Figure 14: 2032 Future Background Sensitivity Traffic Volumes

**Figure 15:** 2032 Future Total Sensitivity Traffic Volumes



2.0 Introduction

#### Jul.15,820200a

C.F. Crozier & Associates Inc. (Crozier) was retained by Lions Group Inc. (the client) to prepare a Traffic Impact Study in support of the development application for the proposed service station at 10819 Highway 9 in the Town of Caledon, Regional Municipality of Peel (the site).

#### 2.2 Development Proposal

Per the Development Concept Plan prepared by Glen Schnarr and Associates Inc. (updated March 2020), the elements envisioned for the development include:

- The removal of the existing automotive services shop;
- The construction of a gas station with six fueling positions; and
- The construction of a retail store and accessory restaurant with a gross floor area (GFA) of 2,800 square feet.

The development proposes the removal of the portion of the existing westerly access to Highway 9 on the subject property which would result in the westerly access being solely for the adjacent 10795 Highway 9 property. Access to the site is proposed via the existing south approach of the signalized intersection of Highway 9 and Tottenham Road. The existing south approach will be reconfigured to provide auxiliary turn lanes (discussed further in Sections 6.2 and 7.1).

The latest Development Concept Plan has been included in **Appendix A. Figure 1** illustrates the current location of the proposed development lands.

#### 2.3 Purpose and Scope

The purpose of the study is to evaluate the transportation-related impacts of the proposed service station on the boundary road network and to recommend any required mitigation measures, if warranted.

The study reviews the following main aspects of the proposed development from a transportation engineering perspective:

- Existing, future background, and future total traffic operations on the boundary road network during the weekday a.m. and p.m. peak hours;
- Forecasted trip generation and distribution of the proposed development;
- Mitigation measures to support the proposed development, if required; and
- Safety components including access management, access offset and internal truck circulation within the site.

The study has been completed in accordance with the Ministry of Transportation of Ontario (MTO)'s "Guidelines for the Preparation of Traffic Impact Studies" (September 2014).

#### 3.0 Existing Conditions

#### 3.1 Development Lands

The subject property covers an area of approximately 1.58 acres and is located in a rural environment with existing commercial uses on the south side of Highway 9. The subject property is bound by



Highway 9 to the north, an existing "Environmental Policy Area" zone to the south, and existing commercial uses to the east and west. The subject property currently consists of a vacant automotive and east seems of two accesses to Highway 9: one at the south leg of the signalized intersection of Highway 9 and Tottenham Road (Simcoe County Road 10), and the other consolidated with the easterly access to the adjacent 10795 Highway 9 property.

#### 3.2 Study Intersections

The Traffic Impact Study analyzes the signalized intersection of Highway 9 and Tottenham Road during the weekday a.m. and p.m. peak hours. Details of the boundary roadway network are summarized in the subsequent section.

#### 3.3 Boundary Road Network

The boundary road network at the site frontage is described in **Table 1**. Details relating to the road classification and jurisdiction were obtained from the County of Simcoe's Official Plan, with relevant excerpts included in **Appendix B**.

Table 1: Boundary Road Network – Roadways

| Factore               | Roadway                                                                             |                                                      |  |  |  |
|-----------------------|-------------------------------------------------------------------------------------|------------------------------------------------------|--|--|--|
| Feature               | Highway 9                                                                           | Tottenham Road                                       |  |  |  |
| Direction             | Two-way (East-West)                                                                 | Two-way (North-South)                                |  |  |  |
| Classification        | 2B – Arterial <sup>1</sup>                                                          | Primary Arterial –<br>Controlled Access <sup>2</sup> |  |  |  |
| Jurisdiction          | Ministry of Transportation of Ontario (MTO)                                         | County of Simcoe<br>(County Road 10)                 |  |  |  |
| Speed Limit           | 80 km/h (posted)                                                                    | 80 km/h (posted)                                     |  |  |  |
| Span                  | Highway 10 (Orangeville)<br>to Highway 400                                          | Highway 9 to County<br>Road 90 (Angus)               |  |  |  |
| Number of lanes total | Four travel lanes (site frontage) Two travel lanes (east and west of site frontage) | Two travel lanes                                     |  |  |  |
| Median type           | Centre lane (site frontage)                                                         | None                                                 |  |  |  |
| Shoulder Type         | Gravel                                                                              | Gravel                                               |  |  |  |
| Pedestrian Facilities | None                                                                                | None                                                 |  |  |  |
| Cycling Facilities    | None                                                                                | None                                                 |  |  |  |
| Transit Services      | None                                                                                | None                                                 |  |  |  |

Note 1: Classification per the MTO's Highway Corridor Management Manual (September 2018)

Note 2: Classification per the County of Simcoe Official Plan Schedule 5.5.1. "County Transportation Systems"

**Table 2** outlines the existing traffic control, configurations, and pedestrian crossing provisions at the study intersections on the boundary road network. **Figure 2** illustrates the existing boundary road network, including lane configurations and intersection control.



#### Table 2: Boundary Road Network – Study Intersections

| Ju | 15;e2020       | C | ontrol | Approaches | Major Street | Auxiliary Turn<br>Lanes  | Pedestrian<br>Crossing |
|----|----------------|---|--------|------------|--------------|--------------------------|------------------------|
|    | Highway 9 and  |   |        | ,          |              | WBR (85 m)<br>WBL (85 m) | All                    |
|    | Tottenham Road | 3 | gnal   | 4          | Highway 9    | EBL (85 m)<br>SBL (40 m) | Approaches             |

#### 3.4 Traffic Data

Turning movement counts were conducted by Spectrum Traffic Data Inc. (Spectrum) staff on Tuesday December 3, 2019 at the intersections of Highway 9 and Tottenham Road between 6:00 a.m. – 10:00 a.m., and 3:00 p.m. – 7:00 p.m. to determine existing traffic volumes.

Intersection analysis was conducted utilizing peak hour factors (PHFs) as calculated for the intersection during each time period. **Table 3** outlines the calculated peak hour factors at each intersection during each peak hour.

**Table 3: Peak Hour Factors** 

| Intersection                 | Peak Hour                             | Peak Hour Factor |
|------------------------------|---------------------------------------|------------------|
| Highway O and Tattonham Road | Weekday A.M.<br>7:15 a.m. – 8:15 a.m. | 0.96             |
| Highway 9 and Tottenham Road | Weekday P.M.<br>4:30 p.m. – 5:30 p.m. | 0.97             |

The traffic count data is contained in **Appendix C**. **Figure 3** illustrates the 2019 existing traffic volume that was recorded.

A sensitivity analysis was conducted with a seasonal adjustment factor applied to the existing traffic volumes to reflect summer conditions. Section 7.0 contains the sensitivity analysis.

#### 3.5 Traffic Modelling

The boundary road network was modelled in Synchro 11.0 using existing roadway geometrics, collected traffic data, and default modelling parameters such as ideal saturation flow rates and lost time values. Signal timing plans were obtained from MTO staff and have been utilized for the existing, future background and future total analyses. 95th percentile queue lengths were derived from Synchro.

The assessment of intersections is based on the "Highway Capacity Manual (HCM)" methodology. Intersections are assessed using a Level of Service (LOS) metric with ranges of delay assigned a letter from "A" to "F"; "A" representing low delays and "F" representing heavy delays. The LOS definitions for signalized intersections are included in **Appendix D**.

#### 3.6 Intersection Operations

The existing intersection operations at the study intersections were analyzed using the existing 2019 traffic volumes illustrated in **Figure 3.** Detailed capacity analysis worksheets are included in **Appendix E. Table 4** outlines the 2019 existing traffic operations.





#### Table 4: 2019 Existing Levels of Service

| Ju | 1 15ers2020    | Control | Peak<br>Hour | Level of<br>Service <sup>1</sup> | Control<br>Delay | Maximum<br>v/c ratio <sup>2</sup> | 95 <sup>th</sup> Percentile<br>Queues ><br>Storage |
|----|----------------|---------|--------------|----------------------------------|------------------|-----------------------------------|----------------------------------------------------|
|    | Highway 9 and  |         | A.M.         | В                                | 14.1 s           | 0.72 (SBL)                        | 59.7 m > 40 m<br>(SBL)                             |
|    | Tottenham Road | Signal  | P.M.         | D.                               | 12.6 s           | 0.68 (EBL)                        | None                                               |

Note<sup>1</sup>: The Level of Service of a signalized intersection is based on the average control delay per vehicle (Synchro/ICU).

The Level of Service of a stop-controlled intersection is based on the delay associated with the critical minor road approach (HCM2000).

Note<sup>2</sup>: The maximum v/c ratio represents the maximum v/c ratio for the minor road approach movements at the intersection. Any movements that experience a v/c ratio in excess of 0.85 are considered critical per the MTO TIS Guidelines.

The intersection of Highway 9 and Tottenham Road is currently operating at level of service (LOS) "B" during the weekday a.m. and p.m. peak hours with minor control delays and no critical volume-to-capacity ratios.

The 95<sup>th</sup> percentile queue length for the southbound left-turn movement exceeds the designated storage length during the weekday a.m, peak hour by 19.7 metres (approximately three passenger car lengths). These queues are attributed to heavy southbound volumes at the intersection during the a.m. peak period and are not uncommon at arterial-to-arterial intersections during peak hours. However, this extended queue length can be accommodated by the effective storage length provided by the southbound left-turn taper.

Overall, the intersection of Highway 9 and Tottenham Road is currently operating at satisfactory levels of service.

#### 4.0 Future Background Conditions

#### 4.1 Horizon Years

It is assumed that the proposed development will be fully built-out by 2022. The MTO's guidelines require analysis of the full build-out horizon and the five-year and ten-year horizons from the estimated year of full build-out. Therefore, the 2022, 2027 and 2032 horizon years were analyzed.

#### 4.2 Growth Rate

The MTO's "Provincial Highways Traffic Volumes 1988-2016" document was reviewed to analyze historical traffic volumes on Highway 9 at Tottenham Road. A growth rate of 1.00% percent compounded annually was calculated for the Annual Average Daily Traffic (AADT) between 2013 and 2016. A growth rate of 1.88% percent compounded annually was calculated for the Summer Average Daily Traffic (SADT) between 2013 and 2016. **Appendix F** contains the growth rate analysis.

Therefore, a growth rate of 2% compounded annually was applied to all movements on the boundary road network to forecast 2022, 2027 and 2032 future background traffic volumes.

#### 4.3 Future Road Improvements

No future road improvements have been identified in the study area.



#### 4.4 Intersection Operations

Juth four populations at the study intersections were analyzed using the 2022, 2027 and 2032 tuture background traffic volumes illustrated in Figures 4, 5 and 6, respectively. Detailed capacity analysis worksheets are included in Appendix E. Signal timing splits have been optimized for the assessment of future background conditions.

**Table 5, Table 6 and Table 7** outline the 2022, 2027 and 2032 future background traffic operations, respectively.

Table 5: 2022 Future Background Levels of Service

| Intersection   | Control | Peak<br>Hour | Level of<br>Service <sup>1</sup> | Control<br>Delay | Maximum<br>v/c ratio <sup>2</sup> | 95 <sup>th</sup> Percentile<br>Queues ><br>Storage |
|----------------|---------|--------------|----------------------------------|------------------|-----------------------------------|----------------------------------------------------|
| Highway 9 and  | Signal  | A.M.         | В                                | 14.9 s           | 0.74 (SBL)                        | 63.5 m > 50 m<br>(SBL)                             |
| Tottenham Road | Jigridi | P.M.         | В                                | 15.9 s           | 0.74 (EBL)                        | None                                               |

Note<sup>1</sup>: The Level of Service of a signalized intersection is based on the average control delay per vehicle (Synchro/ICU).

The Level of Service of a stop-controlled intersection is based on the delay associated with the critical minor road approach (HCM2000).

Note<sup>2</sup>: The maximum v/c ratio represents the maximum v/c ratio for the minor road approach movements at the intersection. Any movements that experience a v/c ratio in excess of 0.85 are considered critical per the MTO TIS Guidelines.

Table 6: 2027 Future Background Levels of Service

| Intersection   | Control     | Peak<br>Hour | Level of<br>Service <sup>1</sup> | Control<br>Delay | Maximum<br>v/c ratio <sup>2</sup> | 95 <sup>th</sup> Percentile<br>Queues ><br>Storage |
|----------------|-------------|--------------|----------------------------------|------------------|-----------------------------------|----------------------------------------------------|
| Highway 9 and  | Sign of     | A.M.         | В                                | 16.6 s           | 0.77 (SBL)                        | 70.5 m > 40 m<br>(SBL)                             |
| Tottenham Road | Signal P.M. | P.M.         | С                                | 20.4 s           | 0.80 (EBL)                        | 109.1 m > 85 m<br>(EBL)                            |

Note<sup>1</sup>: The Level of Service of a signalized intersection is based on the average control delay per vehicle (Synchro/ICU).

The Level of Service of a stop-controlled intersection is based on the delay associated with the critical minor road approach (HCM2000).

Note<sup>2</sup>: The maximum v/c ratio represents the maximum v/c ratio for the minor road approach movements at the intersection. Any movements that experience a v/c ratio in excess of 0.85 are considered critical per the MTO TIS Guidelines.

Table 7: 2032 Future Background Levels of Service

| Intersection                    | Control | Peak<br>Hour | Level of<br>Service <sup>1</sup> | Control<br>Delay | Maximum<br>v/c ratio <sup>2</sup> | 95 <sup>th</sup> Percentile<br>Queues ><br>Storage |
|---------------------------------|---------|--------------|----------------------------------|------------------|-----------------------------------|----------------------------------------------------|
|                                 |         | A.M.         | В                                | 18.8 s           | 0.80 (SBL)                        | 78.6 m > 40 m<br>(SBL)                             |
| Highway 9 and<br>Tottenham Road | Signal  | P.M.         | С                                | 25.8 s           | 0.90 (EBL)                        | 149.4 m > 85 m<br>(EBL)<br>42.5 m > 40 m<br>(SBL)  |

Note: The Level of Service of a signalized intersection is based on the average control delay per vehicle (Synchro/ICU).

The Level of Service of a stop-controlled intersection is based on the delay associated with the critical minor road approach (HCM2000).

Note<sup>2</sup>: The maximum v/c ratio represents the maximum v/c ratio for the minor road approach movements at the intersection. Any movements that experience a v/c ratio in excess of 0.85 are considered critical per the MTO TIS Guidelines.

The intersection of Highway 9 and Tottenham Road is expected to change from LOS "B" to "C" during the weekday p.m. peak hour under 2032 future background conditions compared to existing conditions, with an increase in control delay of 13.2 seconds. While LOS "C" is considered satisfactory,

Traffic Impact Study April 2020

the eastbound left-turn movement is expected to operate with a volume-to-capacity ratio of 0.90 during the weekday p.m. peak hour, and the forecasted 95th percentile queue lengths for the designated storage lengths.

These metrics are attributed to background traffic growth over a 13-year horizon at an arterial-to-arterial intersection with heavy traffic volumes. However, these metrics are not uncommon, and the intersection is still expected to operate at overall satisfactory levels of service.

#### 5.0 Site Generated Traffic

The proposed service station will result in additional vehicles on the boundary road network that would otherwise not exist. The proposed development will also result in additional turning movements at the study intersection.

#### 5.1 Trip Generation

The trip generation of the proposed service station was forecasted using published data from the Institute of Transportation Engineers (ITE) Trip Generation Manual, 10<sup>th</sup> Edition. The ITE Trip Generation Manual is a compendium of industry collected trip generation data across North America for a variety of land uses and is used industry wide as a source for trip generation forecasts.

Land Use Category (LUC) 945 "Gasoline/Service Station with Convenience Market" was considered to be the most appropriate to apply to the proposed gas station.

As defined by the ITE Trip Generation Handbook, 3rd Edition,, primary trips are made for the specific purpose of visiting the generator. Pass-by trips are made as intermediate stops on the way from an origin to a primary destination without a route diversion. Accordingly, these vehicles do not increase the volume of vehicles on the roadway.

The pass-by trips generated by the service station trips were forecasted using the rates provided by the ITE Trip Generation Handbook, 3<sup>rd</sup> Edition for LUC 945. The pass-by trip percentage for the weekday a.m. peak period is 62% and the pass-by trip percentage for the weekday p.m. peak period is 56%.

Relevant excerpts from the ITE Trip Generation Manual, 10<sup>th</sup> Edition and ITE Trip Generation Handbook, 3<sup>rd</sup> Edition have been included in **Appendix G**. The forecasted trip generation of the development is summarized in **Table 8**.

Table 8: Proposed Service Station Trip Generation

| Land Use                          | Peak Hour           | Trim Trum a | Trips Generated |          |       |
|-----------------------------------|---------------------|-------------|-----------------|----------|-------|
| Lana use                          | Peak Hour Trip Type |             | Inbound         | Outbound | Total |
| LUC 945                           | A.M.<br>P.M.        | Primary     | 14              | 14       | 29    |
| "Gasoline/Service<br>Station with |                     | Pass-by     | 24              | 23       | 47    |
| Convenience Market"               |                     | Primary     | 19              | 18       | 37    |
| (6 fuelling stations)             |                     | Pass-by     | 24              | 23       | 47    |



#### 5.2 Trip Distribution and Assignment

#### Jul.315, Pro202100s

The primary trips generated by the proposed development were distributed to the boundary road network based on expected catchment areas in the surrounding area. The community of Tottenham is located to the north via Tottenham Road, the community of Schomberg is located to the east via Highway 9 and the Town of Orangeville and Town of Mono are located to the west via Highway 9. Therefore, an even traffic disbursement to and from the north, east and west was assumed for primary trips.

Figure 7 outlines the primary trip distribution and Figure 9 outlines the corresponding primary trip assignment.

#### 5.4 Pass-By Trips

The pass-by trips generated by the proposed development were distributed to the boundary road network based on the existing travel patterns observed at the intersection of Highway 9 and Tottenham Road.

**Figure 8** outlines the pass-by trip distribution and **Figure 10** outlines the corresponding pass-by trip assignment.

#### 6.0 Future Total Conditions

#### 6.1 Basis of Assessment

The site generated traffic volumes illustrated in **Figures 9 and 10** were added to the 2022, 2027 and 2032 future background traffic volumes in **Figures 4, 5 and 6**, respectively, to determine the future total traffic volumes. **Figures 11, 12 and 13** outline the 2022, 2027 and 2032 future total traffic volumes, respectively.

#### 6.2 Site Access Configuration

The development proposes the following lane configurations at the south approach of Highway 9 and Tottenham Road:

- Outbound left-turn lane
- Outbound through/right-turn lane
- Inbound lane

The proposed lane configurations at the south approach mirror the existing lane configurations at the north approach to maintain geometric alignment and design consistency. Analysis of future total traffic operations at the south approach indicate that the proposed lane configurations are expected to result in satisfactory traffic operations (see Section 6.3).

The designated storage length for the outbound turn lanes is proposed to be approximately 35 metres. Analysis of forecasted 95th percentile queue lengths for the outbound movements under future total conditions indicate that the maximum forecasted outbound queue is less than 15 metres during the peak hours which can be accommodated within the outbound lanes. It is also noted that the proposed storage length of 35 metres can accommodate a typical A-Train Double (ATD) truck which has a length of 24.5 metres per the Transportation Association of Canada (TAC) Geometric Design

# TOWN OF CALEDON PLANNING RESPONDENCE TO THE COLUMN OF CALEDON

Traffic Impact Study April 2020

Guide for Canadian Roads design vehicle for the site.

GDGCR). This vehicle profile represents a typical fuel truck which is the

The proposed width of the impound lane is 8.65 metres to allow an ATD truck to conduct an eastbound right-turn movement from Highway 9 and enter the site without rutting the curb. This proposed width is similar to the width of the existing northbound lane at the north approach of Highway 9 and Tottenham Road.

Therefore, the proposed geometrics at the south approach of Highway 9 and Tottenham Road are supportable from a traffic operations perspective.

Analysis of forecasted 95<sup>th</sup> percentile queue lengths for the westbound left-turn movement of the intersection of Highway 9 and Tottenham Road under future total conditions indicate that the existing westbound left-turn lane at the intersection can accommodate the forecasted queue lengths and thus does not need to be modified.

#### 6.3 Intersection Operations

The future total intersection operations at the study intersections were analyzed using the 2022, 2027 and 2032 future total traffic volumes illustrated in **Figures 11, 12 and 13**, respectively. Detailed capacity analysis worksheets are included in **Appendix E**. Signal timing splits have been optimized for the assessment of future total conditions.

Table 9, Table 10 and Table 11 outline the 2022, 2027 and 2032 future total traffic operations, respectively.

Table 9: 2022 Future Total Levels of Service

| Intersection               | Control | Peak<br>Hour | Level of<br>Service <sup>1</sup> | Control<br>Delay | Maximum<br>v/c ratio <sup>2</sup> | 95 <sup>th</sup> Percentile<br>Queues ><br>Storage |
|----------------------------|---------|--------------|----------------------------------|------------------|-----------------------------------|----------------------------------------------------|
| Highway 9 and<br>Tottenham | Signal  | A.M.         | В                                | 15.7 s           | 0.74 (SBL)                        | 62.9 m > 40 m<br>(SBL)                             |
| Road/Site Access           | Jigilai | P.M.         | В                                | 15.9 s           | 0.74 (EBL)                        | None                                               |

Note: The Level of Service of a signalized intersection is based on the average control delay per vehicle (Synchro/ICU). The Level of Service of a stop-controlled intersection is based on the delay associated with the critical minor road approach (HCM2000).

Note<sup>2</sup>: The maximum v/c ratio represents the maximum v/c ratio for the minor road approach movements at the intersection. Any movements that experience a v/c ratio in excess of 0.85 are considered critical per the MTO TIS Guidelines.

#### Table 10: 2027 Future Total Levels of Service

| Intersection               | Control | Peak<br>Hour | Level of<br>Service <sup>1</sup> | Control<br>Delay | Maximum<br>v/c ratio <sup>2</sup> | 95 <sup>th</sup> Percentile<br>Queues ><br>Storage |
|----------------------------|---------|--------------|----------------------------------|------------------|-----------------------------------|----------------------------------------------------|
| Highway 9 and<br>Tottenham | Sign of | A.M.         | В                                | 16.8 s           | 0.77 (SBL)                        | 69.8 m > 40 m<br>(SBL)                             |
| Road/Site Access           | Signal  | P.M.         | В                                | 19.8 s           | 0.79 (EBL)                        | 102.0 m > 85.0m<br>(EBL)                           |

Note<sup>1</sup>: The Level of Service of a signalized intersection is based on the average control delay per vehicle (Synchro/ICU).

The Level of Service of a stop-controlled intersection is based on the delay associated with the critical minor road approach (HCM2000).

Note<sup>2</sup>: The maximum v/c ratio represents the maximum v/c ratio for the minor road approach movements at the intersection. Any movements that experience a v/c ratio in excess of 0.85 are considered critical per the MTO TIS Guidelines.



#### Table 11: 2032 Future Total Levels of Service

| Ju | 1 15grs 2020                                   | Control | Peak<br>Hour | Level of<br>Service <sup>1</sup> | Control<br>Delay | Maximum<br>v/c ratio <sup>2</sup> | 95 <sup>th</sup> Percentile<br>Queues ><br>Storage |
|----|------------------------------------------------|---------|--------------|----------------------------------|------------------|-----------------------------------|----------------------------------------------------|
|    |                                                |         | A.M.         | В                                | 19.1 s           | 0.80 (SBL)                        | 78.3 m > 40 m<br>(SBL)                             |
|    | Highway 9 and<br>Tottenham<br>Road/Site Access | Signal  | P.M.         | С                                | 25.3 s           | 0.89 (EBL)                        | 146.9 m > 85 m<br>(EBL)<br>42.3 m > 40 m<br>(SBL)  |

Note: The Level of Service of a signalized intersection is based on the average control delay per vehicle (Synchro/ICU).

The Level of Service of a stop-controlled intersection is based on the delay associated with the critical minor road approach (HCM2000).

Note<sup>2</sup>: The maximum v/c ratio represents the maximum v/c ratio for the minor road approach movements at the intersection.

Any movements that experience a v/c ratio in excess of 0.85 are considered critical per the MTO TIS Guidelines.

The intersection of Highway 9 and Tottenham Road is expected to operate at unchanged levels of service during the weekday a.m. and p.m. peak hours under 2032 future total conditions compared to 2032 future background conditions. The eastbound left-turn movement is expected to operate with a volume-to-capacity ratio of 0.89 during the weekday p.m. peak hour, and the forecasted 95<sup>th</sup> percentile queue lengths for the southbound left-turn and eastbound left-turn movements are expected to exceed their respective designated storage lengths.

These metrics are attributed to background traffic growth over a 13-year horizon at an arterial-to-arterial intersection with heavy traffic volumes.

However, it is noted that the overall intersection delay, eastbound left-turn volume-to-capacity ratio and eastbound left-turn 95<sup>th</sup> percentile queue length are all expected to slightly decrease under future total conditions. This is attributed to the pass-by diversions applied to traffic for the critical eastbound left-turn movement with the build-out of the proposed gas station.

The intersection of Highway 9 and Tottenham Road is still expected to operate at overall satisfactory levels of service. These operations indicate that the addition of site traffic to the intersection is expected to minimally impact traffic operations.

Therefore, the proposed development is supportable from a traffic operations perspective.

#### 7.0 Sensitivity Analysis

A sensitivity analysis was conducted to assess the impacts of the proposed development with a seasonal adjustment factor applied to the recorded existing traffic volumes at the intersection of Highway 9 and Tottenham Road to reflect summer conditions. The ultimate 2032 horizon year was analyzed under both future background and future total conditions in this sensitivity analysis.

#### 7.1 Seasonal Adjustment Factor

The MTO's "Provincial Highways Traffic Volumes 1988-2016" were analyzed to compare Annual Average Daily Traffic (AADT) volumes on Highway 9 at Tottenham Road to Summer Average Daily Traffic (SADT) volumes. A comparison of the AADT and SADT volumes from 2013-2016 indicates an average increase in traffic volumes under summer conditions of approximately 20%. Therefore, a seasonal adjustment factor of 20% was applied to the existing traffic volumes on Highway 9 and Tottenham Road, and carried forward in forecasting 2032 future background and 2032 future total traffic volumes.



Figures 14 and 15 illustrate the 2032 future background sensitivity traffic volumes and 2032 future total sensitivity traffic volumes, respectively.

Jul 15, 2020 Intersection Operations

The future background and future total sensitivity traffic operations at the study intersections were analyzed using the 2032 future background and future total sensitivity total traffic volumes illustrated in **Figures 14 and 15**, respectively. Detailed capacity analysis worksheets are included in **Appendix E**. Signal timing splits have been optimized for the assessment of future background conditions.

**Table 12** outlines the 2032 future background sensitivity traffic operations.

Table 12: 2032 Future Background and Total Sensitivity Levels of Service

|                                                |         | 2032 Fut     | ure Background                   | d Sensitivity    |                                   |                                                    |
|------------------------------------------------|---------|--------------|----------------------------------|------------------|-----------------------------------|----------------------------------------------------|
| Intersection                                   | Control | Peak<br>Hour | Level of<br>Service <sup>1</sup> | Control<br>Delay | Maximum<br>v/c ratio <sup>2</sup> | 95 <sup>th</sup> Percentile<br>Queues ><br>Storage |
| Highway C and                                  |         | A.M.         | С                                | 24.5 s           | 0.87 (SBL)<br>0.88 (SBTR)         | 106.4 m > 40 m<br>(SBL)                            |
| Highway 9 and<br>Tottenham<br>Road/Site Access | Signal  | P.M.         | D                                | 52.3 s           | 1.19 (EBL)<br>1.00 (WBT)          | 227.0 m > 85 m<br>(EBL)<br>50.8 m > 40 m<br>(SBL)  |
|                                                |         | 2032         | 2 Future Total Se                | nsitivity        |                                   |                                                    |
| Intersection                                   | Control | Peak<br>Hour | Level of<br>Service <sup>1</sup> | Control<br>Delay | Maximum<br>v/c ratio <sup>2</sup> | 95 <sup>th</sup> Percentile<br>Queues ><br>Storage |
| Highway 9 and                                  |         | A.M.         | С                                | 24.9 s           | 0.87 (SBL)<br>0.89 (SBTR)         | 106.3m > 40 m<br>(SBL)                             |
| Highway 9 and<br>Tottenham<br>Road/Site Access | Signal  | P.M.         | D                                | 48.9 s           | 1.17 (EBL)<br>0.99 (WBT)          | 222.9 m > 85 m<br>(EBL)<br>49.9 m > 40 m<br>(SBL)  |

Note<sup>1</sup>: The Level of Service of a signalized intersection is based on the average control delay per vehicle (Synchro/ICU).

The Level of Service of a stop-controlled intersection is based on the delay associated with the critical minor road approach (HCM2000).

Note<sup>2</sup>: The maximum v/c ratio represents the maximum v/c ratio for the minor road approach movements at the intersection. Any movements that experience a v/c ratio in excess of 0.85 are considered critical per the MTO TIS Guidelines.

The intersection of Highway 9 and Tottenham Road is expected to operate at unchanged levels of service during the weekday a.m. and p.m. peak hours from 2032 future background sensitivity conditions to 2032 future total sensitivity conditions. While several movements are still expected to operate with volume-to-capacity ratios approaching or exceeding capacity and with 95<sup>th</sup> percentile queue lengths that exceed storage lengths; the overall intersection delay, volume-to-capacity ratios and 95<sup>th</sup> percentile queue lengths are still expected to slightly decrease under future total sensitivity conditions. This is attributed to the pass-by diversions applied to traffic for the critical eastbound left-turn movement with the build-out of the proposed gas station.

These results are consistent with the results outlined in Section 6.3. These operations indicate that the addition of site traffic to the intersection is still expected to minimally impact traffic operations and that no external roadway improvements are required to accommodate the proposed development.



8.0 Safety Analysis

JU8.11 5 A 20 Pinagement

As discussed earlier, the development proposes the removal of the portion of the existing westerly access to Highway 9 on the subject property which would result in the westerly access being solely for the adjacent 10795 Highway 9 property. The sole access to the site is proposed via the existing south approach of the signalized intersection of Highway 9 and Tottenham Road.

The removal of the secondary access to Highway 9 would be expected to improve traffic safety for all road users by restricting ingress and egress to and from the site to the existing signalized intersection, thus resulting in more defined and predictable ingress and egress travel patterns.

The access density and spacing guidelines set out in the MTO's Highway Corridor Management Manual (September 2018) are satisfied by the development proposal as the proposed site access connects to the existing signalized intersection of Highway 9 and Tottenham Road, and the removal of the secondary access to Highway 9 negates any issues pertaining to access spacing.

#### 8.2 Access Offset

Per the MTO's Highway Corridor Management Manual, the minimum access offset for a commercial or private road access from a Class 2B Arterial Road (i.e. Highway 9) is 45 metres. However, this offset would not be possible to achieve given property constraints.

The proposed site layout provides an access connection depth of approximately 10 metres for inbound traffic not including the effective connection depth provided by the inbound curb radius. This effective access connection depth of approximately 20 metres could accommodate between two to three inbound passenger cars without obstructing Highway 9. However, there are no obstructions for inbound passenger cars to the fuelling stations. Additionally, the proposed loading space and underground gas tank storage are located at the southerly limit of the site and thus will not obstruct inbound traffic from Highway 9. Therefore, the site layout is not likely to result in queueing for inbound passenger cars at the site access.

The proposed site layout provides a storage length of approximately 35 metres for the outbound (northbound) turn lanes which can accommodate the forecasted outbound 95<sup>th</sup> percentile queue lengths under future total conditions and can accommodate an ATD truck exiting the site.

Therefore, the proposed site layout is supportable from a transportation safety perspective.

#### 8.3 Internal Vehicle Circulation

The Development Concept Plan illustrates an ATD truck entering the site from Highway 9 in both directions, maneuvering the site to the underground fuel storage tanks, and exiting the site. The vehicle turning analysis shown on the plan does not identify any maneuverability constraints within the site for ATD trucks.

Additional vehicle turning analysis was conducted for a Medium Single Unit (MSU) delivery truck entering the site, maneuvering the site to the loading space, and exiting the site. Vehicle turning analysis indicates that there are no expected maneuverability constraints within the site for MSU delivery trucks.

**Appendix H** contains the MSU vehicle turning analysis.

#### Traffic Impact Study April 2020



9.0 Conclusions

Juth fall fall following key findings:

- The proposed service station development is expected to generate approximately 76 and 84 trips in the weekday a.m. and p.m. peak hours, respectively.
- The study intersections operate well with a LOS "B" or better under 2019 existing conditions and are forecasted to continue operating with a LOS "C" or better under 2022 through 2032 future background and future total traffic volume conditions.
- Under 2032 future background and future total conditions, the eastbound left-turn movement
  is expected to operate near capacity and the forecasted 95th percentile queue lengths for
  the southbound left-turn and eastbound left-turn movements are expected to exceed their
  respective designated storage lengths. These metrics are attributed to background traffic
  growth over a 13-year horizon at an arterial-to-arterial intersection with heavy traffic volumes.
- However, it is noted that the overall intersection delay, eastbound left-turn volume-to-capacity ratio and eastbound left-turn 95<sup>th</sup> percentile queue length are all expected to slightly decrease under future total conditions. This is attributed to the pass-by diversions applied to traffic for the critical eastbound left-turn movement with the build-out of the proposed gas station.
- The intersection of Highway 9 and Tottenham Road is still expected to operate at overall satisfactory levels of service.
- These operations indicate that the addition of site traffic to the intersection is expected to minimally impact traffic operations. Therefore, the proposed development is supportable from a traffic operations perspective.
- Sensitivity analysis of 2032 future background and total conditions with a seasonal adjustment factor of 20% applied to the existing traffic volumes indicates that the addition of site traffic to the road network is still expected to minimally impact traffic operations and that no external roadway improvements are required to accommodate the proposed development.
- Analysis of safety components for the proposed development indicate that:
  - The development proposal satisfies the MTO's access spacing and density guidelines;
  - o The proposed site layout provides adequate store length for the outbound (northbound) turn lanes which can accommodate the forecasted outbound 95<sup>th</sup> percentile queue lengths under future total conditions and can accommodate a typical fuel truck exiting the site;
  - The proposed site layout is not likely to result in queueing for inbound passenger cars at the site access; and
  - There are no expected maneuverability constraints within the site for typica fuel trucks nor delivery trucks.

The analysis undertaken herein was prepared using the most recent Development Concept Plan. Any minor changes to the development proposal will not materially affect the conclusions contained within this report.

## TOWN OF CALEDON

Traffic Impact Study April 2020

Town of Caledon

safety perspective.

ectfully submitted by,

In conclusion, the proposed development can be supported from a transportation operations and

C.F. CROZIER & ASSOCIATES INC.

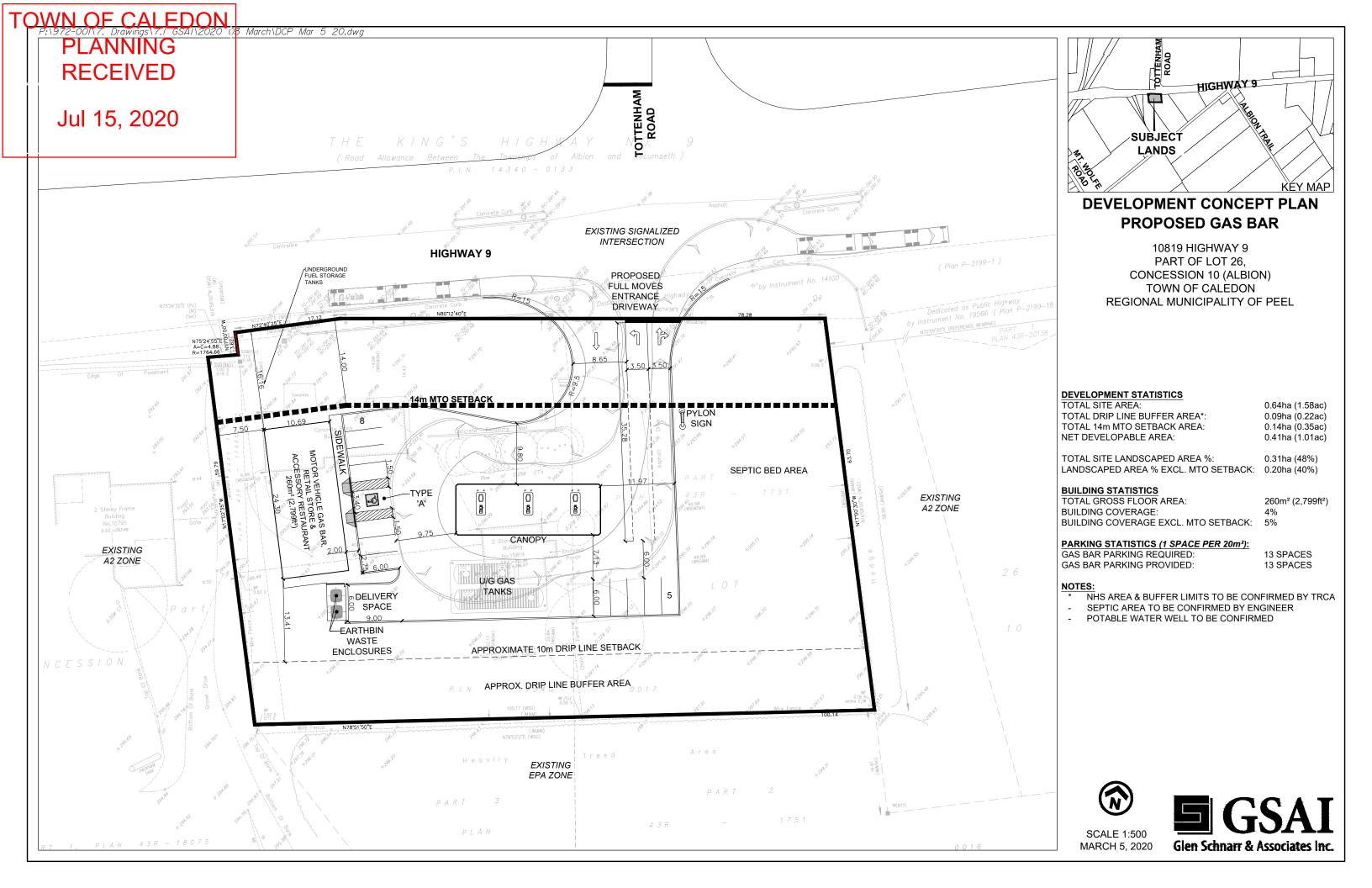
Michael A. Linton, MASc., P.Eng. Associate

<del>C.F. CROZIER & ASSOCIATES I</del>NC.

Darren Loro, C.E.T. Transportation Technologist

Jarren doro

/SK


N:\1600\1651-Lions Group Inc\5095-10795&10819 Highway 9\Reports\5095\_10819 Highway 9 TIS.docx



Jul 15, 2020

### APPENDIX A

Site Plan





Jul 15, 2020

### APPENDIX B

Official Plan Excerpts

### **TOWN OF CALEDON**

As A proved as of December 29, 2016

RECEIVED

**Table 5.4** 

## JUSINGO QUENTY ROAD SYSTEM

As approved by County Council

| COUNTY ROAD<br>NO. | DESCRIPTION                                                   | CLASSIFICATION     | REQUIRED BASIC<br>RIGHT OF WAY<br>WIDTHS                  |
|--------------------|---------------------------------------------------------------|--------------------|-----------------------------------------------------------|
|                    | County Road 27 to<br>County Road 50                           | Primary Arterial   | 30.5 m                                                    |
| 1                  | County Road 50 to<br>Simcoe/Dufferin<br>Boundary Road         | Secondary Arterial | 30.5 m                                                    |
| 3                  | County Road 4 to<br>County Road 39                            | Secondary Arterial | 36.0 m                                                    |
| 4                  | Town of Bradford<br>Limits to City Limits<br>of Barrie        | Controlled Access  | 45.0 m                                                    |
| 5                  | County Road 15 to<br>Simcoe/Dufferin<br>Boundary              | Secondary Arterial | 30.5 m                                                    |
| 6                  | County Road 27 to<br>County Road 26                           | Primary Arterial   | 30.5 m                                                    |
| _                  | Highway 26 to 27/28<br>Sideroad<br>Nottawasaga                | Primary Arterial   | 45.0 m                                                    |
| 7                  | 27/28 Sideroad<br>Nottawasaga to<br>Wasaga Beach              | Secondary Arterial | 36.0 m                                                    |
| 8*                 | Highway 9 to<br>Bradford                                      | Secondary Arterial | 20.0 m                                                    |
|                    | County Road 10 to<br>Creemore                                 | Primary Arterial   | 30.5 m                                                    |
| 9                  | Creemore to Grey<br>Boundary                                  | Secondary Arterial | 30.5 m                                                    |
| 10                 | Highway 9 to Industrial Parkway (Including Tottenham By-Pass) | Controlled Access  | 40.0 m (36.0 metre<br>minimum where<br>constraints exist) |
|                    | Industrial Parkway to<br>Highway 89                           | Controlled Access  | 45.0 m                                                    |

#### **TOWN OF CALEDON**

As Approved as of December 29, 2016

RECEIVED

40.0 m (36.0 metre Highway 89 to Town Primary Arterial minimum where of Wasaga Beach Jul 15, 2020 constraints exist) Concession 1 former Orillia Township to 30.5 m 11 Primary Arterial Highway 400 Lisle to Dufferin **12** Secondary Arterial 30.5 m Boundary Highway 89 to Lisle Secondary Arterial 30.5 m 13 County Road 10 to Secondary Arterial 30.5 m 14 County Road 50 Alliston to C.F.B. 15 Primary Arterial 30.5 m Borden Highway 12 to Primary Arterial 30.5 m 16 Highway 400 Coldwater to Secondary Arterial 30.5 m Concession 3/4 **17** Concession 3/4 to Secondary Arterial 30.5 m Muskoka Highway 12 to 19 Primary Arterial 30.5 m Elmvale Highway 11 to Secondary Arterial 30.5 m Hawkstone 20 Hawkstone to Barrie Secondary Arterial 30.5 m County Road 27 Primary Arterial 30.5 m West 21 40.0 m (36.0 metre County Road 27 East minimum where Primary Arterial constraints exist) Highway 12 to 22 Primary Arterial 36.0 m Highway 26 Highway 93 to 23 Highway 400 30.5 m Secondary Arterial County Road 93 to 25 Primary Arterial 30.5 m County Road 6 Penetanguishene to Secondary Arterial 30.5 m County Road 6 26 County Road 6 to Secondary Arterial 30.5 m Lafontaine



Jul 15, 2020

## APPENDIX C

Traffic Data

## Turning Movement Count Location Name: HWY 9 & TOTTENHAM RD / #10819 EAST ACCESS Date: Tue, Dec 03, 2019 Deployment Lead: Theo Daglis

Crozier & Associates

Date. Fac, Dec 60, 2010 Deployment Lead. The Dagne

|            |              | <i></i>     | IV          | $ld_{ u}$     |             |                |                  |             |             |                 |            |                |              |             |             |                   |            |                |              |             |             |                          |            |                |                        |                      |
|------------|--------------|-------------|-------------|---------------|-------------|----------------|------------------|-------------|-------------|-----------------|------------|----------------|--------------|-------------|-------------|-------------------|------------|----------------|--------------|-------------|-------------|--------------------------|------------|----------------|------------------------|----------------------|
|            |              |             |             |               | urni        | ng Moveme      | nt Co            | unt (1      | 1 . H       | WY9             | & то       | TTENHAM        | RD /         | #1081       | 9 EAS       | ST AC             | CES        | S) CustID:     | 9990         | 0015        | Mio         | ID: 73                   | 0562       |                |                        |                      |
| Start Time | ıl 1         | 5.          | 26          | Approa        | ch<br>II RD |                |                  |             | E           | Approa<br>HWY 9 |            |                |              |             |             | Approac<br>EAST A |            |                |              |             | V           | <b>V Approa</b><br>HWY 9 |            |                | Int. Total<br>(15 min) | Int. Total<br>(1 hr) |
| Start Time | Right<br>N:W | Thru<br>N:S | Left<br>N:E | U-Turn<br>N:N | Peds<br>N:  | Approach Total | Right<br>E:N     | Thru<br>E:W | Left<br>E:S | U-Turn<br>E:E   | Peds<br>E: | Approach Total | Right<br>S:E | Thru<br>S:N | Left<br>S:W | U-Turn<br>S:S     | Peds<br>S: | Approach Total | Right<br>W:S | Thru<br>W:E | Left<br>W:N | U-Turn<br>W:W            | Peds<br>W: | Approach Total |                        |                      |
| 06:00:00   | 85           | 0           | 47          | 0             | 0           | 132            | 6                | 51          | 0           | 0               | 0          | 57             | 0            | 0           | 0           | 0                 | 0          | 0              | 0            | 99          | 13          | 0                        | 0          | 112            | 301                    |                      |
| 06:15:00   | 77           | 0           | 41          | 0             | 0           | 118            | 8                | 65          | 0           | 0               | 0          | 73             | 0            | 0           | 0           | 0                 | 0          | 0              | 0            | 133         | 18          | 0                        | 0          | 151            | 342                    |                      |
| 06:30:00   | 89           | 0           | 55          | 0             | 0           | 144            | 10               | 62          | 0           | 0               | 0          | 72             | 0            | 0           | 0           | 0                 | 0          | 0              | 0            | 107         | 15          | 0                        | 0          | 122            | 338                    |                      |
| 06:45:00   | 152          | 0           | 68          | 0             | 0           | 220            | 14 74 0 0 0 88   |             |             |                 | 0          | 0              | 0            | 0           | 0           | 0                 | 0          | 138            | 17           | 0           | 0           | 155                      | 463        | 1444           |                        |                      |
| 07:00:00   | 93           | 0           | 61          | 0             | 0           | 154            | 19 80 0 0 0 99   |             |             |                 |            | 1              | 0            | 0           | 0           | 0                 | 1          | 0              | 119          | 14          | 0           | 0                        | 133        | 387            | 1530                   |                      |
| 07:15:00   | 101          | 0           | 46          | 0             | 0           | 147            | 21 107 0 0 0 128 |             |             |                 |            |                | 0            | 0           | 0           | 0                 | 0          | 0              | 0            | 131         | 25          | 0                        | 0          | 156            | 431                    | 1619                 |
| 07:30:00   | 101          | 0           | 41          | 0             | 0           | 142            | 15               | 107         | 0           | 0               | 0          | 122            | 0            | 0           | 0           | 0                 | 0          | 0              | 0            | 117         | 17          | 0                        | 0          | 134            | 398                    | 1679                 |
| 07:45:00   | 91           | 0           | 59          | 0             | 0           | 150            | 22               | 114         | 0           | 0               | 0          | 136            | 0            | 0           | 0           | 0                 | 0          | 0              | 0            | 133         | 21          | 0                        | 0          | 154            | 440                    | 1656                 |
| 08:00:00   | 85           | 0           | 49          | 0             | 0           | 134            | 12               | 126         | 0           | 0               | 0          | 138            | 0            | 0           | 0           | 0                 | 0          | 0              | 0            | 137         | 20          | 0                        | 0          | 157            | 429                    | 1698                 |
| 08:15:00   | 67           | 0           | 34          | 0             | 0           | 101            | 22               | 110         | 0           | 0               | 0          | 132            | 0            | 0           | 0           | 0                 | 0          | 0              | 0            | 133         | 26          | 0                        | 0          | 159            | 392                    | 1659                 |
| 08:30:00   | 60           | 0           | 29          | 0             | 0           | 89             | 17               | 96          | 0           | 0               | 0          | 113            | 0            | 0           | 0           | 0                 | 0          | 0              | 0            | 141         | 29          | 0                        | 0          | 170            | 372                    | 1633                 |
| 08:45:00   | 40           | 0           | 33          | 0             | 0           | 73             | 22               | 89          | 3           | 0               | 0          | 114            | 0            | 0           | 0           | 0                 | 0          | 0              | 0            | 127         | 28          | 0                        | 0          | 155            | 342                    | 1535                 |
| 09:00:00   | 64           | 0           | 40          | 0             | 0           | 104            | 20               | 82          | 1           | 0               | 0          | 103            | 0            | 0           | 0           | 0                 | 0          | 0              | 0            | 130         | 24          | 0                        | 0          | 154            | 361                    | 1467                 |
| 09:15:00   | 45           | 1           | 30          | 0             | 0           | 76             | 11               | 72          | 0           | 0               | 0          | 83             | 0            | 0           | 0           | 0                 | 0          | 0              | 0            | 133         | 19          | 0                        | 0          | 152            | 311                    | 1386                 |
| 09:30:00   | 39           | 0           | 32          | 0             | 0           | 71             | 15               | 83          | 0           | 0               | 0          | 98             | 0            | 0           | 0           | 0                 | 0          | 0              | 0            | 126         | 18          | 0                        | 0          | 144            | 313                    | 1327                 |
| 09:45:00   | 40           | 0           | 39          | 0             | 0           | 79             | 13               | 72          | 0           | 0               | 0          | 85             | 0            | 0           | 0           | 0                 | 0          | 0              | 0            | 108         | 19          | 0                        | 0          | 127            | 291                    | 1276                 |
| ***BREAK   | ***          | *******     |             |               |             |                |                  |             |             |                 |            |                |              |             |             |                   |            |                |              |             |             |                          |            |                |                        |                      |
| 15:00:00   | 23           | 1           | 18          | 0             | 0           | 42             | 27               | 129         | 1           | 0               | 0          | 157            | 0            | 0           | 1           | 0                 | 0          | 1              | 0            | 108         | 61          | 0                        | 0          | 169            | 369                    |                      |
| 15:15:00   | 47           | 0           | 23          | 0             | 0           | 70             | 44               | 137         | 0           | 0               | 0          | 181            | 1            | 0           | 0           | 0                 | 0          | 1              | 0            | 106         | 68          | 0                        | 0          | 174            | 426                    |                      |
| 15:30:00   | 38           | 0           | 22          | 0             | 0           | 60             | 26               | 149         | 1           | 0               | 0          | 176            | 1            | 0           | 0           | 0                 | 0          | 1              | 0            | 121         | 100         | 0                        | 0          | 221            | 458                    |                      |
| 15:45:00   | 28           | 0           | 23          | 0             | 0           | 51             | 39               | 147         | 0           | 0               | 0          | 186            | 0            | 0           | 0           | 0                 | 0          | 0              | 0            | 142         | 75          | 0                        | 0          | 217            | 454                    | 1707                 |
| 16:00:00   | 35           | 0           | 27          | 0             | 0           | 62             | 48               | 140         | 1           | 0               | 0          | 189            | 1            | 0           | 1           | 0                 | 0          | 2              | 0            | 121         | 85          | 0                        | 0          | 206            | 459                    | 1797                 |
| 16:15:00   | 29           | 0           | 29          | 0             | 0           | 58             | 36               | 160         | 0           | 0               | 0          | 196            | 0            | 0           | 1           | 0                 | 0          | 1              | 0            | 129         | 84          | 0                        | 0          | 213            | 468                    | 1839                 |
| 16:30:00   | 29           | 0           | 28          | 0             | 0           | 57             | 48               | 165         | 2           | 0               | 0          | 215            | 0            | 0           | 0           | 0                 | 0          | 0              | 0            | 123         | 97          | 0                        | 0          | 220            | 492                    | 1873                 |
| 16:45:00   | 34           | 1           | 20          | 0             | 0           | 55             | 46               | 165         | 2           | 0               | 0          | 213            | 0            | 0           | 0           | 0                 | 0          | 0              | 2            | 141         | 103         | 0                        | 0          | 246            | 514                    | 1933                 |
| 17:00:00   | 28           | 0           | 33          | 0             | 0           | 61             | 44               | 144         | 0           | 0               | 0          | 188            | 3            | 3           | 3           | 0                 | 0          | 9              | 0            | 159         | 111         | 0                        | 0          | 270            | 528                    | 2002                 |
| 17:15:00   | 29           | 0           | 22          | 0             | 0           | 51             | 47               | 182         | 0           | 0               | 0          | 229            | 0            | 0           | 0           | 0                 | 0          | 0              | 0            | 132         | 102         | 0                        | 0          | 234            | 514                    | 2048                 |
| 17:30:00   | 38           | 0           | 23          | 0             | 0           | 61             | 31               | 130         | 0           | 0               | 0          | 161            | 0            | 0           | 0           | 0                 | 0          | 0              | 0            | 113         | 101         | 0                        | 0          | 214            | 436                    | 1992                 |
| 17:45:00   | 26           | 0           | 24          | 0             | 0           | 50             | 44               | 174         | 1           | 0               | 0          | 219            | 0            | 0           | 0           | 0                 | 0          | 0              | 0            | 100         | 89          | 0                        | 0          | 189            | 458                    | 1936                 |
| 18:00:00   | 22           | 0           | 21          | 0             | 0           | 43             | 41               | 121         | 1           | 0               | 0          | 163            | 1            | 1           | 1           | 0                 | 0          | 3              | 1            | 88          | 79          | 0                        | 0          | 168            | 377                    | 1785                 |
| 18:15:00   | 25           | 0           | 16          | 0             | 0           | 41             | 37               | 98          | 0           | 0               | 0          | 135            | 0            | 1           | 0           | 0                 | 0          | 1              | 0            | 71          | 81          | 0                        | 0          | 152            | 329                    | 1600                 |
|            |              |             |             |               | 1           |                |                  |             |             |                 |            |                |              |             |             |                   |            |                |              |             |             |                          |            |                |                        |                      |

# TOWN OF CALEDON RECEIVED

## Turning Movement Count Location Name: HWY 9 & TOTTENHAM RD / #10819 EAST ACCESS Date: Tue, Dec 03, 2019 Deployment Lead: Theo Daglis

Crozier & Associates

|             | J = I | <i>,</i> $\Box$ | IVI         | ニリ  |   |       | l |       |       |      |    |   |       |       |       |       |    |   |      |      |       |       |    |   |      |       |      |
|-------------|-------|-----------------|-------------|-----|---|-------|---|-------|-------|------|----|---|-------|-------|-------|-------|----|---|------|------|-------|-------|----|---|------|-------|------|
| 18:39:60    | 20    | 9               | 7           | 0   | 0 | 27    |   | 27    | 85    | 1    | 0  | 0 | 113   | 0     | 0     | 1     | 0  | 0 | 1    | 0    | 68    | 55    | 0  | 0 | 123  | 264   | 1428 |
| 18:45:00    | 12    | 0               | 11          | 0   | 0 | 23    |   | 34    | 71    | 0    | 0  | 0 | 105   | 0     | 0     | 0     | 0  | 0 | 0    | 0    | 42    | 62    | 0  | 0 | 104  | 232   | 1202 |
| Grand Total | 1692  | 5.              | <b>19</b> ( | )20 | 0 | 2746  |   | 866   | 3587  | 14   | 0  | 0 | 4467  | 8     | 5     | 8     | 0  | 0 | 21   | 3    | 3776  | 1676  | 0  | 0 | 5455 | 12689 | -    |
| Approach%   | 61.6% | 0.1%            | 38.3%       | 0%  |   | -     |   | 19.4% | 80.3% | 0.3% | 0% |   | -     | 38.1% | 23.8% | 38.1% | 0% |   | -    | 0.1% | 69.2% | 30.7% | 0% |   | -    | -     | -    |
| Totals %    | 13.3% | 0%              | 8.3%        | 0%  |   | 21.6% |   | 6.8%  | 28.3% | 0.1% | 0% |   | 35.2% | 0.1%  | 0%    | 0.1%  | 0% |   | 0.2% | 0%   | 29.8% | 13.2% | 0% |   | 43%  | -     | -    |
| Heavy       | 49    | 0               | 50          | 0   |   | -     |   | 52    | 377   | 0    | 0  |   | -     | 1     | 0     | 0     | 0  |   | -    | 0    | 456   | 50    | 0  |   | -    | -     | -    |
| Heavy %     | 2.9%  | 0%              | 4.8%        | 0%  |   | -     |   | 6%    | 10.5% | 0%   | 0% |   | -     | 12.5% | 0%    | 0%    | 0% |   | -    | 0%   | 12.1% | 3%    | 0% |   | -    | -     | -    |
| Bicycles    | -     | -               | -           | -   |   | -     |   | -     | -     | -    | -  |   | -     | -     | -     | -     | -  |   | -    | -    | -     | -     | -  |   | -    | -     | -    |
| Bicycle %   | -     | -               | -           | -   |   | -     |   | -     | -     | -    | -  |   | -     | -     | -     | -     | -  |   | -    | -    | -     | -     | -  |   | -    | -     | -    |



## Turning Movement Count Location Name: HWY 9 & TOTTENHAM RD / #10819 EAST ACCESS Date: Tue, Dec 03, 2019 Deployment Lead: Theo Daglis

Crozier & Associates

Date: Tue, Dec 03, 2019 Deployment Lead: Theo Daglis

|                      |       |      |       |         |              | Р              | eak H | our: ( | )7:15 | 5 AM -   | 08:1 | 5 AM We        | ather | Bro  | ken  | Clou                       | ds (-6 | 6.81 °C)       |       |       |       |                          |      |                |                        |
|----------------------|-------|------|-------|---------|--------------|----------------|-------|--------|-------|----------|------|----------------|-------|------|------|----------------------------|--------|----------------|-------|-------|-------|--------------------------|------|----------------|------------------------|
| stal tih. 1          | 5.    | 20   | 20    | N Appro | ach<br>AM RD |                |       |        |       | E Approa |      |                |       |      | #10  | <b>S Appro</b><br>819 EAST |        | SS             |       |       | ١     | <b>V Approa</b><br>HWY 9 | ch   |                | Int. Total<br>(15 min) |
|                      | Righ  |      |       |         | Peds         | Approach Total | Right | Thru   | Left  | U-Turn   | Peds | Approach Total | Right | Thru | Left | U-Turn                     | Peds   | Approach Total | Right | Thru  | Left  | U-Turn                   | Peds | Approach Total |                        |
| 07:15:00             | 101   | Ú    | 46    | ù       | Ú            | 147            | 21    | 107    | 0     | 0        | 0    | 128            | 0     | 0    | 0    | 0                          | 0      | 0              | 0     | 131   | 25    | 0                        | 0    | 156            | 431                    |
| 07:30:00             | 101   | 0    | 41    | 0       | 0            | 142            | 15    | 107    | 0     | 0        | 0    | 122            | 0     | 0    | 0    | 0                          | 0      | 0              | 0     | 117   | 17    | 0                        | 0    | 134            | 398                    |
| 07:45:00             | 91    | 0    | 59    | 0       | 0            | 150            | 22    | 114    | 0     | 0        | 0    | 136            | 0     | 0    | 0    | 0                          | 0      | 0              | 0     | 133   | 21    | 0                        | 0    | 154            | 440                    |
| 08:00:00             | 85    | 0    | 49    | 0       | 0            | 134            | 12    | 126    | 0     | 0        | 0    | 138            | 0     | 0    | 0    | 0                          | 0      | 0              | 0     | 137   | 20    | 0                        | 0    | 157            | 429                    |
| Grand Total          | 378   | 0    | 195   | 0       | 0            | 573            | 70    | 454    | 0     | 0        | 0    | 524            | 0     | 0    | 0    | 0                          | 0      | 0              | 0     | 518   | 83    | 0                        | 0    | 601            | 1698                   |
| Approach%            | 66%   | 0%   | 34%   | 0%      |              | -              | 13.4% | 86.6%  | 0%    | 0%       |      | -              | 0%    | 0%   | 0%   | 0%                         |        | -              | 0%    | 86.2% | 13.8% | 0%                       |      | -              | -                      |
| Totals %             | 22.39 | 6 0% | 11.5% | 0%      |              | 33.7%          | 4.1%  | 26.7%  | 0%    | 0%       |      | 30.9%          | 0%    | 0%   | 0%   | 0%                         |        | 0%             | 0%    | 30.5% | 4.9%  | 0%                       |      | 35.4%          | -                      |
| PHF                  | 0.94  | 0    | 0.83  | 0       |              | 0.96           | 0.8   | 0.9    | 0     | 0        |      | 0.95           | 0     | 0    | 0    | 0                          |        | 0              | 0     | 0.95  | 0.83  | 0                        |      | 0.96           | <u>.</u>               |
| Heavy                | 6     | 0    | 8     | 0       |              | 14             | 12    | 51     | 0     | 0        |      | 63             | 0     | 0    | 0    | 0                          |        | 0              | 0     | 72    | 7     | 0                        |      | 79             | -                      |
| Heavy %              | 1.6%  | 0%   | 4.1%  | 0%      |              | 2.4%           | 17.1% | 11.2%  | 0%    | 0%       |      | 12%            | 0%    | 0%   | 0%   | 0%                         |        | 0%             | 0%    | 13.9% | 8.4%  | 0%                       |      | 13.1%          | -                      |
| Lights               | 372   | 0    | 187   | 0       |              | 559            | 58    | 403    | 0     | 0        |      | 461            | 0     | 0    | 0    | 0                          |        | 0              | 0     | 446   | 76    | 0                        |      | 522            | -                      |
| Lights %             | 98.49 | 6 0% | 95.9% | 0%      |              | 97.6%          | 82.9% | 88.8%  | 0%    | 0%       |      | 88%            | 0%    | 0%   | 0%   | 0%                         |        | 0%             | 0%    | 86.1% | 91.6% | 0%                       |      | 86.9%          | -                      |
| Single-Unit Trucks   | 0     | 0    | 6     | 0       |              | 6              | 8     | 32     | 0     | 0        |      | 40             | 0     | 0    | 0    | 0                          |        | 0              | 0     | 39    | 5     | 0                        |      | 44             | -                      |
| Single-Unit Trucks % | 0%    | 0%   | 3.1%  | 0%      |              | 1%             | 11.4% | 7%     | 0%    | 0%       |      | 7.6%           | 0%    | 0%   | 0%   | 0%                         |        | 0%             | 0%    | 7.5%  | 6%    | 0%                       |      | 7.3%           | -                      |
| Buses                | 1     | 0    | 0     | 0       |              | 1              | 0     | 1      | 0     | 0        |      | 1              | 0     | 0    | 0    | 0                          |        | 0              | 0     | 1     | 0     | 0                        |      | 1              | -                      |
| Buses %              | 0.3%  | 0%   | 0%    | 0%      |              | 0.2%           | 0%    | 0.2%   | 0%    | 0%       |      | 0.2%           | 0%    | 0%   | 0%   | 0%                         |        | 0%             | 0%    | 0.2%  | 0%    | 0%                       |      | 0.2%           | -                      |
| Articulated Trucks   | 5     | 0    | 2     | 0       |              | 7              | 4     | 18     | 0     | 0        |      | 22             | 0     | 0    | 0    | 0                          |        | 0              | 0     | 32    | 2     | 0                        |      | 34             | -                      |
| Articulated Trucks % | 1.3%  | 0%   | 1%    | 0%      |              | 1.2%           | 5.7%  | 4%     | 0%    | 0%       |      | 4.2%           | 0%    | 0%   | 0%   | 0%                         |        | 0%             | 0%    | 6.2%  | 2.4%  | 0%                       |      | 5.7%           | -                      |

Articulated Trucks % 2.5% 0%

1.8%

1.1% 3.7%

### Turning Movement Count Location Name: HWY 9 & TOTTENHAM RD / #10819 EAST ACCESS Date: Tue, Dec 03, 2019 Deployment Lead: Theo Daglis

Crozier & Associates

3.4%

Date: Tue, Dec 03, 2019 Deployment Lead: Theo Daglis

0%

1.2%

0%

|                      |       |      |       |                   |      | F              | Peak H | lour: | 04:30 | ) PM -           | 05:3 | 0 PM We        | ather | : Ove | cast  | Cloud   | s (0. | 28 °C)         |       |       |       |                   |      |                |                        |
|----------------------|-------|------|-------|-------------------|------|----------------|--------|-------|-------|------------------|------|----------------|-------|-------|-------|---------|-------|----------------|-------|-------|-------|-------------------|------|----------------|------------------------|
| star tipe            | 5. 2  | 20   |       | I <b>Approa</b> c |      |                |        |       | E     | Approac<br>HWY 9 |      |                |       |       |       | Approac |       |                |       |       | V     | V Approa<br>HWY 9 |      |                | Int. Total<br>(15 min) |
|                      | Right | Thru | Left  | U-Turn            | Peds | Approach Total | Right  | Thru  | Left  | U-Turn           | Peds | Approach Total | Right | Thru  | Left  | U-Turn  | Peds  | Approach Total | Right | Thru  | Left  | U-Turn            | Peds | Approach Total |                        |
| 16:30:00             | 29    | Ú    | 28    | Ú                 | ů    | 57             | 48     | 165   | 2     | 0                | 0    | 215            | 0     | 0     | 0     | 0       | 0     | 0              | 0     | 123   | 97    | 0                 | 0    | 220            | 492                    |
| 16:45:00             | 34    | 1    | 20    | 0                 | 0    | 55             | 46     | 165   | 2     | 0                | 0    | 213            | 0     | 0     | 0     | 0       | 0     | 0              | 2     | 141   | 103   | 0                 | 0    | 246            | 514                    |
| 17:00:00             | 28    | 0    | 33    | 0                 | 0    | 61             | 44     | 144   | 0     | 0                | 0    | 188            | 3     | 3     | 3     | 0       | 0     | 9              | 0     | 159   | 111   | 0                 | 0    | 270            | 528                    |
| 17:15:00             | 29    | 0    | 22    | 0                 | 0    | 51             | 47     | 182   | 0     | 0                | 0    | 229            | 0     | 0     | 0     | 0       | 0     | 0              | 0     | 132   | 102   | 0                 | 0    | 234            | 514                    |
| Grand Total          | 120   | 1    | 103   | 0                 | 0    | 224            | 185    | 656   | 4     | 0                | 0    | 845            | 3     | 3     | 3     | 0       | 0     | 9              | 2     | 555   | 413   | 0                 | 0    | 970            | 2048                   |
| Approach%            | 53.6% | 0.4% | 46%   | 0%                |      | -              | 21.9%  | 77.6% | 0.5%  | 0%               |      | -              | 33.3% | 33.3% | 33.3% | 0%      |       | -              | 0.2%  | 57.2% | 42.6% | 0%                |      | -              | -                      |
| Totals %             | 5.9%  | 0%   | 5%    | 0%                |      | 10.9%          | 9%     | 32%   | 0.2%  | 0%               |      | 41.3%          | 0.1%  | 0.1%  | 0.1%  | 0%      |       | 0.4%           | 0.1%  | 27.1% | 20.2% | 0%                |      | 47.4%          | -                      |
| PHF                  | 0.88  | 0.25 | 0.78  | 0                 |      | 0.92           | 0.96   | 0.9   | 0.5   | 0                |      | 0.92           | 0.25  | 0.25  | 0.25  | 0       |       | 0.25           | 0.25  | 0.87  | 0.93  | 0                 |      | 0.9            | -                      |
| Heavy                | 5     | 0    | 2     | 0                 |      | 7              | 4      | 46    | 0     | 0                |      | 50             | 0     | 0     | 0     | 0       |       | 0              | 0     | 44    | 6     | 0                 |      | 50             | -                      |
| Heavy %              | 4.2%  | 0%   | 1.9%  | 0%                |      | 3.1%           | 2.2%   | 7%    | 0%    | 0%               |      | 5.9%           | 0%    | 0%    | 0%    | 0%      |       | 0%             | 0%    | 7.9%  | 1.5%  | 0%                |      | 5.2%           | -                      |
| Lights               | 115   | 1    | 101   | 0                 |      | 217            | 181    | 610   | 4     | 0                |      | 795            | 3     | 3     | 3     | 0       |       | 9              | 2     | 511   | 407   | 0                 |      | 920            | -                      |
| Lights %             | 95.8% | 100% | 98.1% | 0%                |      | 96.9%          | 97.8%  | 93%   | 100%  | 0%               |      | 94.1%          | 100%  | 100%  | 100%  | 0%      |       | 100%           | 100%  | 92.1% | 98.5% | 0%                |      | 94.8%          | -                      |
| Single-Unit Trucks   | 2     | 0    | 1     | 0                 |      | 3              | 1      | 20    | 0     | 0                |      | 21             | 0     | 0     | 0     | 0       |       | 0              | 0     | 16    | 1     | 0                 |      | 17             | -                      |
| Single-Unit Trucks % | 1.7%  | 0%   | 1%    | 0%                |      | 1.3%           | 0.5%   | 3%    | 0%    | 0%               |      | 2.5%           | 0%    | 0%    | 0%    | 0%      |       | 0%             | 0%    | 2.9%  | 0.2%  | 0%                |      | 1.8%           | -                      |
| Buses                | 0     | 0    | 0     | 0                 |      | 0              | 1      | 2     | 0     | 0                |      | 3              | 0     | 0     | 0     | 0       |       | 0              | 0     | 0     | 0     | 0                 |      | 0              | -                      |
| Buses %              | 0%    | 0%   | 0%    | 0%                |      | 0%             | 0.5%   | 0.3%  | 0%    | 0%               |      | 0.4%           | 0%    | 0%    | 0%    | 0%      |       | 0%             | 0%    | 0%    | 0%    | 0%                |      | 0%             | -                      |
| Articulated Trucks   | 3     | 0    | 1     | 0                 |      | 4              | 2      | 24    | 0     | 0                |      | 26             | 0     | 0     | 0     | 0       |       | 0              | 0     | 28    | 5     | 0                 |      | 33             | -                      |

3.1%



TOWN OF CALEDON

RECEIVED

Jul 15, 2020

9





TOWN OF CALEDON

RECEIVED

Jul 15, 2020

9

9



| ase Timing | ase Timing 1-8 - Set 1, Peel - Hwy 9 @ | Tottenham Rd | ham Ro         |          |          |          |                        |            | T                                       |
|------------|----------------------------------------|--------------|----------------|----------|----------|----------|------------------------|------------|-----------------------------------------|
|            |                                        |              |                |          |          |          |                        | V          | OW                                      |
| Next       | Phase: 1                               |              |                | ব        |          |          | Ju                     | PI<br>R    | /N                                      |
|            | Walk D                                 | 7            |                | 7        |          | <u></u>  |                        |            | OF                                      |
| Prev.      | Pedestrian Clear 0                     | <u>8</u>     | l <sub>o</sub> | 2        | <u>.</u> | 8        | _<br>5, 2              | NN<br>EI   | <u> </u>                                |
|            | Minimum Green 0                        | 8            |                | 100      | <u> </u> | 2        | <br>2 <mark>0</mark> 2 | VEI<br>BIO | ΔΙ                                      |
| Save       | Passage 0.0                            | 4.0          | 0:0            | 3.0      | 3.0      | 0        | 0.0                    |            | ED                                      |
| Lie clair  | Maximum 1 0                            | 20           |                | 35       | 15       | <u>B</u> | b                      | 35         |                                         |
| obioad     | Maximum 2 0                            | 28           | <u>_</u>       | 40       | 28       |          | le.                    |            | ī                                       |
| Duload     | Yellow Change 0.0                      | 5.9          | 0:0            | 5.9      | 3.0      | 5.9      | 00                     | 5.9        |                                         |
|            | Red Clear 0.0                          | 1.7          | <u>e</u>       | 2.7      | 00       | 1.7      | 00                     | 2.7        |                                         |
| alggo      | Red Revert 0.0                         | 2.0          | 0:0            | 2.0      | 0:0      | 2.0      | 0.0                    |            |                                         |
|            | Added Initial 0.0                      | 1.0          | 00             | 0:0      | 0.0      | 0.       | 00                     | 0.0        | ,                                       |
| Copy       | Maximum Initial 0                      | 8            |                |          |          | 34       | <u>_</u>               | 6          | ,                                       |
|            | Time Before Reduction 0                |              |                | 0        |          |          | L                      | <u>_</u>   |                                         |
| 000        | Cars Before Reduction 0                | <u>.</u>     | <u> </u>       | <u>_</u> | <u> </u> | <u> </u> | <u> </u>               | <u>_</u>   |                                         |
| Dell's de  | Time To Reduce 0                       | Ŀ            |                | Ŀ        |          | _        | <u>_</u>               | <u>_</u>   |                                         |
|            | Reduce By 0.0                          | 0.0          | 000            | 0:0      | 0.0      | 0.0      | 00                     | 00         |                                         |
|            | Minimum Gap 0.0                        | 0:0          | 9              | 0.0      | 0.0      | 8        | 8                      | 8          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
|            | Dynamic Max Limit 0                    | <u> </u>     |                | _        | _        |          | <u>_</u>               | _          |                                         |
|            | Dynamic Max Step 0.0                   | <u>8</u>     | <u>e</u>       | 00       | 0.0      | 8        | 8                      | 8          | V                                       |
|            | Alternate Walk 0                       | <u></u>      | <u></u>        | 0        |          | <u> </u> | _                      | <u>_</u>   | Ç.                                      |
|            | Advance Walk 0                         | <u> </u>     |                |          | _        | L        | <u>_</u>               | _          |                                         |
|            | Delay Walk 0                           | <u>_</u>     |                |          |          | Ŀ        | <u>_</u>               | <u>_</u>   | Ç.,                                     |
|            | Alternate Passage 0.0                  | 000          | 000            | 0.0      | 00       | 00       | 8                      | 00         |                                         |
|            | Start Delay 0                          |              |                |          | _        | Ŀ        |                        | _          |                                         |
|            | Conditional Svc. Min. 0                | <u></u>      |                | 0        |          |          | <u>_</u>               | <u>_</u>   |                                         |
|            | Green Clear 0                          | L            |                | <u></u>  |          |          | <u>_</u>               |            |                                         |
|            | Alternate Ped Clear 0                  | L            |                |          | <u>_</u> | L        | le l                   | <u>_</u>   |                                         |
|            | Alternate Min Green 0                  | <u> </u>     |                |          |          | <u> </u> | Ŀ                      | 0          |                                         |
|            |                                        |              |                |          |          |          |                        |            |                                         |



Jul 15, 2020

### APPENDIX D

Level of Service Definitions

# TOWN OF CALEDON PLANNING RECEIVED

Level of Service Definitions

Jul 159-2020 Controlled Intersections

| Level of Service | Control Delay per Vehicle (seconds) | Interpretation                                                                                                                    |
|------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| А                | ≤ 10                                | EXCELLENT. Large and frequent gaps in traffic on the main roadway. Queuing on the minor street is rare.                           |
| В                | > 10 and ≤ 15                       | VERY GOOD. Many gaps exist in traffic on the main roadway. Queuing on the minor street is minimal.                                |
| С                | > 15 and ≤ 25                       | GOOD. Fewer gaps exist in traffic on the main roadway. Delay on minor approach becomes more noticeable.                           |
| D                | > 25 and ≤ 35                       | FAIR. Infrequent and shorter gaps in traffic on the main roadway. Queue lengths develop on the minor street.                      |
| E                | > 35 and ≤ 50                       | POOR. Very infrequent gaps in traffic on the main roadway. Queue lengths become noticeable.                                       |
| F                | > 50                                | UNSATISFACTORY. Very few gaps in traffic on the main roadway. Excessive delay with significant queue lengths on the minor street. |

Adapted from Highway Capacity Manual 2000, Transportation Research Board

# TOWN OF CALEDON PLANNING RECEIVED

Level of Service Definitions

Jul 1stand20200ersections

| Level of Service | Control Delay per<br>Vehicle (seconds) | Interpretation                                                                                                                                                                                             |
|------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| А                | ≤ 10                                   | EXCELLENT. Extremely favourable progression with most vehicles arriving during the green phase. Most vehicles do not stop and short cycle lengths may contribute to low delay.                             |
| В                | > 10 and ≤ 20                          | VERY GOOD. Very good progression and/or short cycle lengths with slightly more vehicles stopping than LOS "A" causing slightly higher levels of average delay.                                             |
| С                | > 20 and ≤ 35                          | GOOD. Fair progression and longer cycle lengths lead to a greater number of vehicles stopping than LOS "B".                                                                                                |
| D                | > 35 and ≤ 55                          | FAIR. Congestion becomes noticeable with higher average delays resulting from a combination of long cycle lengths, high volume-to-capacity ratios and unfavourable progression.                            |
| E                | > 55 and ≤ 80                          | POOR. Lengthy delays values are indicative of poor progression, long cycle lengths and high volume-to-capacity ratios. Individual cycle failures are common with individual movement failures also common. |
| F                | > 80                                   | UNSATISFACTORY. Indicative of oversaturated conditions with vehicular demand greater than the capacity of the intersection.                                                                                |

Adapted from Highway Capacity Manual 2000, Transportation Research Board



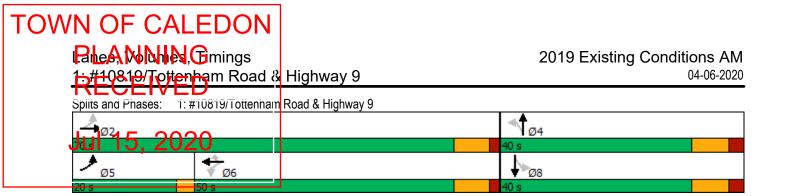
Jul 15, 2020

# APPENDIX E

Detailed Capacity Analysis Worksheets

Pale A Work Cimings
1:#10819/Tottenham Road & Highway 9

2019 Existing Conditions AM 04-06-2020


| DALIAS IS ONE HS           | III Roa | u a ni          | gnway | 9     |          |       |       |          |             |             | 04-0        | 00-2020 |
|----------------------------|---------|-----------------|-------|-------|----------|-------|-------|----------|-------------|-------------|-------------|---------|
| RECEIVED                   | ځ       | +               | •     | •     | •        | •     | 4     | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | ļ           | 4       |
| Lane Group 2020            | EBL     | EBT             | EBR   | WBL   | WBT      | WBR   | NBL   | NBT      | NBR         | SBL         | SBT         | SBR     |
| Lane Configurations        | ሻ       | <b>♦</b> 1≽     |       | 7     | <b>^</b> | *     |       | 4        |             | 7           | f)          |         |
| Traffic Volume (vph)       | 83      | <b>5</b> 18     | 0     | 0     | 454      | 70    | 0     | 0        | 0           | 195         | 0           | 378     |
| Future Volume (vph)        | 83      | <del>5</del> 18 | 0     | 0     | 454      | 70    | 0     | 0        | 0           | 195         | 0           | 378     |
| Ideal Flow (vphpl)         | 1900    | 1900            | 1900  | 1900  | 1900     | 1900  | 1900  | 1900     | 1900        | 1900        | 1900        | 1900    |
| Lane Width (m)             | 3.3     | 3.5             | 3.5   | 2.9   | 3.5      | 3.5   | 3.5   | 3.5      | 3.5         | 3.6         | 3.6         | 3.6     |
| Storage Length (m)         | 85.0    |                 | 0.0   | 85.0  |          | 85.0  | 0.0   |          | 0.0         | 40.0        |             | 0.0     |
| Storage Lanes              | 1       |                 | 0     | 1     |          | 1     | 0     |          | 0           | 1           |             | 0       |
| Taper Length (m)           | 75.0    |                 |       | 80.0  |          |       | 7.6   |          |             | 40.0        |             |         |
| Lane Util. Factor          | 1.00    | 0.95            | 0.95  | 1.00  | 0.95     | 1.00  | 1.00  | 1.00     | 1.00        | 1.00        | 1.00        | 1.00    |
| Frt                        |         |                 |       |       |          | 0.850 |       |          |             |             | 0.850       |         |
| Flt Protected              | 0.950   |                 |       |       |          |       |       |          |             | 0.950       |             |         |
| Satd. Flow (prot)          | 1616    | 3131            | 0     | 1752  | 3216     | 1365  | 0     | 1879     | 0           | 1736        | 1583        | 0       |
| Flt Permitted              | 0.456   |                 | •     |       |          | ,,,,, | •     |          |             | 0.757       | ,,,,,       |         |
| Satd. Flow (perm)          | 775     | 3131            | 0     | 1752  | 3216     | 1365  | 0     | 1879     | 0           | 1383        | 1583        | 0       |
| Right Turn on Red          | 110     | 0101            | Yes   | 1102  | 02.0     | Yes   | •     | 1010     | Yes         | 1000        | 1000        | Yes     |
| Satd. Flow (RTOR)          |         |                 | . 00  |       |          | 85    |       |          | . 00        |             | 469         | . 00    |
| Link Speed (k/h)           |         | 80              |       |       | 80       | 00    |       | 50       |             |             | 80          |         |
| Link Distance (m)          |         | 93.8            |       |       | 227.5    |       |       | 62.5     |             |             | 163.3       |         |
| Travel Time (s)            |         | 4.2             |       |       | 10.2     |       |       | 4.5      |             |             | 7.3         |         |
| Peak Hour Factor           | 0.96    | 0.96            | 0.96  | 0.96  | 0.96     | 0.96  | 0.96  | 0.96     | 0.96        | 0.96        | 0.96        | 0.96    |
| Heavy Vehicles (%)         | 8%      | 14%             | 0.30  | 0.30  | 11%      | 17%   | 0.30  | 0.30     | 0.30        | 4%          | 0.30        | 2%      |
| Adj. Flow (vph)            | 86      | 540             | 0 /8  | 0 /8  | 473      | 73    | 0 /8  | 0 / 0    | 0 /8        | 203         | 0 /0        | 394     |
| Shared Lane Traffic (%)    | 00      | 340             | U     | U     | 413      | 13    | U     | U        | U           | 203         | U           | 334     |
| Lane Group Flow (vph)      | 86      | 540             | 0     | 0     | 473      | 73    | 0     | 0        | 0           | 203         | 394         | 0       |
| Enter Blocked Intersection | No      | No              | No    | No    | No       | No    | No    | No       | No          | No          | No          | No      |
| Lane Alignment             | Left    | Left            | Right | Left  | Left     | Right | Left  | Left     | Right       | Left        | Left        | Right   |
| Median Width(m)            | Leit    | 3.3             | Night | Leit  | 3.3      | Night | Leit  | 3.6      | Night       | Leit        | 3.6         | Right   |
| Link Offset(m)             |         | 0.0             |       |       | 0.0      |       |       | 0.0      |             |             | 0.0         |         |
| Crosswalk Width(m)         |         | 4.9             |       |       | 4.9      |       |       | 4.9      |             |             | 4.9         |         |
| Two way Left Turn Lane     |         | 4.3             |       |       | 4.3      |       |       | 4.3      |             |             | 4.3         |         |
| Headway Factor             | 1.04    | 1.01            | 1.01  | 1.11  | 1.01     | 1.01  | 1.01  | 1.01     | 1.01        | 1.00        | 1.00        | 1.00    |
| Turning Speed (k/h)        | 24      | 1.01            | 1.01  | 24    | 1.01     | 1.01  | 24    | 1.01     | 1.01        | 24          | 1.00        | 1.00    |
| Number of Detectors        | 1       | 2               | 14    | 1     | 2        | 1     | 1     | 2        | 14          | 1           | 2           | 14      |
| Detector Template          | Left    | Thru            |       | Left  | Thru     | Right | Left  | Thru     |             | Left        | Thru        |         |
| Leading Detector (m)       | 6.1     | 30.5            |       | 6.1   | 30.5     | 6.1   | 6.1   | 30.5     |             | 6.1         | 30.5        |         |
| Trailing Detector (m)      | 0.0     | 0.0             |       | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |             | 0.0         | 0.0         |         |
| Detector 1 Position(m)     | 0.0     | 0.0             |       | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |             | 0.0         | 0.0         |         |
| Detector 1 Size(m)         | 6.1     | 1.8             |       | 6.1   | 1.8      | 6.1   | 6.1   | 1.8      |             | 6.1         | 1.8         |         |
| Detector 1 Type            | Cl+Ex   | Cl+Ex           |       | Cl+Ex | Cl+Ex    | Cl+Ex | Cl+Ex | CI+Ex    |             | Cl+Ex       | CI+Ex       |         |
| Detector 1 Channel         | CI+EX   | CI+EX           |       | CI+EX | CI+EX    | CI+EX | CI+EX | CI+EX    |             | CI+EX       | CI+EX       |         |
| Detector 1 Extend (s)      | 0.0     | 0.0             |       | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |             | 0.0         | 0.0         |         |
| ( )                        | 0.0     | 0.0             |       | 0.0   | 0.0      |       | 0.0   | 0.0      |             | 0.0         | 0.0         |         |
| Detector 1 Queue (s)       | 0.0     | 0.0             |       | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |             | 0.0         | 0.0         |         |
| Detector 1 Delay (s)       | 0.0     | 28.7            |       | 0.0   | 28.7     | 0.0   | 0.0   | 28.7     |             | 0.0         | 28.7        |         |
| Detector 2 Position(m)     |         |                 |       |       |          |       |       |          |             |             | 28.7<br>1.8 |         |
| Detector 2 Size(m)         |         | 1.8             |       |       | 1.8      |       |       | 1.8      |             |             |             |         |
| Detector 2 Type            |         | CI+Ex           |       |       | Cl+Ex    |       |       | CI+Ex    |             |             | CI+Ex       |         |
| Detector 2 Channel         |         | 0.0             |       |       | 0.0      |       |       | 0.0      |             |             | 0.0         |         |
| Detector 2 Extend (s)      |         | 0.0             |       | D     | 0.0      | De    |       | 0.0      |             | De          | 0.0         |         |
| Turn Type                  | pm+pt   | NA              |       | Perm  | NA       | Perm  |       |          |             | Perm        | NA          |         |

ICU Level of Service D

Intersection Signal Delay: 14.1

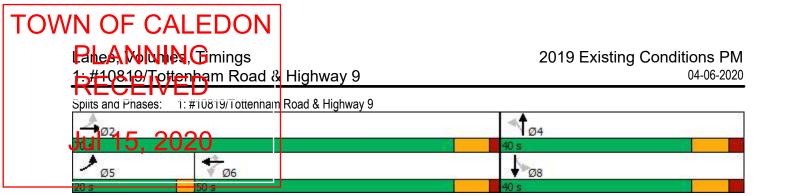
Analysis Period (min) 15

Intersection Capacity Utilization 76.6%



Hane A With M. Gimings
1:#10819/Tottenham Road & Highway 9

2019 Existing Conditions PM 04-06-2020


| KECEIVED                   | _     |                 | ,     |         | _        |         |         |        |       | ,       |          |       |
|----------------------------|-------|-----------------|-------|---------|----------|---------|---------|--------|-------|---------|----------|-------|
|                            | ۶     | +               | *     | •       | •        | •       | 1       | Ť      | ~     | -       | ¥        | 4     |
| Jane Group 2020            | EBL   | EBT             | EBR   | WBL     | WBT      | WBR     | NBL     | NBT    | NBR   | SBL     | SBT      | SBR   |
| Lane Configurations        | ሻ     | Λ₽              |       | ሻ       | <b>^</b> | 7       |         | ₩.     |       | ሻ       | <b>₽</b> |       |
| Traffic Volume (vph)       | 413   | <b>\$</b> 55    | 2     | 4       | 656      | 186     | 3       | 3      | 3     | 103     | 1        | 120   |
| Future Volume (vph)        | 413   | <del>5</del> 55 | 2     | 4       | 656      | 186     | 3       | 3      | 3     | 103     | 1        | 120   |
| Ideal Flow (vphpl)         | 1900  | 1900            | 1900  | 1900    | 1900     | 1900    | 1900    | 1900   | 1900  | 1900    | 1900     | 1900  |
| Lane Width (m)             | 3.3   | 3.5             | 3.5   | 2.9     | 3.5      | 3.5     | 3.5     | 3.5    | 3.5   | 3.6     | 3.6      | 3.6   |
| Storage Length (m)         | 85.0  |                 | 0.0   | 85.0    |          | 85.0    | 0.0     |        | 0.0   | 40.0    |          | 0.0   |
| Storage Lanes              | 1     |                 | 0     | 1       |          | 1       | 0       |        | 0     | 1       |          | 0     |
| Taper Length (m)           | 75.0  |                 |       | 80.0    |          |         | 7.6     |        |       | 40.0    |          |       |
| Lane Util. Factor          | 1.00  | 0.95            | 0.95  | 1.00    | 0.95     | 1.00    | 1.00    | 1.00   | 1.00  | 1.00    | 1.00     | 1.00  |
| Frt                        |       | 0.999           |       |         |          | 0.850   |         | 0.955  |       |         | 0.851    |       |
| Flt Protected              | 0.950 |                 |       | 0.950   |          |         |         | 0.984  |       | 0.950   |          |       |
| Satd. Flow (prot)          | 1711  | 3303            | 0     | 1665    | 3336     | 1566    | 0       | 1766   | 0     | 1770    | 1555     | 0     |
| Flt Permitted              | 0.338 |                 |       | 0.436   |          |         |         | 0.867  |       | 0.752   |          |       |
| Satd. Flow (perm)          | 609   | 3303            | 0     | 764     | 3336     | 1566    | 0       | 1556   | 0     | 1401    | 1555     | 0     |
| Right Turn on Red          |       |                 | Yes   |         |          | Yes     |         |        | Yes   |         |          | Yes   |
| Satd. Flow (RTOR)          |       | 1               |       |         |          | 192     |         | 3      |       |         | 124      |       |
| Link Speed (k/h)           |       | 80              |       |         | 80       |         |         | 50     |       |         | 80       |       |
| Link Distance (m)          |       | 93.8            |       |         | 227.5    |         |         | 62.5   |       |         | 163.3    |       |
| Travel Time (s)            |       | 4.2             |       |         | 10.2     |         |         | 4.5    |       |         | 7.3      |       |
| Peak Hour Factor           | 0.97  | 0.97            | 0.97  | 0.97    | 0.97     | 0.97    | 0.97    | 0.97   | 0.97  | 0.97    | 0.97     | 0.97  |
| Heavy Vehicles (%)         | 2%    | 8%              | 0%    | 0%      | 7%       | 2%      | 0%      | 0%     | 0%    | 2%      | 0%       | 4%    |
| Adj. Flow (vph)            | 426   | 572             | 2     | 4       | 676      | 192     | 3       | 3      | 3     | 106     | 1        | 124   |
| Shared Lane Traffic (%)    |       |                 | _     | -       |          |         | -       | -      | -     |         | •        |       |
| Lane Group Flow (vph)      | 426   | 574             | 0     | 4       | 676      | 192     | 0       | 9      | 0     | 106     | 125      | 0     |
| Enter Blocked Intersection | No    | No              | No    | No      | No       | No      | No      | No     | No    | No      | No       | No    |
| Lane Alignment             | Left  | Left            | Right | Left    | Left     | Right   | Left    | Left   | Right | Left    | Left     | Right |
| Median Width(m)            |       | 3.3             |       |         | 3.3      |         |         | 3.6    |       |         | 3.6      | 9     |
| Link Offset(m)             |       | 0.0             |       |         | 0.0      |         |         | 0.0    |       |         | 0.0      |       |
| Crosswalk Width(m)         |       | 4.9             |       |         | 4.9      |         |         | 4.9    |       |         | 4.9      |       |
| Two way Left Turn Lane     |       |                 |       |         |          |         |         |        |       |         |          |       |
| Headway Factor             | 1.04  | 1.01            | 1.01  | 1.11    | 1.01     | 1.01    | 1.01    | 1.01   | 1.01  | 1.00    | 1.00     | 1.00  |
| Turning Speed (k/h)        | 24    |                 | 14    | 24      |          | 14      | 24      |        | 14    | 24      |          | 14    |
| Number of Detectors        | 1     | 2               |       | 1       | 2        | 1       | 1       | 2      |       | 1       | 2        |       |
| Detector Template          | Left  | Thru            |       | Left    | Thru     | Right   | Left    | Thru   |       | Left    | Thru     |       |
| Leading Detector (m)       | 6.1   | 30.5            |       | 6.1     | 30.5     | 6.1     | 6.1     | 30.5   |       | 6.1     | 30.5     |       |
| Trailing Detector (m)      | 0.0   | 0.0             |       | 0.0     | 0.0      | 0.0     | 0.0     | 0.0    |       | 0.0     | 0.0      |       |
| Detector 1 Position(m)     | 0.0   | 0.0             |       | 0.0     | 0.0      | 0.0     | 0.0     | 0.0    |       | 0.0     | 0.0      |       |
| Detector 1 Size(m)         | 6.1   | 1.8             |       | 6.1     | 1.8      | 6.1     | 6.1     | 1.8    |       | 6.1     | 1.8      |       |
| Detector 1 Type            | Cl+Ex | Cl+Ex           |       | CI+Ex   | CI+Ex    | CI+Ex   | CI+Ex   | CI+Ex  |       | CI+Ex   | CI+Ex    |       |
| Detector 1 Channel         | V     | J/.             |       | J/\     | J        | J       | J/.     | J      |       | J       | · - ·    |       |
| Detector 1 Extend (s)      | 0.0   | 0.0             |       | 0.0     | 0.0      | 0.0     | 0.0     | 0.0    |       | 0.0     | 0.0      |       |
| Detector 1 Queue (s)       | 0.0   | 0.0             |       | 0.0     | 0.0      | 0.0     | 0.0     | 0.0    |       | 0.0     | 0.0      |       |
| Detector 1 Delay (s)       | 0.0   | 0.0             |       | 0.0     | 0.0      | 0.0     | 0.0     | 0.0    |       | 0.0     | 0.0      |       |
| Detector 2 Position(m)     | 0.0   | 28.7            |       | 0.0     | 28.7     | 0.0     | 0.0     | 28.7   |       | 0.0     | 28.7     |       |
| Detector 2 Size(m)         |       | 1.8             |       |         | 1.8      |         |         | 1.8    |       |         | 1.8      |       |
| Detector 2 Type            |       | CI+Ex           |       |         | CI+Ex    |         |         | CI+Ex  |       |         | CI+Ex    |       |
| Detector 2 Channel         |       | OI LX           |       |         | O. LA    |         |         | U, LX  |       |         | OI LX    |       |
| Detector 2 Extend (s)      |       | 0.0             |       |         | 0.0      |         |         | 0.0    |       |         | 0.0      |       |
| Turn Type                  | pm+pt | NA              |       | Perm    | NA       | Perm    | Perm    | NA     |       | Perm    | NA       |       |
|                            | γ γι  | 14/1            |       | . 0.111 | 1 1/ 1   | . 0.111 | . 0.111 | : 1/ \ |       | . 0.111 | 1 1// 1  |       |

ICU Level of Service C

Intersection Signal Delay: 12.6

Analysis Period (min) 15

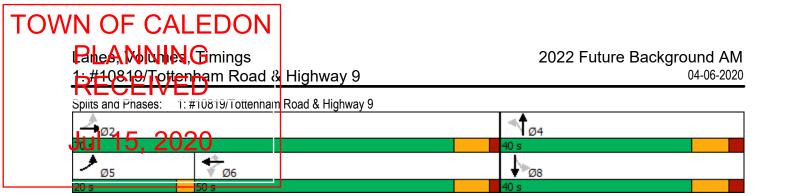
Intersection Capacity Utilization 70.2%



Pale A Work Cimings
1:#10819/Tottenham Road & Highway 9

2022 Future Background AM 04-06-2020

| Ditto A lone Ha            | III INOa | u (X I II(   | gnway         | 9     |          |       |       |          |             |             | 0+-0  | 00-2020 |
|----------------------------|----------|--------------|---------------|-------|----------|-------|-------|----------|-------------|-------------|-------|---------|
| REOLIVED                   | خر       | +            | $\rightarrow$ | •     | <b>←</b> | •     | •     | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | ļ     | 4       |
| Lane Group 2020            | EBL      | EBT          | EBR           | WBL   | WBT      | WBR   | NBL   | NBT      | NBR         | SBL         | SBT   | SBR     |
| Lane Configurations        | 7        | <b>^1</b>    |               | ħ     | <b>^</b> | 7     | Ť     | f)       |             | ¥           | £     |         |
| Traffic Volume (vph)       | 88       | <b>\$</b> 50 | 0             | 0     | 482      | 74    | 0     | 0        | 0           | 207         | 0     | 401     |
| Future Volume (vph)        | 88       | 550          | 0             | 0     | 482      | 74    | 0     | 0        | 0           | 207         | 0     | 401     |
| Ideal Flow (vphpl)         | 1900     | 1900         | 1900          | 1900  | 1900     | 1900  | 1900  | 1900     | 1900        | 1900        | 1900  | 1900    |
| Lane Width (m)             | 3.3      | 3.5          | 3.5           | 2.9   | 3.5      | 3.5   | 3.5   | 3.5      | 3.5         | 3.6         | 3.6   | 3.6     |
| Storage Length (m)         | 85.0     |              | 0.0           | 85.0  |          | 85.0  | 0.0   |          | 0.0         | 40.0        |       | 0.0     |
| Storage Lanes              | 1        |              | 0             | 1     |          | 1     | 1     |          | 0           | 1           |       | 0       |
| Taper Length (m)           | 75.0     |              |               | 80.0  |          |       | 7.6   |          |             | 40.0        |       |         |
| Lane Util. Factor          | 1.00     | 0.95         | 0.95          | 1.00  | 0.95     | 1.00  | 1.00  | 1.00     | 1.00        | 1.00        | 1.00  | 1.00    |
| Frt                        |          |              |               |       |          | 0.850 |       |          |             |             | 0.850 |         |
| Flt Protected              | 0.950    |              |               |       |          |       |       |          |             | 0.950       |       |         |
| Satd. Flow (prot)          | 1616     | 3131         | 0             | 1752  | 3216     | 1365  | 1879  | 1879     | 0           | 1736        | 1583  | 0       |
| Flt Permitted              | 0.440    |              |               |       |          |       |       |          |             | 0.757       |       |         |
| Satd. Flow (perm)          | 748      | 3131         | 0             | 1752  | 3216     | 1365  | 1879  | 1879     | 0           | 1383        | 1583  | 0       |
| Right Turn on Red          |          |              | Yes           |       |          | Yes   |       |          | Yes         |             |       | Yes     |
| Satd. Flow (RTOR)          |          |              |               |       |          | 85    |       |          |             |             | 454   |         |
| Link Speed (k/h)           |          | 80           |               |       | 80       |       |       | 50       |             |             | 80    |         |
| Link Distance (m)          |          | 247.2        |               |       | 227.5    |       |       | 62.5     |             |             | 163.3 |         |
| Travel Time (s)            |          | 11.1         |               |       | 10.2     |       |       | 4.5      |             |             | 7.3   |         |
| Peak Hour Factor           | 0.96     | 0.96         | 0.96          | 0.96  | 0.96     | 0.96  | 0.96  | 0.96     | 0.96        | 0.96        | 0.96  | 0.96    |
| Heavy Vehicles (%)         | 8%       | 14%          | 0%            | 0%    | 11%      | 17%   | 0%    | 0%       | 0%          | 4%          | 0%    | 2%      |
| Adj. Flow (vph)            | 92       | 573          | 0             | 0     | 502      | 77    | 0     | 0        | 0           | 216         | 0     | 418     |
| Shared Lane Traffic (%)    |          |              |               |       |          |       |       |          |             |             |       |         |
| Lane Group Flow (vph)      | 92       | 573          | 0             | 0     | 502      | 77    | 0     | 0        | 0           | 216         | 418   | 0       |
| Enter Blocked Intersection | No       | No           | No            | No    | No       | No    | No    | No       | No          | No          | No    | No      |
| Lane Alignment             | Left     | Left         | Right         | Left  | Left     | Right | Left  | Left     | Right       | Left        | Left  | Right   |
| Median Width(m)            |          | 3.3          |               |       | 3.3      |       |       | 3.6      |             |             | 3.6   |         |
| Link Offset(m)             |          | 0.0          |               |       | 0.0      |       |       | 0.0      |             |             | 0.0   |         |
| Crosswalk Width(m)         |          | 4.9          |               |       | 4.9      |       |       | 4.9      |             |             | 4.9   |         |
| Two way Left Turn Lane     |          |              |               |       |          |       |       |          |             |             |       |         |
| Headway Factor             | 1.04     | 1.01         | 1.01          | 1.11  | 1.01     | 1.01  | 1.01  | 1.01     | 1.01        | 1.00        | 1.00  | 1.00    |
| Turning Speed (k/h)        | 24       |              | 14            | 24    |          | 14    | 24    |          | 14          | 24          |       | 14      |
| Number of Detectors        | 1        | 2            |               | 1     | 2        | 1     | 1     | 2        |             | 1           | 2     |         |
| Detector Template          | Left     | Thru         |               | Left  | Thru     | Right | Left  | Thru     |             | Left        | Thru  |         |
| Leading Detector (m)       | 6.1      | 30.5         |               | 6.1   | 30.5     | 6.1   | 6.1   | 30.5     |             | 6.1         | 30.5  |         |
| Trailing Detector (m)      | 0.0      | 0.0          |               | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |             | 0.0         | 0.0   |         |
| Detector 1 Position(m)     | 0.0      | 0.0          |               | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |             | 0.0         | 0.0   |         |
| Detector 1 Size(m)         | 6.1      | 1.8          |               | 6.1   | 1.8      | 6.1   | 6.1   | 1.8      |             | 6.1         | 1.8   |         |
| Detector 1 Type            | CI+Ex    | CI+Ex        |               | CI+Ex | CI+Ex    | CI+Ex | CI+Ex | Cl+Ex    |             | CI+Ex       | CI+Ex |         |
| Detector 1 Channel         |          |              |               |       |          |       |       |          |             |             |       |         |
| Detector 1 Extend (s)      | 0.0      | 0.0          |               | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |             | 0.0         | 0.0   |         |
| Detector 1 Queue (s)       | 0.0      | 0.0          |               | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |             | 0.0         | 0.0   |         |
| Detector 1 Delay (s)       | 0.0      | 0.0          |               | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |             | 0.0         | 0.0   |         |
| Detector 2 Position(m)     |          | 28.7         |               |       | 28.7     |       |       | 28.7     |             |             | 28.7  |         |
| Detector 2 Size(m)         |          | 1.8          |               |       | 1.8      |       |       | 1.8      |             |             | 1.8   |         |
| Detector 2 Type            |          | CI+Ex        |               |       | Cl+Ex    |       |       | CI+Ex    |             |             | CI+Ex |         |
| Detector 2 Channel         |          |              |               |       |          |       |       |          |             |             |       |         |
| Detector 2 Extend (s)      |          | 0.0          |               |       | 0.0      |       |       | 0.0      |             |             | 0.0   |         |
| Turn Type                  | pm+pt    | NA           |               | Perm  | NA       | Perm  | Perm  |          |             | Perm        | NA    |         |


ICU Level of Service D

Maximum v/c Ratio: 0.74 Intersection Signal Delay: 14.9

Analysis Period (min) 15

Intersection Capacity Utilization 78.0%

| Synchro 9 | Report |
|-----------|--------|
|-----------|--------|



Hanes With A. Gimings

1:#10819/Tottenham Road & Highway 9

2022 Future Background PM 04-06-2020

| Lane Group5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lane Configurations         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         0         1         1         1         1         0         1         1         0         1         1         0         1         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                    |
| Traffic Volume (vph)         438         \$89         2         4         696         196         3         3         3         109         1         127           Future Volume (vph)         438         589         2         4         696         196         3         3         3         109         1         127           Ideal Flow (vphpl)         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900                         |
| Traffic Volume (vph)         438         589         2         4         696         196         3         3         3         109         1         127           Future Volume (vph)         438         589         2         4         696         196         3         3         3         109         1         127           Ideal Flow (vphpl)         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900                          |
| Future Volume (vph)         438         589         2         4         696         196         3         3         3         109         1         127           Ideal Flow (vphpl)         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         <          |
| Lane Width (m)         3.3         3.5         3.5         2.9         3.5         3.5         3.5         3.6         3.6         3.6         3.6           Storage Length (m)         85.0         0.0         85.0         0.0         0.0         40.0         0.0           Storage Lanes         1         0         1         1         1         0         1         0           Taper Length (m)         75.0         80.0         7.6         40.0         40.0         40.0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                               |
| Lane Width (m)         3.3         3.5         3.5         2.9         3.5         3.5         3.5         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.0         3.0           Formula Langth (m)         75.0         9.95         0.950         1.00 <th< td=""></th<>                               |
| Storage Lanes         1         0         1         1         1         0         1         0           Taper Length (m)         75.0         80.0         7.6         40.0         40.0           Lane Util. Factor         1.00         0.95         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00                           |
| Taper Length (m)         75.0         80.0         7.6         40.0           Lane Util. Factor         1.00         0.95         0.95         1.00         0.95         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00              |
| Lane Util. Factor         1.00         0.95         0.95         1.00         0.95         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00 |
| Frt         0.850         0.925         0.851           Flt Protected         0.950         0.950         0.950         0.950           Satd. Flow (prot)         1616         3133         0         1665         3216         1365         1785         1738         0         1736         1585         0           Flt Permitted         0.296         0.421         0.673         0.754           Satd. Flow (perm)         503         3133         0         738         3216         1365         1264         1738         0         1377         1585         0           Right Turn on Red         Yes         Yes         Yes         Yes         Yes           Satd. Flow (RTOR)         202         3         131           Link Speed (k/h)         80         80         50         80                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Fit Protected         0.950         0.950         0.950         0.950           Satd. Flow (prot)         1616         3133         0         1665         3216         1365         1785         1738         0         1736         1585         0           Flt Permitted         0.296         0.421         0.673         0.754           Satd. Flow (perm)         503         3133         0         738         3216         1365         1264         1738         0         1377         1585         0           Right Turn on Red         Yes         Yes         Yes         Yes         Yes         Yes         Yes           Satd. Flow (RTOR)         202         3         131           Link Speed (k/h)         80         80         50         80                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Satd. Flow (prot)       1616       3133       0       1665       3216       1365       1785       1738       0       1736       1585       0         Flt Permitted       0.296       0.421       0.673       0.754         Satd. Flow (perm)       503       3133       0       738       3216       1365       1264       1738       0       1377       1585       0         Right Turn on Red       Yes       Yes       Yes       Yes       Yes       Yes         Satd. Flow (RTOR)       202       3       131       131         Link Speed (k/h)       80       80       50       80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Fit Permitted         0.296         0.421         0.673         0.754           Satd. Flow (perm)         503         3133         0         738         3216         1365         1264         1738         0         1377         1585         0           Right Turn on Red         Yes                                           |
| Fit Permitted         0.296         0.421         0.673         0.754           Satd. Flow (perm)         503         3133         0         738         3216         1365         1264         1738         0         1377         1585         0           Right Turn on Red         Yes                                           |
| Right Turn on Red         Yes         Yes         Yes         Yes           Satd. Flow (RTOR)         202         3         131           Link Speed (k/h)         80         80         50         80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Right Turn on Red         Yes         Yes         Yes         Yes           Satd. Flow (RTOR)         202         3         131           Link Speed (k/h)         80         80         50         80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Satd. Flow (RTOR)       202       3       131         Link Speed (k/h)       80       80       50       80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Link Speed (k/h) 80 80 50 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| LITIN DISTATICE (III) 241.2 221.3 02.3 103.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Travel Time (s) 11.1 10.2 4.5 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Peak Hour Factor 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Heavy Vehicles (%) 8% 14% 0% 0% 11% 17% 0% 0% 0% 4% 0% 2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Adj. Flow (vph) 456 607 2 4 718 202 3 3 112 1 131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Shared Lane Traffic (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Lane Group Flow (vph) 456 609 0 4 718 202 3 6 0 112 132 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Enter Blocked Intersection No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Lane Alignment Left Left Right Left Right Left Right Left Right                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Median Width(m) 3.3 3.6 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Link Offset(m) 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Crosswalk Width(m) 4.9 4.9 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Two way Left Turn Lane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Headway Factor 1.04 1.01 1.01 1.01 1.01 1.01 1.01 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Turning Speed (k/h) 24 14 24 14 24 14 24 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Number of Detectors 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Detector Template Left Thru Left Thru Right Left Thru Left Thru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Leading Detector (m) 6.1 30.5 6.1 30.5 6.1 30.5 6.1 30.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Trailing Detector (m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Detector 1 Position(m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Detector 1 Size(m) 6.1 1.8 6.1 1.8 6.1 1.8 6.1 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Detector 1 Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Detector 1 Extend (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Detector 1 Delay (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Detector 2 Position(m) 28.7 28.7 28.7 28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Detector 2 Size(m) 1.8 1.8 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Detector 2 Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Detector 2 Extend (s) 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Turn Type pm+pt NA Perm NA Perm NA Perm NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

#### TOWN OF CALEDON Rice Milher, Cimings 2022 Future Background PM 1:#10819/Tottenham Road & Highway 9 04-06-2020 ↲ **EBR WBL WBT WBR NBL NBT NBR** SBL SBT Lane Group **EBL B**BT **SBR** Protected Phases 2 5 6 8 2 6 6 8 Permitted Phases 4 2 Detector Phase 5 6 6 6 4 4 8 8 Switch Phase Minimum Initial (s) 7.0 20.0 20.0 20.0 20.0 10.0 10.0 10.0 10.0 Minimum Split (s) 10.0 37.6 37.6 37.6 37.6 38.6 38.6 38.6 38.6 32.0 71.4 39.4 39.4 39.4 38.6 38.6 Total Split (s) 38.6 38.6 Total Split (%) 29.1% 64.9% 35.8% 35.8% 35.8% 35.1% 35.1% 35.1% 35.1% Maximum Green (s) 29.0 63.8 31.8 31.8 31.8 30.0 30.0 30.0 30.0 Yellow Time (s) 3.0 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 All-Red Time (s) 0.0 1.7 1.7 1.7 1.7 2.7 2.7 2.7 2.7 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 7.6 3.0 7.6 7.6 7.6 8.6 8.6 8.6 8.6 Lead Lead/Lag Lag Lag Lag Lead-Lag Optimize? Yes Yes Yes Yes Vehicle Extension (s) 3.0 4.0 4.0 4.0 4.0 3.0 3.0 3.0 3.0 Recall Mode Max None None Max Max Max None None None Walk Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 Pedestrian Calls (#/hr) 0 0 0 0 0 0 0 0 Act Effct Green (s) 68.5 63.9 40.3 40.3 40.3 13.3 13.3 13.3 13.3 Actuated g/C Ratio 0.73 0.68 0.43 0.43 0.14 0.14 0.43 0.14 0.14 0.01 v/c Ratio 0.74 0.28 0.52 0.29 0.02 0.02 0.57 0.39 Control Delay 21.2 14.9 6.5 23.3 4.7 33.7 26.8 49.1 10.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 **Total Delay** 14.9 6.5 21.2 23.3 4.7 33.7 26.8 49.1 10.2 LOS В С С С C D В Α Α Approach Delay 19.2 29.1 28.1 10.1 Approach LOS С В В С Queue Length 50th (m) 48.0 0.2 24.7 19.3 0.4 0.0 0.5 0.5 19.1 Queue Length 95th (m) 62.2 32.7 2.9 82.7 14.9 2.9 3.8 35.5 14.9 Internal Link Dist (m) 223.2 203.5 38.5 139.3 Turn Bay Length (m) 85.0 85.0 85.0 40.0 2141 1387 406 560 598 Base Capacity (vph) 714 318 703 442 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 Reduced v/c Ratio 0.28 0.01 0.52 0.29 0.01 0.01 0.25 0.22 0.64 Intersection Summary Area Type: Other Cycle Length: 110 Actuated Cycle Length: 93.4 Natural Cycle: 90 Control Type: Semi Act-Uncoord

Intersection LOS: B

ICU Level of Service D

Maximum v/c Ratio: 0.74 Intersection Signal Delay: 15.9

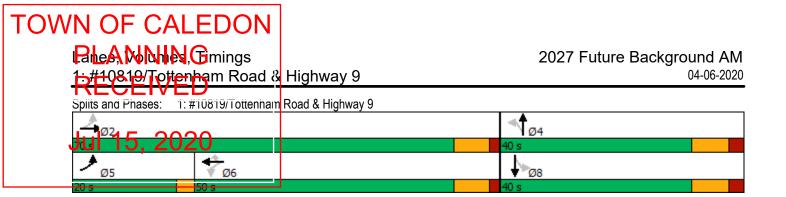
Analysis Period (min) 15

Intersection Capacity Utilization 73.0%

| Synchro 9 Report |
|------------------|
|------------------|

Pale A Work Cimings
1:#10819/Tottenham Road & Highway 9

2027 Future Background AM 04-06-2020


| DALIAS IS ONE HS                          | III Koa | u a ni      | gnway | 9     |          |              |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0+-0  | 0-2020 |
|-------------------------------------------|---------|-------------|-------|-------|----------|--------------|-------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------|--------|
| RECEIVED                                  | ځ       | +           | •     | •     | <b>←</b> | •            | 4     | <b>†</b> | <i>&gt;</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>&gt;</b> | ļ     | 4      |
| Lane Group 2020                           | EBL     | EBT         | EBR   | WBL   | WBT      | WBR          | NBL   | NBT      | NBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SBL         | SBT   | SBR    |
| Lane Configurations                       | ሻ       | <b>♦</b> 1≽ |       | 7     | <b>^</b> | *            | ۲     | f)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ¥           | f)    |        |
| Traffic Volume (vph)                      | 97      | 607         | 0     | 0     | 532      | 82           | 0     | 0        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 228         | 0     | 443    |
| Future Volume (vph)                       | 97      | 607         | 0     | 0     | 532      | 82           | 0     | 0        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 228         | 0     | 443    |
| Ideal Flow (vphpl)                        | 1900    | 1900        | 1900  | 1900  | 1900     | 1900         | 1900  | 1900     | 1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1900        | 1900  | 1900   |
| Lane Width (m)                            | 3.3     | 3.5         | 3.5   | 2.9   | 3.5      | 3.5          | 3.5   | 3.5      | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.6         | 3.6   | 3.6    |
| Storage Length (m)                        | 85.0    |             | 0.0   | 85.0  |          | 85.0         | 0.0   |          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40.0        |       | 0.0    |
| Storage Lanes                             | 1       |             | 0     | 1     |          | 1            | 1     |          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1           |       | 0      |
| Taper Length (m)                          | 75.0    |             | -     | 80.0  |          | -            | 7.6   |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40.0        |       |        |
| Lane Util. Factor                         | 1.00    | 0.95        | 0.95  | 1.00  | 0.95     | 1.00         | 1.00  | 1.00     | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00        | 1.00  | 1.00   |
| Frt                                       |         | 0.00        | 0.00  |       | 0.00     | 0.850        |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0.850 |        |
| Flt Protected                             | 0.950   |             |       |       |          | 0.000        |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.950       | 0.000 |        |
| Satd. Flow (prot)                         | 1616    | 3131        | 0     | 1752  | 3216     | 1365         | 1879  | 1879     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1736        | 1583  | 0      |
| Flt Permitted                             | 0.407   | 0101        | J     | 1102  | 0210     | 1000         | 1010  | 1010     | , and the second | 0.757       | 1000  |        |
| Satd. Flow (perm)                         | 692     | 3131        | 0     | 1752  | 3216     | 1365         | 1879  | 1879     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1383        | 1583  | 0      |
| Right Turn on Red                         | 002     | 0101        | Yes   | 1102  | 0210     | Yes          | 1070  | 1070     | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1000        | 1000  | Yes    |
| Satd. Flow (RTOR)                         |         |             | 100   |       |          | 85           |       |          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | 430   | 100    |
| Link Speed (k/h)                          |         | 80          |       |       | 80       | 00           |       | 50       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 80    |        |
| Link Distance (m)                         |         | 247.2       |       |       | 227.5    |              |       | 62.5     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 163.3 |        |
| Travel Time (s)                           |         | 11.1        |       |       | 10.2     |              |       | 4.5      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 7.3   |        |
| Peak Hour Factor                          | 0.96    | 0.96        | 0.96  | 0.96  | 0.96     | 0.96         | 0.96  | 0.96     | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.96        | 0.96  | 0.96   |
| Heavy Vehicles (%)                        | 8%      | 14%         | 0.90  | 0.90  | 11%      | 17%          | 0.90  | 0.90     | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4%          | 0.90  | 2%     |
| Adj. Flow (vph)                           | 101     | 632         | 0 /8  | 0 /8  | 554      | 85           | 0 /8  | 0 /8     | 0 /8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 238         | 0 /8  | 461    |
| Shared Lane Traffic (%)                   | 101     | 032         | U     | U     | 554      | 00           | U     | U        | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 230         | U     | 401    |
| Lane Group Flow (vph)                     | 101     | 632         | 0     | 0     | 554      | 85           | 0     | 0        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 238         | 461   | 0      |
| Enter Blocked Intersection                | No      | No          | No    | No    | No       | No           | No    | No       | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No          | No    | No     |
| Lane Alignment                            | Left    | Left        |       | Left  | Left     | Right        | Left  | Left     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Left        | Left  | Right  |
| Median Width(m)                           | Leit    | 3.3         | Right | Leit  | 3.3      | Rigiit       | Leit  | 3.6      | Right                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Leit        | 3.6   | Rigiit |
| Link Offset(m)                            |         | 0.0         |       |       | 0.0      |              |       | 0.0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0.0   |        |
| Crosswalk Width(m)                        |         | 4.9         |       |       | 4.9      |              |       | 4.9      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 4.9   |        |
| Two way Left Turn Lane                    |         | 4.9         |       |       | 4.9      |              |       | 4.9      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 4.9   |        |
| Headway Factor                            | 1.04    | 1.01        | 1.01  | 1.11  | 1.01     | 1.01         | 1.01  | 1.01     | 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00        | 1.00  | 1.00   |
| Turning Speed (k/h)                       | 24      | 1.01        | 1.01  | 24    | 1.01     | 1.01         | 24    | 1.01     | 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24          | 1.00  | 1.00   |
| Number of Detectors                       | 1       | 2           | 14    | 1     | 2        | 14           | 1     | 2        | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1           | 2     | 14     |
| Detector Template                         | Left    | Thru        |       | Left  | Thru     |              | Left  | Thru     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Left        | Thru  |        |
| Leading Detector (m)                      | 6.1     | 30.5        |       | 6.1   | 30.5     | Right<br>6.1 | 6.1   | 30.5     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.1         | 30.5  |        |
| Trailing Detector (m)                     | 0.0     | 0.0         |       | 0.0   | 0.0      | 0.0          | 0.0   | 0.0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0         | 0.0   |        |
| . ,                                       | 0.0     | 0.0         |       | 0.0   | 0.0      | 0.0          | 0.0   | 0.0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0         | 0.0   |        |
| Detector 1 Position(m) Detector 1 Size(m) | 6.1     | 1.8         |       | 6.1   | 1.8      | 6.1          | 6.1   | 1.8      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.1         | 1.8   |        |
| ` ,                                       |         | Cl+Ex       |       |       | Cl+Ex    | Cl+Ex        |       | Cl+Ex    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cl+Ex       | CI+Ex |        |
| Detector 1 Type                           | CI+Ex   | CI+EX       |       | Cl+Ex | CI+EX    | CI+EX        | Cl+Ex | CI+EX    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CI+EX       | CI+EX |        |
| Detector 1 Channel                        | 0.0     | 0.0         |       | 0.0   | 0.0      | 0.0          | 0.0   | 0.0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0         | 0.0   |        |
| Detector 1 Extend (s)                     | 0.0     | 0.0         |       | 0.0   | 0.0      | 0.0          | 0.0   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0         | 0.0   |        |
| Detector 1 Queue (s)                      | 0.0     | 0.0         |       | 0.0   | 0.0      | 0.0          | 0.0   | 0.0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0         | 0.0   |        |
| Detector 1 Delay (s)                      | 0.0     | 0.0         |       | 0.0   | 0.0      | 0.0          | 0.0   | 0.0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0         | 0.0   |        |
| Detector 2 Position(m)                    |         | 28.7        |       |       | 28.7     |              |       | 28.7     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 28.7  |        |
| Detector 2 Size(m)                        |         | 1.8         |       |       | 1.8      |              |       | 1.8      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 1.8   |        |
| Detector 2 Type                           |         | CI+Ex       |       |       | CI+Ex    |              |       | CI+Ex    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | CI+Ex |        |
| Detector 2 Channel                        |         | 0.0         |       |       | 0.0      |              |       | 0.0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0.0   |        |
| Detector 2 Extend (s)                     |         | 0.0         |       | _     | 0.0      | _            | _     | 0.0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _           | 0.0   |        |
| Turn Type                                 | pm+pt   | NA          |       | Perm  | NA       | Perm         | Perm  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Perm        | NA    |        |

ICU Level of Service D

Intersection Signal Delay: 16.6

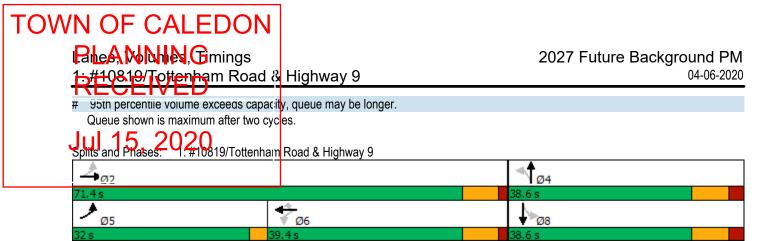
Analysis Period (min) 15

Intersection Capacity Utilization 80.7%



Pale A Work Cimings
1:#10819/Tottenham Road & Highway 9

2027 Future Background PM 04-06-2020


| Darrio de la contenua      | ш коа | u (x mi    | Jiiway        | 9       |          |         |         |          |          |          | 04-0  | J0-2020 |
|----------------------------|-------|------------|---------------|---------|----------|---------|---------|----------|----------|----------|-------|---------|
| REOLIVED                   | ځ     | +          | $\rightarrow$ | •       | <b>←</b> | •       | 4       | <b>†</b> | <b>/</b> | <b>\</b> | ļ     | 1       |
| Lang Group 2020            | EBL   | EBT        | EBR           | WBL     | WBT      | WBR     | NBL     | NBT      | NBR      | SBL      | SBT   | SBR     |
| Lane Configurations        | ሻ     | <b>∳</b> ∌ |               | 7       | <b>^</b> | 7       | - ነ     | ĵ⇒       |          | - ነ      | 1>    |         |
| Traffic Volume (vph)       | 484   | 650        | 2             | 5       | 769      | 217     | 4       | 4        | 4        | 121      | 1     | 141     |
| Future Volume (vph)        | 484   | 650        | 2             | 5       | 769      | 217     | 4       | 4        | 4        | 121      | 1     | 141     |
| Ideal Flow (vphpl)         | 1900  | 1900       | 1900          | 1900    | 1900     | 1900    | 1900    | 1900     | 1900     | 1900     | 1900  | 1900    |
| Lane Width (m)             | 3.3   | 3.5        | 3.5           | 2.9     | 3.5      | 3.5     | 3.5     | 3.5      | 3.5      | 3.6      | 3.6   | 3.6     |
| Storage Length (m)         | 85.0  |            | 0.0           | 85.0    |          | 85.0    | 0.0     |          | 0.0      | 40.0     |       | 0.0     |
| Storage Lanes              | 1     |            | 0             | 1       |          | 1       | 1       |          | 0        | 1        |       | 0       |
| Taper Length (m)           | 75.0  |            |               | 80.0    |          |         | 7.6     |          |          | 40.0     |       |         |
| Lane Util. Factor          | 1.00  | 0.95       | 0.95          | 1.00    | 0.95     | 1.00    | 1.00    | 1.00     | 1.00     | 1.00     | 1.00  | 1.00    |
| Frt                        |       |            |               |         |          | 0.850   |         | 0.925    |          |          | 0.851 |         |
| FIt Protected              | 0.950 |            |               | 0.950   |          |         | 0.950   |          |          | 0.950    |       |         |
| Satd. Flow (prot)          | 1616  | 3133       | 0             | 1665    | 3216     | 1365    | 1785    | 1738     | 0        | 1736     | 1585  | 0       |
| Flt Permitted              | 0.221 |            |               | 0.396   |          |         | 0.664   |          |          | 0.752    |       |         |
| Satd. Flow (perm)          | 376   | 3133       | 0             | 694     | 3216     | 1365    | 1248    | 1738     | 0        | 1374     | 1585  | 0       |
| Right Turn on Red          |       |            | Yes           |         |          | Yes     |         |          | Yes      |          |       | Yes     |
| Satd. Flow (RTOR)          |       |            |               |         |          | 224     |         | 4        |          |          | 145   |         |
| Link Speed (k/h)           |       | 80         |               |         | 80       |         |         | 50       |          |          | 80    |         |
| Link Distance (m)          |       | 247.2      |               |         | 227.5    |         |         | 62.5     |          |          | 163.3 |         |
| Travel Time (s)            |       | 11.1       |               |         | 10.2     |         |         | 4.5      |          |          | 7.3   |         |
| Peak Hour Factor           | 0.96  | 0.97       | 0.97          | 0.97    | 0.97     | 0.97    | 0.97    | 0.97     | 0.97     | 0.97     | 0.97  | 0.97    |
| Heavy Vehicles (%)         | 8%    | 14%        | 0%            | 0%      | 11%      | 17%     | 0%      | 0%       | 0%       | 4%       | 0%    | 2%      |
| Adj. Flow (vph)            | 504   | 670        | 2             | 5       | 793      | 224     | 4       | 4        | 4        | 125      | 1     | 145     |
| Shared Lane Traffic (%)    | 001   | 0.0        | _             |         |          |         | •       | •        | •        | 120      | •     | 1 10    |
| Lane Group Flow (vph)      | 504   | 672        | 0             | 5       | 793      | 224     | 4       | 8        | 0        | 125      | 146   | 0       |
| Enter Blocked Intersection | No    | No         | No            | No      | No       | No      | No      | No       | No       | No       | No    | No      |
| Lane Alignment             | Left  | Left       | Right         | Left    | Left     | Right   | Left    | Left     | Right    | Left     | Left  | Right   |
| Median Width(m)            | 20.0  | 3.3        | rugiit        | 2010    | 3.3      | rugiit  | 2010    | 3.6      | rugin    | 2010     | 3.6   | rugiit  |
| Link Offset(m)             |       | 0.0        |               |         | 0.0      |         |         | 0.0      |          |          | 0.0   |         |
| Crosswalk Width(m)         |       | 4.9        |               |         | 4.9      |         |         | 4.9      |          |          | 4.9   |         |
| Two way Left Turn Lane     |       | 1.0        |               |         | 1.0      |         |         | 1.0      |          |          | 1.0   |         |
| Headway Factor             | 1.04  | 1.01       | 1.01          | 1.11    | 1.01     | 1.01    | 1.01    | 1.01     | 1.01     | 1.00     | 1.00  | 1.00    |
| Turning Speed (k/h)        | 24    | 1.01       | 14            | 24      | 1.01     | 14      | 24      | 1.01     | 14       | 24       | 1.00  | 14      |
| Number of Detectors        | 1     | 2          |               | 1       | 2        | 1       | 1       | 2        | • •      | 1        | 2     |         |
| Detector Template          | Left  | Thru       |               | Left    | Thru     | Right   | Left    | Thru     |          | Left     | Thru  |         |
| Leading Detector (m)       | 6.1   | 30.5       |               | 6.1     | 30.5     | 6.1     | 6.1     | 30.5     |          | 6.1      | 30.5  |         |
| Trailing Detector (m)      | 0.0   | 0.0        |               | 0.0     | 0.0      | 0.0     | 0.0     | 0.0      |          | 0.0      | 0.0   |         |
| Detector 1 Position(m)     | 0.0   | 0.0        |               | 0.0     | 0.0      | 0.0     | 0.0     | 0.0      |          | 0.0      | 0.0   |         |
| Detector 1 Size(m)         | 6.1   | 1.8        |               | 6.1     | 1.8      | 6.1     | 6.1     | 1.8      |          | 6.1      | 1.8   |         |
| Detector 1 Type            | CI+Ex | Cl+Ex      |               | CI+Ex   | Cl+Ex    | CI+Ex   | CI+Ex   | CI+Ex    |          | CI+Ex    | CI+Ex |         |
| Detector 1 Channel         | OI LX | OI LX      |               | OI · EX | OI LX    | OI LX   | OI · EX | OI · EX  |          | OI · EX  | OI LX |         |
| Detector 1 Extend (s)      | 0.0   | 0.0        |               | 0.0     | 0.0      | 0.0     | 0.0     | 0.0      |          | 0.0      | 0.0   |         |
| Detector 1 Queue (s)       | 0.0   | 0.0        |               | 0.0     | 0.0      | 0.0     | 0.0     | 0.0      |          | 0.0      | 0.0   |         |
| Detector 1 Delay (s)       | 0.0   | 0.0        |               | 0.0     | 0.0      | 0.0     | 0.0     | 0.0      |          | 0.0      | 0.0   |         |
| Detector 2 Position(m)     | 0.0   | 28.7       |               | 0.0     | 28.7     | 0.0     | 0.0     | 28.7     |          | 0.0      | 28.7  |         |
| Detector 2 Size(m)         |       | 1.8        |               |         | 1.8      |         |         | 1.8      |          |          | 1.8   |         |
| Detector 2 Type            |       | Cl+Ex      |               |         | Cl+Ex    |         |         | Cl+Ex    |          |          | CI+Ex |         |
| Detector 2 Channel         |       | OITEX      |               |         | OITEX    |         |         | OITEX    |          |          | OITEX |         |
| Detector 2 Extend (s)      |       | 0.0        |               |         | 0.0      |         |         | 0.0      |          |          | 0.0   |         |
| Turn Type                  | nm±nt | NA         |               | Perm    | NA       | Perm    | Perm    | NA       |          | Perm     | NA    |         |
| rum rype                   | pm+pt | INA        |               | L GIIII | INA      | L GIIII | L GIIII | INA      |          | r eiiii  | INA   |         |

### TOWN OF CALEDON Rice Milher, Cimings 2027 Future Background PM 1:#10819/Tottenham Road & Highway 9 04-06-2020 4 **EBR WBL WBT WBR NBL NBT NBR** SBL **SBT** Lane Group **EBL B**BT **SBR** 2 Protected Phases 5 6 8 2 6 6 8 Permitted Phases 4 2 Detector Phase 5 6 6 6 4 4 8 8 Switch Phase Minimum Initial (s) 7.0 20.0 20.0 20.0 20.0 10.0 10.0 10.0 10.0 Minimum Split (s) 10.0 37.6 37.6 37.6 37.6 38.6 38.6 38.6 38.6 32.0 39.4 39.4 39.4 38.6 38.6 Total Split (s) 71.4 38.6 38.6 Total Split (%) 29.1% 64.9% 35.8% 35.8% 35.8% 35.1% 35.1% 35.1% 35.1% Maximum Green (s) 29.0 63.8 31.8 31.8 31.8 30.0 30.0 30.0 30.0 Yellow Time (s) 3.0 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 All-Red Time (s) 0.0 1.7 1.7 1.7 1.7 2.7 2.7 2.7 2.7 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 7.6 3.0 7.6 7.6 7.6 8.6 8.6 8.6 8.6 Lead Lead/Lag Lag Lag Lag Lead-Lag Optimize? Yes Yes Yes Yes Vehicle Extension (s) 3.0 4.0 4.0 4.0 4.0 3.0 3.0 3.0 3.0 Recall Mode None None Max Max Max Max None None None Walk Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 Pedestrian Calls (#/hr) 0 0 0 0 0 0 0 0 Act Effct Green (s) 68.5 63.9 33.7 33.7 33.7 14.2 14.2 14.2 14.2 Actuated g/C Ratio 0.73 0.68 0.36 0.36 0.36 0.15 0.15 0.15 0.15 0.02 v/c Ratio 0.80 0.32 0.69 0.35 0.02 0.03 0.61 0.40 Control Delay 23.0 23.9 7.1 30.8 5.2 33.2 26.0 50.2 9.7 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 **Total Delay** 23.9 7.1 23.0 30.8 5.2 33.2 26.0 50.2 9.7 LOS С С С С C D Α Α Α Approach Delay 28.4 14.3 25.2 28.4 Approach LOS С С В С Queue Length 50th (m) 45.4 22.7 0.6 65.4 0.0 0.6 0.6 21.5 0.2 Queue Length 95th (m) #109.1 38.2 3.3 95.3 15.9 3.5 4.5 39.1 15.6 Internal Link Dist (m) 223.2 203.5 38.5 139.3 Turn Bay Length (m) 85.0 85.0 85.0 40.0 2123 1149 398 556 604 Base Capacity (vph) 655 248 631 437 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 Reduced v/c Ratio 0.32 0.02 0.69 0.35 0.01 0.01 0.29 0.24 0.77 Intersection Summary Area Type: Other Cycle Length: 110 Actuated Cycle Length: 94.3 Natural Cycle: 100 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.80 Intersection Signal Delay: 20.4 Intersection LOS: C

ICU Level of Service D

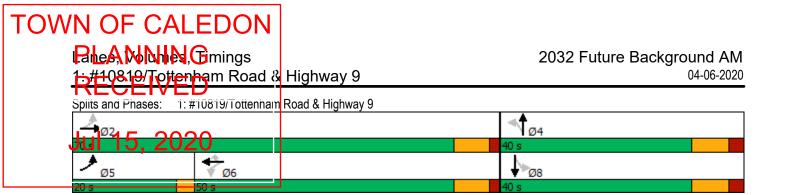
Intersection Capacity Utilization 78.3%

Analysis Period (min) 15



Rice Milher, Cimings

2032 Future Background AM 04-06-2020


1:#10819/Tottenham Road & Highway 9 ↲ **EBR WBL WBT WBR NBL NBT NBR SBT** Lane Group **EBL EBT SBL SBR ∱**76 Lane Configurations ኘ ኘ 44 7 ኘ Ъ ₽ 107 0 0 91 0 252 0 489 Traffic Volume (vph) 587 0 0 Future Volume (vph) 107 <del>6</del>70 0 0 587 91 0 0 0 252 0 489 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 Ideal Flow (vphpl) 1900 1900 Lane Width (m) 3.3 3.5 3.5 2.9 3.5 3.5 3.5 3.5 3.5 3.6 3.6 3.6 Storage Length (m) 85.0 0.0 85.0 85.0 0.0 0.0 40.0 0.0 Storage Lanes 1 0 1 1 1 0 1 0 80.0 7.6 40.0 Taper Length (m) 75.0 Lane Util. Factor 1.00 0.95 0.95 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Frt 0.850 0.850 Flt Protected 0.950 0.950 3131 1752 3216 1365 1879 1879 Satd. Flow (prot) 1616 0 1736 1583 Flt Permitted 0.368 0.757 Satd. Flow (perm) 626 3131 0 1752 3216 1365 1879 1879 0 1383 1583 0 Right Turn on Red Yes Yes Yes Yes Satd. Flow (RTOR) 95 408 80 80 50 Link Speed (k/h) 80 247.2 Link Distance (m) 227.5 62.5 163.3 Travel Time (s) 11.1 10.2 4.5 7.3 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 Peak Hour Factor 0.96 0.96 0.96 0.96 Heavy Vehicles (%) 8% 14% 0% 0% 11% 17% 0% 0% 0% 4% 0% 2% Adj. Flow (vph) 111 698 0 0 611 95 0 263 0 509 0 0 Shared Lane Traffic (%) Lane Group Flow (vph) 111 698 0 0 611 95 0 0 0 263 509 0 Enter Blocked Intersection No Nο Nο No No Nο No Nο Nο No Nο No Lane Alignment Left Left Right Left Left Right Left Left Right Left Left Right Median Width(m) 3.3 3.3 3.6 3.6 Link Offset(m) 0.0 0.0 0.0 0.0 Crosswalk Width(m) 4.9 4.9 4.9 4.9 Two way Left Turn Lane Headway Factor 1.04 1.01 1.01 1.11 1.01 1.01 1.01 1.01 1.01 1.00 1.00 1.00 Turning Speed (k/h) 24 14 24 14 24 14 24 14 **Number of Detectors** 1 2 1 2 1 1 2 1 2 Left Left Left **Detector Template** Thru Thru Right Thru Left Thru Leading Detector (m) 6.1 30.5 6.1 30.5 6.1 6.1 30.5 6.1 30.5 Trailing Detector (m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Position(m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Size(m) 1.8 6.1 6.1 1.8 6.1 1.8 6.1 1.8 6.1 CI+Ex Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex **Detector 1 Channel** Detector 1 Extend (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Delay (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28.7 Detector 2 Position(m) 28.7 28.7 28.7 Detector 2 Size(m) 1.8 1.8 1.8 1.8 Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex **Detector 2 Channel** 0.0 0.0 0.0 0.0 Detector 2 Extend (s) Perm Turn Type pm+pt NA Perm NA Perm Perm NA

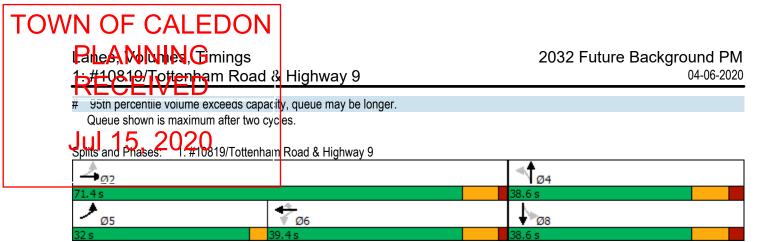
ICU Level of Service E

Intersection Signal Delay: 18.8

Analysis Period (min) 15

Intersection Capacity Utilization 85.3%




Rice Milher, Cimings

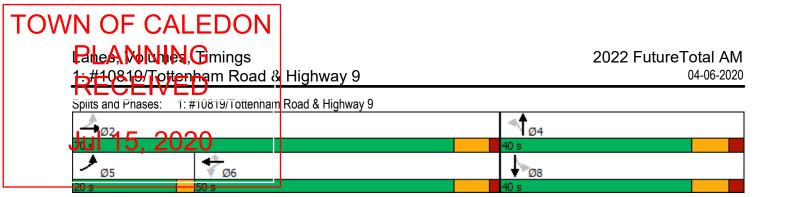
2032 Future Background PM 04-06-2020

1:#10819/Tottenham Road & Highway 9 ↲ **EBR WBL WBT WBR NBL NBT NBR SBT** Lane Group **EBL EBT SBL SBR ት**ጮ Lane Configurations ኘ 44 ኘ 7 ß ₽ 534 718 3 849 239 133 Traffic Volume (vph) 5 4 4 155 4 1 Future Volume (vph) 534 <del>7</del>18 3 5 849 239 4 4 4 133 155 1 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 Ideal Flow (vphpl) Lane Width (m) 3.3 3.5 2.9 3.5 3.5 3.5 3.5 3.5 3.5 3.6 3.6 3.6 Storage Length (m) 85.0 0.0 85.0 85.0 0.0 0.0 40.0 0.0 Storage Lanes 1 0 1 1 1 0 1 0 80.0 7.6 40.0 Taper Length (m) 75.0 Lane Util. Factor 1.00 0.95 0.95 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Frt 0.999 0.850 0.925 0.851 Flt Protected 0.950 0.950 0.950 0.950 3216 1365 Satd. Flow (prot) 1616 3130 1665 1785 1738 1736 1585 Flt Permitted 0.165 0.370 0.655 0.752 Satd. Flow (perm) 281 3130 0 648 3216 1365 1231 1738 0 1374 1585 0 Right Turn on Red Yes Yes Yes Yes Satd. Flow (RTOR) 246 4 160 80 80 50 Link Speed (k/h) 80 247.2 Link Distance (m) 227.5 62.5 163.3 Travel Time (s) 11.1 10.2 4.5 7.3 0.97 0.97 0.97 0.97 0.97 0.97 0.97 Peak Hour Factor 0.97 0.97 0.97 0.97 0.97 Heavy Vehicles (%) 8% 14% 0% 0% 11% 17% 0% 0% 0% 4% 0% 2% Adj. Flow (vph) 551 740 3 5 875 246 4 137 1 160 4 4 Shared Lane Traffic (%) Lane Group Flow (vph) 551 743 0 5 875 246 4 8 0 137 161 0 Enter Blocked Intersection No Nο No No No Nο No No Nο No Nο No Lane Alignment Left Left Right Left Left Right Left Left Right Left Left Right Median Width(m) 3.3 3.3 3.6 3.6 Link Offset(m) 0.0 0.0 0.0 0.0 Crosswalk Width(m) 4.9 4.9 4.9 4.9 Two way Left Turn Lane Headway Factor 1.04 1.01 1.01 1.11 1.01 1.01 1.01 1.01 1.01 1.00 1.00 1.00 Turning Speed (k/h) 24 14 24 14 24 14 24 14 **Number of Detectors** 1 2 1 2 1 1 2 1 2 Left Left **Detector Template** Left Thru Thru Right Thru Left Thru Leading Detector (m) 6.1 30.5 6.1 30.5 6.1 6.1 30.5 6.1 30.5 Trailing Detector (m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Position(m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Size(m) 1.8 6.1 6.1 1.8 6.1 1.8 6.1 1.8 6.1 CI+Ex Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex **Detector 1 Channel** Detector 1 Extend (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Delay (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28.7 Detector 2 Position(m) 28.7 28.7 28.7 Detector 2 Size(m) 1.8 1.8 1.8 1.8 Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex **Detector 2 Channel** 0.0 0.0 0.0 0.0 Detector 2 Extend (s) Perm Turn Type pm+pt NA Perm NA Perm Perm NA NA

### TOWN OF CALEDON Rice Milher, Cimings 2032 Future Background PM 1:#10819/Tottenham Road & Highway 9 04-06-2020 ↲ **EBR WBL WBT WBR NBL NBT NBR** SBL **SBT** Lane Group **EBL B**BT **SBR** 2 Protected Phases 5 6 8 2 6 6 8 Permitted Phases 4 2 Detector Phase 5 6 6 6 4 4 8 8 Switch Phase Minimum Initial (s) 7.0 20.0 20.0 20.0 20.0 10.0 10.0 10.0 10.0 Minimum Split (s) 10.0 37.6 37.6 37.6 37.6 38.6 38.6 38.6 38.6 32.0 39.4 39.4 39.4 38.6 38.6 Total Split (s) 71.4 38.6 38.6 Total Split (%) 29.1% 64.9% 35.8% 35.8% 35.8% 35.1% 35.1% 35.1% 35.1% Maximum Green (s) 29.0 63.8 31.8 31.8 31.8 30.0 30.0 30.0 30.0 Yellow Time (s) 3.0 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 All-Red Time (s) 0.0 1.7 1.7 1.7 1.7 2.7 2.7 2.7 2.7 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 7.6 3.0 7.6 7.6 7.6 8.6 8.6 8.6 8.6 Lead Lead/Lag Lag Lag Lag Lead-Lag Optimize? Yes Yes Yes Yes Vehicle Extension (s) 3.0 4.0 4.0 4.0 4.0 3.0 3.0 3.0 3.0 Recall Mode None None Max Max Max Max None None None Walk Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 Pedestrian Calls (#/hr) 0 0 0 0 0 0 0 0 Act Effct Green (s) 68.5 63.9 31.9 31.9 31.9 14.9 14.9 14.9 14.9 Actuated g/C Ratio 0.72 0.34 0.34 0.34 0.16 0.67 0.16 0.16 0.16 0.02 v/c Ratio 0.90 0.35 0.81 0.40 0.02 0.03 0.64 0.42 Control Delay 23.8 40.2 36.8 5.5 32.8 25.6 51.1 9.3 7.7 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 **Total Delay** 40.2 7.7 23.8 36.8 32.8 25.6 51.1 9.3 5.5 LOS D С D С C D Α Α Α Approach Delay 29.9 28.0 21.5 28.5 Approach LOS С С С С Queue Length 50th (m) 69.8 26.8 0.6 75.8 0.0 0.6 0.6 23.8 0.2 Queue Length 95th (m) #149.4 44.9 3.4 #117.9 16.7 3.5 4.5 42.5 16.2 Internal Link Dist (m) 223.2 203.5 38.5 139.3 Turn Bay Length (m) 85.0 85.0 85.0 40.0 2104 389 552 610 Base Capacity (vph) 610 216 1077 620 434 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 Reduced v/c Ratio 0.90 0.35 0.02 0.81 0.40 0.01 0.01 0.32 0.26 Intersection Summary Area Type: Other Cycle Length: 110 Actuated Cycle Length: 95.1 Natural Cycle: 110 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.90 Intersection Signal Delay: 25.8 Intersection LOS: C Intersection Capacity Utilization 83.9% ICU Level of Service E

Analysis Period (min) 15



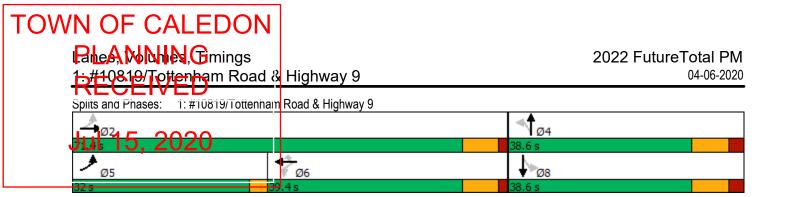

Hanes With A. Gimings

1:#10819/Tottenham Road & Highway 9

2022 FutureTotal AM 04-06-2020

|                            | mitoa | <u> </u>   | giiway        |       |          |       |       |          |          |             | • • • |       |
|----------------------------|-------|------------|---------------|-------|----------|-------|-------|----------|----------|-------------|-------|-------|
| RESERVES                   | خر    | +          | $\rightarrow$ | •     | <b>←</b> | •     | •     | <b>†</b> | <b>/</b> | <b>&gt;</b> | ļ     | 4     |
| Llang Group 2020           | EBL   | EBT        | EBR           | WBL   | WBT      | WBR   | NBL   | NBT      | NBR      | SBL         | SBT   | SBR   |
| Lane Configurations        | ች     | <b>ት</b> ጮ |               | ች     | <b>^</b> | 7     | *     | 1>       |          | *           | f)    |       |
| Traffic Volume (vph)       | 87    | 542        | 13            | 12    | 475      | 73    | 16    | 7        | 14       | 204         | 13    | 396   |
| Future Volume (vph)        | 87    | 542        | 13            | 12    | 475      | 73    | 16    | 7        | 14       | 204         | 13    | 396   |
| Ideal Flow (vphpl)         | 1900  | 1900       | 1900          | 1900  | 1900     | 1900  | 1900  | 1900     | 1900     | 1900        | 1900  | 1900  |
| Lane Width (m)             | 3.3   | 3.5        | 3.5           | 2.9   | 3.5      | 3.5   | 3.5   | 3.5      | 3.5      | 3.6         | 3.6   | 3.6   |
| Storage Length (m)         | 85.0  |            | 0.0           | 85.0  |          | 85.0  | 0.0   |          | 0.0      | 40.0        |       | 0.0   |
| Storage Lanes              | 1     |            | 0             | 1     |          | 1     | 1     |          | 0        | 1           |       | 0     |
| Taper Length (m)           | 75.0  |            |               | 80.0  |          |       | 7.6   |          |          | 40.0        |       |       |
| Lane Util. Factor          | 1.00  | 0.95       | 0.95          | 1.00  | 0.95     | 1.00  | 1.00  | 1.00     | 1.00     | 1.00        | 1.00  | 1.00  |
| Frt                        |       | 0.996      |               |       |          | 0.850 |       | 0.898    |          |             | 0.855 |       |
| Flt Protected              | 0.950 |            |               | 0.950 |          |       | 0.950 |          |          | 0.950       |       |       |
| Satd. Flow (prot)          | 1616  | 3128       | 0             | 1665  | 3216     | 1365  | 1785  | 1687     | 0        | 1736        | 1594  | 0     |
| Flt Permitted              | 0.443 |            |               | 0.434 |          |       | 0.189 |          |          | 0.743       |       |       |
| Satd. Flow (perm)          | 753   | 3128       | 0             | 760   | 3216     | 1365  | 355   | 1687     | 0        | 1357        | 1594  | 0     |
| Right Turn on Red          |       |            | Yes           |       |          | Yes   |       |          | Yes      |             |       | Yes   |
| Satd. Flow (RTOR)          |       | 4          |               |       |          | 85    |       | 15       |          |             | 413   |       |
| Link Speed (k/h)           |       | 80         |               |       | 80       |       |       | 50       |          |             | 80    |       |
| Link Distance (m)          |       | 247.2      |               |       | 227.5    |       |       | 62.5     |          |             | 163.3 |       |
| Travel Time (s)            |       | 11.1       |               |       | 10.2     |       |       | 4.5      |          |             | 7.3   |       |
| Peak Hour Factor           | 0.96  | 0.96       | 0.96          | 0.96  | 0.96     | 0.96  | 0.96  | 0.96     | 0.96     | 0.96        | 0.96  | 0.96  |
| Heavy Vehicles (%)         | 8%    | 14%        | 0%            | 0%    | 11%      | 17%   | 0%    | 0%       | 0%       | 4%          | 0%    | 2%    |
| Adj. Flow (vph)            | 91    | 565        | 14            | 13    | 495      | 76    | 17    | 7        | 15       | 213         | 14    | 413   |
| Shared Lane Traffic (%)    |       |            |               |       |          |       |       |          |          |             |       |       |
| Lane Group Flow (vph)      | 91    | 579        | 0             | 13    | 495      | 76    | 17    | 22       | 0        | 213         | 427   | 0     |
| Enter Blocked Intersection | No    | No         | No            | No    | No       | No    | No    | No       | No       | No          | No    | No    |
| Lane Alignment             | Left  | Left       | Right         | Left  | Left     | Right | Left  | Left     | Right    | Left        | Left  | Right |
| Median Width(m)            |       | 3.3        |               |       | 3.3      |       |       | 3.6      |          |             | 3.6   |       |
| Link Offset(m)             |       | 0.0        |               |       | 0.0      |       |       | 0.0      |          |             | 0.0   |       |
| Crosswalk Width(m)         |       | 4.9        |               |       | 4.9      |       |       | 4.9      |          |             | 4.9   |       |
| Two way Left Turn Lane     |       |            |               |       |          |       |       |          |          |             |       |       |
| Headway Factor             | 1.04  | 1.01       | 1.01          | 1.11  | 1.01     | 1.01  | 1.01  | 1.01     | 1.01     | 1.00        | 1.00  | 1.00  |
| Turning Speed (k/h)        | 24    |            | 14            | 24    |          | 14    | 24    |          | 14       | 24          |       | 14    |
| Number of Detectors        | 1     | 2          |               | 1     | 2        | 1     | 1     | 2        |          | 1           | 2     |       |
| Detector Template          | Left  | Thru       |               | Left  | Thru     | Right | Left  | Thru     |          | Left        | Thru  |       |
| Leading Detector (m)       | 6.1   | 30.5       |               | 6.1   | 30.5     | 6.1   | 6.1   | 30.5     |          | 6.1         | 30.5  |       |
| Trailing Detector (m)      | 0.0   | 0.0        |               | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |          | 0.0         | 0.0   |       |
| Detector 1 Position(m)     | 0.0   | 0.0        |               | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |          | 0.0         | 0.0   |       |
| Detector 1 Size(m)         | 6.1   | 1.8        |               | 6.1   | 1.8      | 6.1   | 6.1   | 1.8      |          | 6.1         | 1.8   |       |
| Detector 1 Type            | CI+Ex | CI+Ex      |               | CI+Ex | CI+Ex    | CI+Ex | CI+Ex | Cl+Ex    |          | CI+Ex       | CI+Ex |       |
| Detector 1 Channel         |       |            |               |       |          |       |       |          |          |             |       |       |
| Detector 1 Extend (s)      | 0.0   | 0.0        |               | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |          | 0.0         | 0.0   |       |
| Detector 1 Queue (s)       | 0.0   | 0.0        |               | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |          | 0.0         | 0.0   |       |
| Detector 1 Delay (s)       | 0.0   | 0.0        |               | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |          | 0.0         | 0.0   |       |
| Detector 2 Position(m)     |       | 28.7       |               |       | 28.7     |       |       | 28.7     |          |             | 28.7  |       |
| Detector 2 Size(m)         |       | 1.8        |               |       | 1.8      |       |       | 1.8      |          |             | 1.8   |       |
| Detector 2 Type            |       | CI+Ex      |               |       | CI+Ex    |       |       | Cl+Ex    |          |             | CI+Ex |       |
| Detector 2 Channel         |       |            |               |       |          |       |       |          |          |             |       |       |
| Detector 2 Extend (s)      |       | 0.0        |               |       | 0.0      |       |       | 0.0      |          |             | 0.0   |       |
| Turn Type                  | pm+pt | NA         |               | Perm  | NA       | Perm  | Perm  | NA       |          | Perm        | NA    |       |

### TOWN OF CALEDON Rice Milher, Cimings 2022 FutureTotal AM 1:#10819/Tottenham Road & Highway 9 04-06-2020 t 4 **EBR WBL WBT WBR NBL NBT NBR** SBL SBT Lane Group **EBL B**BT **SBR** Protected Phases 2 5 6 8 2 6 6 8 Permitted Phases 4 2 Detector Phase 5 6 6 6 4 4 8 8 Switch Phase Minimum Initial (s) 7.0 20.0 20.0 20.0 20.0 10.0 10.0 10.0 10.0 Minimum Split (s) 10.0 37.6 37.6 37.6 37.6 38.6 38.6 38.6 38.6 20.0 70.0 50.0 50.0 50.0 40.0 40.0 40.0 40.0 Total Split (s) 45.5% Total Split (%) 18.2% 63.6% 45.5% 45.5% 36.4% 36.4% 36.4% 36.4% Maximum Green (s) 17.0 62.4 42.4 42.4 42.4 31.4 31.4 31.4 31.4 Yellow Time (s) 3.0 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 All-Red Time (s) 0.0 1.7 1.7 1.7 1.7 2.7 2.7 2.7 2.7 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 7.6 3.0 7.6 7.6 7.6 8.6 8.6 8.6 8.6 Lead/Lag Lead Lag Lag Lag Lead-Lag Optimize? Yes Yes Yes Yes Vehicle Extension (s) 3.0 4.0 4.0 4.0 4.0 3.0 3.0 3.0 3.0 Recall Mode None None Max Max Max Max None None None Walk Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 Pedestrian Calls (#/hr) 0 0 0 0 0 0 0 0 Act Effct Green (s) 67.3 62.7 53.9 53.9 53.9 21.2 21.2 21.2 21.2 Actuated g/C Ratio 0.67 0.63 0.54 0.54 0.54 0.21 0.21 0.21 0.21 0.03 v/c Ratio 0.16 0.30 0.29 0.10 0.23 0.06 0.74 0.65 Control Delay 9.9 15.6 15.2 3.5 39.3 17.0 52.6 8.7 7.7 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 **Total Delay** 7.7 9.9 15.6 15.2 3.5 39.3 17.0 52.6 8.7 LOS Α В В В D Α Α D Α Approach Delay 9.6 26.8 13.6 23.3 Approach LOS С Α В С Queue Length 50th (m) 27.3 2.7 1.1 2.2 5.5 24.8 1.2 0.0 38.7 Queue Length 95th (m) 14.2 43.3 5.2 48.1 6.9 8.9 6.9 62.9 26.4 Internal Link Dist (m) 223.2 203.5 38.5 139.3 Turn Bay Length (m) 85.0 85.0 85.0 40.0 1959 1731 111 541 784 Base Capacity (vph) 653 408 773 427 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 Reduced v/c Ratio 0.14 0.30 0.03 0.29 0.10 0.15 0.04 0.50 0.54 Intersection Summary Area Type: Other Cycle Length: 110 Actuated Cycle Length: 100.1 Natural Cycle: 90 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.74 Intersection Signal Delay: 15.7 Intersection LOS: B Intersection Capacity Utilization 78.4% ICU Level of Service D Analysis Period (min) 15

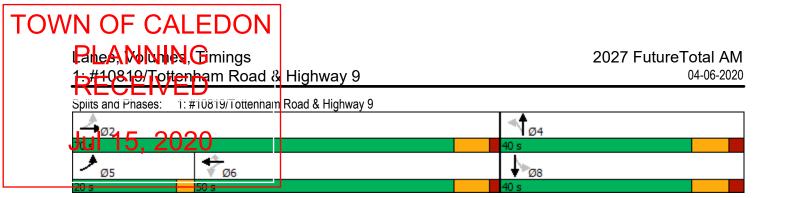



Hane A With M. Gimings
1:#10819/Tottenham Road & Highway 9

2022 FutureTotal PM 04-06-2020

| Lane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Traffic Volume (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Traffic Volume (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Future Volume (vph)         433         582         20         20         688         194         18         16         17         108         10         12           Ideal Flow (vphpl)         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900               |
| Ideal Flow (vphph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Lane Width (m)         3.3         3.5         3.5         2.9         3.5         3.5         3.5         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.5         3.5         3.5         3.5         3.5         3.5         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.5         3.5         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.2         3.6         3.6         3.2         3.6         3.6                                               |
| Storage Length (m)         85.0         0.0         85.0         0.0         40.0         0.0           Storage Lanes         1         0         1         1         1         0         1           Taper Length (m)         75.0         80.0         7.6         40.0         40.0           Lane Util. Factor         1.00         0.95         0.95         1.00         0.95         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00                        |
| Storage Lanes         1         0         1         1         1         0         1           Taper Length (m)         75.0         80.0         7.6         40.0         40.0           Lane Util. Factor         1.00         0.95         0.95         1.00         0.95         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00                        |
| Taper Length (m)         75.0         80.0         7.6         40.0           Lane Util. Factor         1.00         0.95         0.95         1.00         0.95         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00              |
| Lane Util. Factor         1.00         0.95         0.95         1.00         0.95         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00 |
| Frt         0.995         0.850         0.950         0.950           Satd. Flow (prot)         1616         3129         0         1665         3216         1365         1785         1730         0         1736         1606           Flt Permitted         0.302         0.416         0.668         0.735           Satd. Flow (perm)         514         3129         0         729         3216         1365         1255         1730         0         1343         1606           Right Turn on Red         Yes         Ye                                               |
| Fit Protected         0.950         0.950         0.950         0.950           Satd. Flow (prot)         1616         3129         0         1665         3216         1365         1785         1730         0         1736         1606           Flt Permitted         0.302         0.416         0.668         0.735           Satd. Flow (perm)         514         3129         0         729         3216         1365         1255         1730         0         1343         1606           Right Turn on Red         Yes                                                |
| Satd. Flow (prot)         1616         3129         0         1665         3216         1365         1785         1730         0         1736         1606           Flt Permitted         0.302         0.416         0.668         0.735           Satd. Flow (perm)         514         3129         0         729         3216         1365         1255         1730         0         1343         1606           Right Turn on Red         Yes                                            |
| Fit Permitted         0.302         0.416         0.668         0.735           Satd. Flow (perm)         514         3129         0         729         3216         1365         1255         1730         0         1343         1606           Right Turn on Red         Yes         Yes<                                        |
| Satd. Flow (perm)         514         3129         0         729         3216         1365         1255         1730         0         1343         1606           Right Turn on Red         Yes         Yes <td< td=""></td<>                               |
| Right Turn on Red         Yes                                            |
| Satd. Flow (RTOR)         5         200         18         130           Link Speed (k/h)         80         80         50         80           Link Distance (m)         247.2         227.5         62.5         163.3           Travel Time (s)         11.1         10.2         4.5         7.3           Peak Hour Factor         0.96         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97                        |
| Link Speed (k/h)         80         80         50         80           Link Distance (m)         247.2         227.5         62.5         163.3           Travel Time (s)         11.1         10.2         4.5         7.3           Peak Hour Factor         0.96         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97                   |
| Link Distance (m)         247.2         227.5         62.5         163.3           Travel Time (s)         11.1         10.2         4.5         7.3           Peak Hour Factor         0.96         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97            |
| Travel Time (s)     11.1     10.2     4.5     7.3       Peak Hour Factor     0.96     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97     0.97                                                                                                                                                                                        |
| Peak Hour Factor         0.96         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97  |
| Heavy Vehicles (%)       8%       14%       0%       0%       11%       17%       0%       0%       0%       4%       0%       2%         Adj. Flow (vph)       451       600       21       21       709       200       19       16       18       111       10       13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Adj. Flow (vph) 451 600 21 21 709 200 19 16 18 111 10 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Shared Lane Trailic (70)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Lane Group Flow (vph) 451 621 0 21 709 200 19 34 0 111 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Enter Blocked Intersection No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\mathcal{N}_{\mathcal{N}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\lambda$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Two way Left Turn Lane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Headway Factor 1.04 1.01 1.01 1.01 1.01 1.01 1.01 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Turning Speed (k/h) 24 14 24 14 24 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Number of Detectors 1 2 1 2 1 1 2 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Detector Template Left Thru Left Thru Right Left Thru Left Thru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Leading Detector (m) 6.1 30.5 6.1 30.5 6.1 30.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Trailing Detector (m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Detector 1 Position(m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Detector 1 Size(m) 6.1 1.8 6.1 1.8 6.1 1.8 6.1 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Detector 1 Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Detector 1 Extend (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Detector 1 Delay (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Detector 2 Position(m) 28.7 28.7 28.7 28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Detector 2 Size(m) 1.8 1.8 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Detector 2 Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Detector 2 Extend (s) 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Turn Type pm+pt NA Perm NA Perm NA Perm NA Perm NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

### TOWN OF CALEDON Rice Milher, Cimings 2022 FutureTotal PM 1:#10819/Tottenham Road & Highway 9 04-06-2020 t 4 **EBR WBL WBT WBR NBL NBT NBR** SBL **SBT** Lane Group **EBL B**BT **SBR** Protected Phases 2 5 6 8 2 6 6 8 Permitted Phases 4 2 Detector Phase 5 6 6 6 4 4 8 8 Switch Phase Minimum Initial (s) 7.0 20.0 20.0 20.0 20.0 10.0 10.0 10.0 10.0 Minimum Split (s) 10.0 37.6 37.6 37.6 37.6 38.6 38.6 38.6 38.6 32.0 39.4 39.4 39.4 38.6 38.6 Total Split (s) 71.4 38.6 38.6 Total Split (%) 29.1% 64.9% 35.8% 35.8% 35.8% 35.1% 35.1% 35.1% 35.1% Maximum Green (s) 29.0 63.8 31.8 31.8 31.8 30.0 30.0 30.0 30.0 Yellow Time (s) 3.0 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 All-Red Time (s) 0.0 1.7 1.7 1.7 1.7 2.7 2.7 2.7 2.7 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 7.6 3.0 7.6 7.6 7.6 8.6 8.6 8.6 8.6 Lead/Lag Lead Lag Lag Lag Lead-Lag Optimize? Yes Yes Yes Yes Vehicle Extension (s) 3.0 4.0 4.0 4.0 4.0 3.0 3.0 3.0 3.0 Recall Mode None None Max Max Max Max None None None Walk Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 Pedestrian Calls (#/hr) 0 0 0 0 0 0 0 0 Act Effct Green (s) 68.5 63.8 40.9 40.9 40.9 13.4 13.4 13.4 13.4 Actuated g/C Ratio 0.73 0.68 0.44 0.44 0.44 0.14 0.14 0.14 0.14 0.07 v/c Ratio 0.74 0.29 0.50 0.28 0.11 0.13 0.58 0.41 Control Delay 21.2 22.8 14.4 6.6 4.7 35.4 22.0 49.5 11.6 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 **Total Delay** 14.4 6.6 21.2 22.8 4.7 35.4 22.0 49.5 11.6 LOS В С С С D В Α Α D Approach Delay 9.9 26.8 28.4 18.9 Approach LOS С С Α В Queue Length 50th (m) 2.1 2.5 24.4 19.6 46.5 0.0 3.0 18.9 1.6 Queue Length 95th (m) 59.6 33.4 8.3 81.8 14.8 9.2 10.5 35.5 16.8 Internal Link Dist (m) 223.2 203.5 38.5 139.3 Turn Bay Length (m) 85.0 85.0 85.0 40.0 1406 403 567 603 Base Capacity (vph) 718 2138 318 709 431 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 Reduced v/c Ratio 0.29 0.07 0.50 0.28 0.05 0.06 0.26 0.23 0.63 Intersection Summary Area Type: Other Cycle Length: 110 Actuated Cycle Length: 93.5 Natural Cycle: 90 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.74 Intersection Signal Delay: 15.9 Intersection LOS: B Intersection Capacity Utilization 74.8% ICU Level of Service D Analysis Period (min) 15



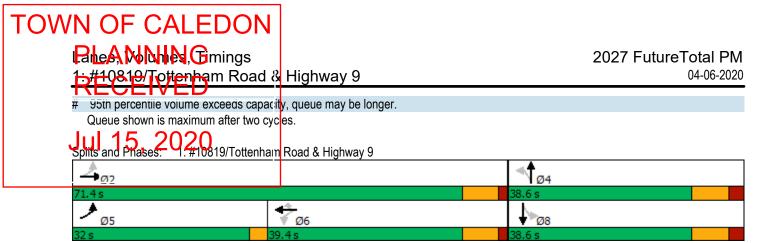

Hane A With M. Gimings
1:#10819/Tottenham Road & Highway 9

2027 FutureTotal AM 04-06-2020

| RECEIVED                   |       | <u> </u>        | <u> </u> |         |        |         |         |          |       |         |          |       |
|----------------------------|-------|-----------------|----------|---------|--------|---------|---------|----------|-------|---------|----------|-------|
|                            | خر    | +               | •        | •       | •      | •       | 1       | <b>†</b> | _     | -       | <b>↓</b> | 4     |
| Lang Group 2020            | EBL   | EBT             | EBR      | WBL     | WBT    | WBR     | NBL     | NBT      | NBR   | SBL     | SBT      | SBR   |
| Lane Configurations        | - 1   | <b>∱</b> ∱      |          | - 1     |        | 7       | - ነ     | £        |       | - 1     | ₽        |       |
| Traffic Volume (vph)       | 96    | 600             | 13       | 12      | 526    | 81      | 16      | 7        | 14    | 226     | 13       | 438   |
| Future Volume (vph)        | 96    | <del>6</del> 00 | 13       | 12      | 526    | 81      | 16      | 7        | 14    | 226     | 13       | 438   |
| Ideal Flow (vphpl)         | 1900  | 1900            | 1900     | 1900    | 1900   | 1900    | 1900    | 1900     | 1900  | 1900    | 1900     | 1900  |
| Lane Width (m)             | 3.3   | 3.5             | 3.5      | 2.9     | 3.5    | 3.5     | 3.5     | 3.5      | 3.5   | 3.6     | 3.6      | 3.6   |
| Storage Length (m)         | 85.0  |                 | 0.0      | 85.0    |        | 85.0    | 0.0     |          | 0.0   | 40.0    |          | 0.0   |
| Storage Lanes              | 1     |                 | 0        | 1       |        | 1       | 1       |          | 0     | 1       |          | 0     |
| Taper Length (m)           | 75.0  |                 |          | 80.0    |        |         | 7.6     |          |       | 40.0    |          |       |
| Lane Util. Factor          | 1.00  | 0.95            | 0.95     | 1.00    | 0.95   | 1.00    | 1.00    | 1.00     | 1.00  | 1.00    | 1.00     | 1.00  |
| Frt                        |       | 0.997           |          |         |        | 0.850   |         | 0.898    |       |         | 0.854    |       |
| FIt Protected              | 0.950 |                 |          | 0.950   |        |         | 0.950   |          |       | 0.950   |          |       |
| Satd. Flow (prot)          | 1616  | 3131            | 0        | 1665    | 3216   | 1365    | 1785    | 1687     | 0     | 1736    | 1592     | 0     |
| FIt Permitted              | 0.410 |                 |          | 0.409   |        |         | 0.174   |          |       | 0.743   |          |       |
| Satd. Flow (perm)          | 697   | 3131            | 0        | 717     | 3216   | 1365    | 327     | 1687     | 0     | 1357    | 1592     | 0     |
| Right Turn on Red          |       |                 | Yes      |         |        | Yes     |         |          | Yes   |         |          | Yes   |
| Satd. Flow (RTOR)          |       | 3               |          |         |        | 85      |         | 15       |       |         | 433      |       |
| Link Speed (k/h)           |       | 80              |          |         | 80     |         |         | 50       |       |         | 80       |       |
| Link Distance (m)          |       | 247.2           |          |         | 227.5  |         |         | 62.5     |       |         | 163.3    |       |
| Travel Time (s)            |       | 11.1            |          |         | 10.2   |         |         | 4.5      |       |         | 7.3      |       |
| Peak Hour Factor           | 0.96  | 0.96            | 0.96     | 0.96    | 0.96   | 0.96    | 0.96    | 0.96     | 0.96  | 0.96    | 0.96     | 0.96  |
| Heavy Vehicles (%)         | 8%    | 14%             | 0%       | 0%      | 11%    | 17%     | 0%      | 0%       | 0%    | 4%      | 0%       | 2%    |
| Adj. Flow (vph)            | 100   | 625             | 14       | 13      | 548    | 84      | 17      | 7        | 15    | 235     | 14       | 456   |
| Shared Lane Traffic (%)    |       |                 |          |         |        |         |         |          |       |         |          |       |
| Lane Group Flow (vph)      | 100   | 639             | 0        | 13      | 548    | 84      | 17      | 22       | 0     | 235     | 470      | 0     |
| Enter Blocked Intersection | No    | No              | No       | No      | No     | No      | No      | No       | No    | No      | No       | No    |
| Lane Alignment             | Left  | Left            | Right    | Left    | Left   | Right   | Left    | Left     | Right | Left    | Left     | Right |
| Median Width(m)            |       | 3.3             |          |         | 3.3    |         |         | 3.6      |       |         | 3.6      | 9     |
| Link Offset(m)             |       | 0.0             |          |         | 0.0    |         |         | 0.0      |       |         | 0.0      |       |
| Crosswalk Width(m)         |       | 4.9             |          |         | 4.9    |         |         | 4.9      |       |         | 4.9      |       |
| Two way Left Turn Lane     |       |                 |          |         |        |         |         |          |       |         |          |       |
| Headway Factor             | 1.04  | 1.01            | 1.01     | 1.11    | 1.01   | 1.01    | 1.01    | 1.01     | 1.01  | 1.00    | 1.00     | 1.00  |
| Turning Speed (k/h)        | 24    |                 | 14       | 24      |        | 14      | 24      |          | 14    | 24      |          | 14    |
| Number of Detectors        | 1     | 2               |          | 1       | 2      | 1       | 1       | 2        |       | 1       | 2        |       |
| Detector Template          | Left  | Thru            |          | Left    | Thru   | Right   | Left    | Thru     |       | Left    | Thru     |       |
| Leading Detector (m)       | 6.1   | 30.5            |          | 6.1     | 30.5   | 6.1     | 6.1     | 30.5     |       | 6.1     | 30.5     |       |
| Trailing Detector (m)      | 0.0   | 0.0             |          | 0.0     | 0.0    | 0.0     | 0.0     | 0.0      |       | 0.0     | 0.0      |       |
| Detector 1 Position(m)     | 0.0   | 0.0             |          | 0.0     | 0.0    | 0.0     | 0.0     | 0.0      |       | 0.0     | 0.0      |       |
| Detector 1 Size(m)         | 6.1   | 1.8             |          | 6.1     | 1.8    | 6.1     | 6.1     | 1.8      |       | 6.1     | 1.8      |       |
| Detector 1 Type            | CI+Ex | CI+Ex           |          | CI+Ex   | Cl+Ex  | CI+Ex   | CI+Ex   | CI+Ex    |       | CI+Ex   | CI+Ex    |       |
| Detector 1 Channel         | V/.   | J,              |          | J       | V/.    | J       | J/.     | J        |       | J       | J,       |       |
| Detector 1 Extend (s)      | 0.0   | 0.0             |          | 0.0     | 0.0    | 0.0     | 0.0     | 0.0      |       | 0.0     | 0.0      |       |
| Detector 1 Queue (s)       | 0.0   | 0.0             |          | 0.0     | 0.0    | 0.0     | 0.0     | 0.0      |       | 0.0     | 0.0      |       |
| Detector 1 Delay (s)       | 0.0   | 0.0             |          | 0.0     | 0.0    | 0.0     | 0.0     | 0.0      |       | 0.0     | 0.0      |       |
| Detector 2 Position(m)     |       | 28.7            |          |         | 28.7   |         |         | 28.7     |       |         | 28.7     |       |
| Detector 2 Size(m)         |       | 1.8             |          |         | 1.8    |         |         | 1.8      |       |         | 1.8      |       |
| Detector 2 Type            |       | CI+Ex           |          |         | Cl+Ex  |         |         | CI+Ex    |       |         | CI+Ex    |       |
| Detector 2 Channel         |       | <b>_</b> /\     |          |         |        |         |         | ,        |       |         |          |       |
| Detector 2 Extend (s)      |       | 0.0             |          |         | 0.0    |         |         | 0.0      |       |         | 0.0      |       |
| Turn Type                  | pm+pt | NA              |          | Perm    | NA     | Perm    | Perm    | NA       |       | Perm    | NA       |       |
| , , , ,                    | μ μι  | . 47 1          |          | . 5.111 | . 17 1 | . 0.111 | . 0.111 | . 4/ 1   |       | . 5.111 | . 47 1   |       |

### TOWN OF CALEDON Rice Milher, Cimings 2027 FutureTotal AM 1:#10819/Tottenham Road & Highway 9 04-06-2020 t 4 **EBR WBL WBT WBR NBL NBT NBR** SBL SBT Lane Group **EBL B**BT **SBR** Protected Phases 2 5 6 8 2 6 6 8 Permitted Phases 4 2 Detector Phase 5 6 6 6 4 4 8 8 Switch Phase Minimum Initial (s) 7.0 20.0 20.0 20.0 20.0 10.0 10.0 10.0 10.0 Minimum Split (s) 10.0 37.6 37.6 37.6 37.6 38.6 38.6 38.6 38.6 20.0 70.0 50.0 50.0 50.0 40.0 40.0 40.0 40.0 Total Split (s) 45.5% Total Split (%) 18.2% 63.6% 45.5% 45.5% 36.4% 36.4% 36.4% 36.4% Maximum Green (s) 17.0 62.4 42.4 42.4 42.4 31.4 31.4 31.4 31.4 Yellow Time (s) 3.0 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 All-Red Time (s) 0.0 1.7 1.7 1.7 1.7 2.7 2.7 2.7 2.7 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 7.6 3.0 7.6 7.6 7.6 8.6 8.6 8.6 8.6 Lead Lead/Lag Lag Lag Lag Lead-Lag Optimize? Yes Yes Yes Yes Vehicle Extension (s) 3.0 4.0 4.0 4.0 4.0 3.0 3.0 3.0 3.0 Recall Mode None None Max Max Max Max None None None Walk Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 Pedestrian Calls (#/hr) 0 0 0 0 0 0 0 0 Act Effct Green (s) 67.3 62.6 53.6 53.6 53.6 23.0 23.0 23.0 23.0 Actuated g/C Ratio 0.66 0.61 0.53 0.53 0.53 0.23 0.23 0.23 0.23 0.03 v/c Ratio 0.19 0.33 0.32 0.11 0.23 0.06 0.77 0.68 Control Delay 8.4 10.9 16.3 16.5 4.2 39.5 16.9 53.7 10.0 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 **Total Delay** 8.4 10.9 16.3 16.5 4.2 39.5 16.9 53.7 10.0 LOS Α В В В В D Α D Α Approach Delay 10.5 14.9 26.7 24.6 Approach LOS В В С C Queue Length 50th (m) 32.6 2.8 1.1 5.8 6.5 29.8 1.3 0.0 43.6 Queue Length 95th (m) 15.4 48.5 5.2 54.0 8.4 9.0 6.9 69.8 34.3 Internal Link Dist (m) 223.2 203.5 38.5 139.3 Turn Bay Length (m) 85.0 85.0 85.0 40.0 1926 1692 101 532 791 Base Capacity (vph) 614 377 758 419 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 Reduced v/c Ratio 0.33 0.03 0.32 0.11 0.17 0.04 0.56 0.59 0.16 Intersection Summary Area Type: Other Cycle Length: 110 Actuated Cycle Length: 101.9 Natural Cycle: 90 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.77 Intersection Signal Delay: 16.8 Intersection LOS: B Intersection Capacity Utilization 81.3% ICU Level of Service D Analysis Period (min) 15



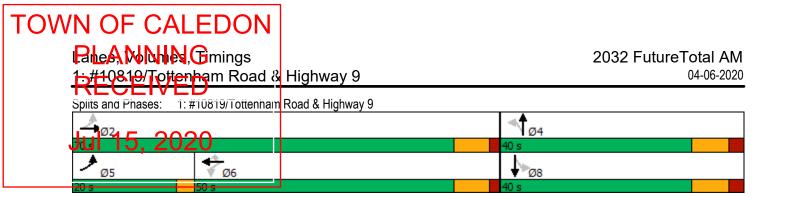

Hanes With A. Gimings

1:#10819/Tottenham Road & Highway 9

2027 FutureTotal PM 04-06-2020

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Lane Configurations 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DD   |
| Lane Configurations         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         †         *         †         *         †         *         †         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BK   |
| Traffic Volume (vph) 479 644 20 21 761 215 18 16 17 119 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 139  |
| - and the state of | 139  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 900  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.6  |
| Storage Length (m) 85.0 0.0 85.0 0.0 0.0 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0  |
| Storage Lanes 1 0 1 1 1 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0    |
| Taper Length (m) 75.0 80.0 7.6 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| Lane Util. Factor 1.00 0.95 0.95 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .00  |
| Frt 0.995 0.850 0.921 0.860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| Flt Protected 0.950 0.950 0.950 0.950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| Satd. Flow (prot) 1616 3128 0 1665 3216 1365 1785 1730 0 1736 1604                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0    |
| Flt Permitted 0.231 0.391 0.659 0.735                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| Satd. Flow (perm) 393 3128 0 685 3216 1365 1238 1730 0 1343 1604                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes  |
| Satd. Flow (RTOR) 5 222 18 145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
| Link Speed (k/h) 80 80 50 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
| Link Distance (m) 247.2 227.5 62.5 163.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
| Travel Time (s) 11.1 10.2 4.5 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .96  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2%   |
| Adj. Flow (vph) 494 664 21 22 785 222 19 16 18 123 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 145  |
| Shared Lane Traffic (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
| Lane Group Flow (vph) 494 685 0 22 785 222 19 34 0 123 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ight |
| Median Width(m) 3.3 3.6 3.6 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| Link Offset(m) 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
| Crosswalk Width(m) 4.9 4.9 4.9 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
| Two way Left Turn Lane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .00  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14   |
| Number of Detectors 1 2 1 2 1 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| Detector Template Left Thru Left Thru Right Left Thru Left Thru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| Leading Detector (m) 6.1 30.5 6.1 30.5 6.1 30.5 6.1 30.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
| Trailing Detector (m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| Detector 1 Position(m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
| Detector 1 Size(m) 6.1 1.8 6.1 1.8 6.1 1.8 6.1 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
| Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| Detector 1 Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
| Detector 1 Extend (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
| Detector 1 Delay (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
| Detector 2 Position(m) 28.7 28.7 28.7 28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| Detector 2 Size(m) 1.8 1.8 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
| Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| Detector 2 Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
| Detector 2 Channel         Detector 2 Extend (s)         0.0         0.0         0.0         0.0         0.0           Turn Type         pm+pt         NA         Perm         NA         Perm         NA         Perm         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |

### TOWN OF CALEDON Rice Milher, Cimings 2027 FutureTotal PM 1:#10819/Tottenham Road & Highway 9 04-06-2020 t 4 **EBR WBL WBT WBR NBL NBT NBR** SBL SBT Lane Group **EBL B**BT **SBR** 2 Protected Phases 5 6 8 2 6 6 8 Permitted Phases 4 2 Detector Phase 5 6 6 6 4 4 8 8 Switch Phase Minimum Initial (s) 7.0 20.0 20.0 20.0 20.0 10.0 10.0 10.0 10.0 Minimum Split (s) 10.0 37.6 37.6 37.6 37.6 38.6 38.6 38.6 38.6 32.0 39.4 39.4 39.4 38.6 38.6 Total Split (s) 71.4 38.6 38.6 Total Split (%) 29.1% 64.9% 35.8% 35.8% 35.8% 35.1% 35.1% 35.1% 35.1% Maximum Green (s) 29.0 63.8 31.8 31.8 31.8 30.0 30.0 30.0 30.0 Yellow Time (s) 3.0 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 All-Red Time (s) 0.0 1.7 1.7 1.7 1.7 2.7 2.7 2.7 2.7 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 7.6 3.0 7.6 7.6 7.6 8.6 8.6 8.6 8.6 Lead/Lag Lead Lag Lag Lag Lead-Lag Optimize? Yes Yes Yes Yes Vehicle Extension (s) 3.0 4.0 4.0 4.0 4.0 3.0 3.0 3.0 3.0 Recall Mode None None Max Max Max Max None None None Walk Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 Pedestrian Calls (#/hr) 0 0 0 0 0 0 0 0 Act Effct Green (s) 68.5 63.9 34.7 34.7 34.7 14.2 14.2 14.2 14.2 Actuated g/C Ratio 0.73 0.68 0.37 0.37 0.37 0.15 0.15 0.15 0.15 0.09 v/c Ratio 0.79 0.32 0.66 0.35 0.10 0.12 0.61 0.43 Control Delay 24.1 29.7 22.5 7.1 34.9 21.7 50.5 11.0 5.1 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 **Total Delay** 22.5 7.1 24.1 29.7 34.9 21.7 50.5 11.0 5.1 LOS С С С C C D В Α Α Approach Delay 26.4 28.5 13.6 24.3 Approach LOS С С В С Queue Length 50th (m) 2.5 41.3 23.1 2.7 64.6 0.0 3.0 21.2 1.6 Queue Length 95th (m) #102.0 39.1 8.8 94.2 15.8 9.2 10.4 38.7 17.6 Internal Link Dist (m) 223.2 203.5 38.5 139.3 Turn Bay Length (m) 85.0 85.0 85.0 40.0 2120 1184 394 563 609 Base Capacity (vph) 661 252 642 427 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 Reduced v/c Ratio 0.32 0.09 0.66 0.35 0.05 0.06 0.29 0.25 0.75 Intersection Summary Area Type: Other Cycle Length: 110 Actuated Cycle Length: 94.3 Natural Cycle: 100 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.79 Intersection Signal Delay: 19.8 Intersection LOS: B Intersection Capacity Utilization 79.4% ICU Level of Service D Analysis Period (min) 15

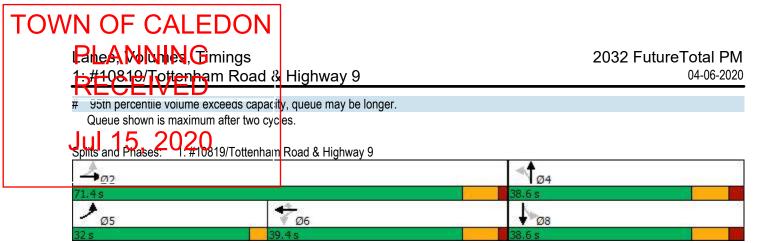



Hane A With M. Gimings
1:#10819/Tottenham Road & Highway 9

2032 FutureTotal AM 04-06-2020

| RECEIVED                           |       | <u> </u>   | <u> </u>      |       |          |       |       |          |          |       |       |       |
|------------------------------------|-------|------------|---------------|-------|----------|-------|-------|----------|----------|-------|-------|-------|
|                                    | ځ     | +          | $\rightarrow$ | •     | ←        | •     | 1     | <b>†</b> | <b>/</b> | -     | ţ     | 4     |
| Lang Group 2020                    | EBL   | EBT        | EBR           | WBL   | WBT      | WBR   | NBL   | NBT      | NBR      | SBL   | SBT   | SBR   |
| Lane Configurations                | *     | <b>↑</b> ↑ |               | ř     | <b>^</b> | 7     | , j   | ĵ.       |          | ň     | f)    |       |
| Traffic Volume (vph)               | 106   | 663        | 13            | 12    | 581      | 90    | 16    | 7        | 14       | 250   | 13    | 484   |
| Future Volume (vph)                | 106   | 663        | 13            | 12    | 581      | 90    | 16    | 7        | 14       | 250   | 13    | 484   |
| Ideal Flow (vphpl)                 | 1900  | 1900       | 1900          | 1900  | 1900     | 1900  | 1900  | 1900     | 1900     | 1900  | 1900  | 1900  |
| Lane Width (m)                     | 3.3   | 3.5        | 3.5           | 2.9   | 3.5      | 3.5   | 3.5   | 3.5      | 3.5      | 3.6   | 3.6   | 3.6   |
| Storage Length (m)                 | 85.0  |            | 0.0           | 85.0  |          | 85.0  | 0.0   |          | 0.0      | 40.0  |       | 0.0   |
| Storage Lanes                      | 1     |            | 0             | 1     |          | 1     | 1     |          | 0        | 1     |       | 0     |
| Taper Length (m)                   | 75.0  |            |               | 80.0  |          |       | 7.6   |          |          | 40.0  |       |       |
| Lane Util. Factor                  | 1.00  | 0.95       | 0.95          | 1.00  | 0.95     | 1.00  | 1.00  | 1.00     | 1.00     | 1.00  | 1.00  | 1.00  |
| Frt                                |       | 0.997      |               |       |          | 0.850 |       | 0.898    |          |       | 0.854 |       |
| Flt Protected                      | 0.950 |            |               | 0.950 |          |       | 0.950 |          |          | 0.950 |       |       |
| Satd. Flow (prot)                  | 1616  | 3130       | 0             | 1665  | 3216     | 1365  | 1785  | 1687     | 0        | 1736  | 1592  | 0     |
| Flt Permitted                      | 0.370 | 0.00       |               | 0.384 | 02.0     |       | 0.161 |          | •        | 0.743 |       |       |
| Satd. Flow (perm)                  | 629   | 3130       | 0             | 673   | 3216     | 1365  | 303   | 1687     | 0        | 1357  | 1592  | 0     |
| Right Turn on Red                  | 020   | 0.00       | Yes           | 0.0   | 0210     | Yes   | 000   | 1001     | Yes      | 1001  | 1002  | Yes   |
| Satd. Flow (RTOR)                  |       | 3          |               |       |          | 94    |       | 15       |          |       | 411   | . 00  |
| Link Speed (k/h)                   |       | 80         |               |       | 80       | O I   |       | 50       |          |       | 80    |       |
| Link Distance (m)                  |       | 247.2      |               |       | 227.5    |       |       | 62.5     |          |       | 163.3 |       |
| Travel Time (s)                    |       | 11.1       |               |       | 10.2     |       |       | 4.5      |          |       | 7.3   |       |
| Peak Hour Factor                   | 0.96  | 0.96       | 0.96          | 0.96  | 0.96     | 0.96  | 0.96  | 0.96     | 0.96     | 0.96  | 0.96  | 0.96  |
| Heavy Vehicles (%)                 | 8%    | 14%        | 0.30          | 0.30  | 11%      | 17%   | 0.30  | 0.30     | 0.30     | 4%    | 0.30  | 2%    |
| Adj. Flow (vph)                    | 110   | 691        | 14            | 13    | 605      | 94    | 17    | 7        | 15       | 260   | 14    | 504   |
| Shared Lane Traffic (%)            | 110   | 031        | 14            | 13    | 003      | 34    | 17    | ı        | 13       | 200   | 14    | 304   |
| Lane Group Flow (vph)              | 110   | 705        | 0             | 13    | 605      | 94    | 17    | 22       | 0        | 260   | 518   | 0     |
| Enter Blocked Intersection         | No    | No         | No            | No    | No       | No    | No    | No       | No       | No    | No    | No    |
| Lane Alignment                     | Left  | Left       | Right         | Left  | Left     | Right | Left  | Left     | Right    | Left  | Left  | Right |
| Median Width(m)                    | LGIL  | 3.3        | Right         | Leit  | 3.3      | Night | Leit  | 3.6      | rtigrit  | Leit  | 3.6   | Night |
| Link Offset(m)                     |       | 0.0        |               |       | 0.0      |       |       | 0.0      |          |       | 0.0   |       |
| Crosswalk Width(m)                 |       | 4.9        |               |       | 4.9      |       |       | 4.9      |          |       | 4.9   |       |
| Two way Left Turn Lane             |       | 4.3        |               |       | 4.3      |       |       | 4.3      |          |       | 4.3   |       |
| Headway Factor                     | 1.04  | 1.01       | 1.01          | 1.11  | 1.01     | 1.01  | 1.01  | 1.01     | 1.01     | 1.00  | 1.00  | 1.00  |
| Turning Speed (k/h)                | 24    | 1.01       | 1.01          | 24    | 1.01     | 1.01  | 24    | 1.01     | 1.01     | 24    | 1.00  | 1.00  |
| Number of Detectors                | 1     | 2          | 14            | 1     | 2        | 1     | 1     | 2        | 14       | 1     | 2     | 14    |
| Detector Template                  | Left  | Thru       |               | Left  | Thru     | Right | Left  | Thru     |          | Left  | Thru  |       |
| Leading Detector (m)               | 6.1   | 30.5       |               | 6.1   | 30.5     | 6.1   | 6.1   | 30.5     |          | 6.1   | 30.5  |       |
| Trailing Detector (m)              | 0.0   | 0.0        |               | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |          | 0.0   | 0.0   |       |
| Detector 1 Position(m)             | 0.0   | 0.0        |               | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |          | 0.0   | 0.0   |       |
| Detector 1 Size(m)                 | 6.1   | 1.8        |               | 6.1   | 1.8      | 6.1   | 6.1   | 1.8      |          | 6.1   | 1.8   |       |
|                                    | CI+Ex | Cl+Ex      |               | Cl+Ex | Cl+Ex    | CI+Ex | Cl+Ex | Cl+Ex    |          | Cl+Ex | CI+Ex |       |
| Detector 1 Type Detector 1 Channel | UI+EX | UI+⊏X      |               | CI+EX | CI+EX    | CI+EX | CI+EX | CI+EX    |          | CI+EX | CI+EX |       |
|                                    | 0.0   | 0.0        |               | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |          | 0.0   | 0.0   |       |
| Detector 1 Extend (s)              | 0.0   | 0.0        |               | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |          | 0.0   | 0.0   |       |
| Detector 1 Queue (s)               |       |            |               | 0.0   | 0.0      |       |       | 0.0      |          |       |       |       |
| Detector 1 Delay (s)               | 0.0   | 0.0        |               | 0.0   |          | 0.0   | 0.0   |          |          | 0.0   | 0.0   |       |
| Detector 2 Position(m)             |       | 28.7       |               |       | 28.7     |       |       | 28.7     |          |       | 28.7  |       |
| Detector 2 Size(m)                 |       | 1.8        |               |       | 1.8      |       |       | 1.8      |          |       | 1.8   |       |
| Detector 2 Type                    |       | CI+Ex      |               |       | Cl+Ex    |       |       | Cl+Ex    |          |       | CI+Ex |       |
| Detector 2 Channel                 |       | 0.0        |               |       | 0.0      |       |       | 0.0      |          |       | 0.0   |       |
| Detector 2 Extend (s)              |       | 0.0        |               | _     | 0.0      | Б     | _     | 0.0      |          | _     | 0.0   |       |
| Turn Type                          | pm+pt | NA         |               | Perm  | NA       | Perm  | Perm  | NA       |          | Perm  | NA    |       |

#### TOWN OF CALEDON Rice Milher, Cimings 2032 FutureTotal AM 1:#10819/Tottenham Road & Highway 9 04-06-2020 t 4 **EBR WBL WBT WBR NBL NBT NBR** SBL SBT Lane Group **EBL B**BT **SBR** Protected Phases 2 5 6 8 2 6 6 8 Permitted Phases 4 2 Detector Phase 5 6 6 6 4 4 8 8 Switch Phase Minimum Initial (s) 7.0 20.0 20.0 20.0 20.0 10.0 10.0 10.0 10.0 Minimum Split (s) 10.0 37.6 37.6 37.6 37.6 38.6 38.6 38.6 38.6 20.0 70.0 50.0 50.0 50.0 40.0 40.0 40.0 40.0 Total Split (s) 45.5% Total Split (%) 18.2% 63.6% 45.5% 45.5% 36.4% 36.4% 36.4% 36.4% Maximum Green (s) 17.0 62.4 42.4 42.4 42.4 31.4 31.4 31.4 31.4 Yellow Time (s) 3.0 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 All-Red Time (s) 0.0 1.7 1.7 1.7 1.7 2.7 2.7 2.7 2.7 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 7.6 3.0 7.6 7.6 7.6 8.6 8.6 8.6 8.6 Lead/Lag Lead Lag Lag Lag Lead-Lag Optimize? Yes Yes Yes Yes Vehicle Extension (s) 3.0 4.0 4.0 4.0 4.0 3.0 3.0 3.0 3.0 Recall Mode None None Max Max Max Max None None None Walk Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 Pedestrian Calls (#/hr) 0 0 0 0 0 0 0 0 Act Effct Green (s) 67.3 62.7 51.1 51.1 51.1 24.9 24.9 24.9 24.9 Actuated g/C Ratio 0.65 0.60 0.49 0.49 0.49 0.24 0.24 0.24 0.24 0.04 v/c Ratio 0.22 0.37 0.38 0.13 0.24 0.05 0.80 0.75 Control Delay 9.3 12.0 17.2 18.6 4.2 39.6 16.6 55.6 15.1 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 **Total Delay** 9.3 12.0 17.2 18.6 4.2 39.6 16.6 55.6 15.1 LOS Α В В В В Ε В Α D Approach Delay 11.6 26.6 28.6 16.7 Approach LOS С В В C Queue Length 50th (m) 37.2 39.8 1.1 8.1 1.4 0.0 2.8 49.3 17.6 Queue Length 95th (m) 16.6 54.6 5.3 60.7 9.1 9.2 6.9 78.3 56.0 Internal Link Dist (m) 223.2 203.5 38.5 139.3 Turn Bay Length (m) 85.0 85.0 85.0 40.0 1890 1582 92 522 769 Base Capacity (vph) 570 331 719 412 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 Reduced v/c Ratio 0.19 0.37 0.04 0.38 0.13 0.18 0.04 0.63 0.67 Intersection Summary Area Type: Other Cycle Length: 110 Actuated Cycle Length: 103.8 Natural Cycle: 90 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.80 Intersection Signal Delay: 19.1 Intersection LOS: B Intersection Capacity Utilization 85.9% ICU Level of Service E Analysis Period (min) 15



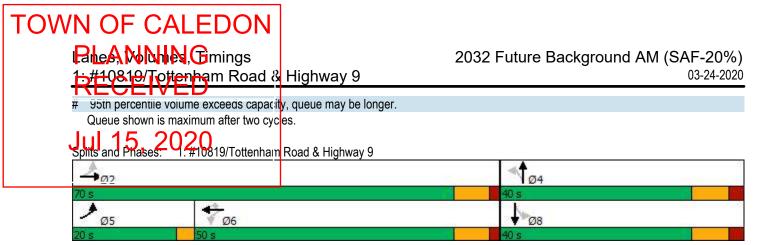

Pale A Work Cimings
1:#10819/Tottenham Road & Highway 9

2032 FutureTotal PM 04-06-2020

| Ditto A lone wa            | III INOa       | u (X I II(      | gnway         | 9        |          |          |         |          |          |             | 0+-0    | 00-2020 |
|----------------------------|----------------|-----------------|---------------|----------|----------|----------|---------|----------|----------|-------------|---------|---------|
| RECEIVED                   | ځ              | +               | $\rightarrow$ | •        | <b>←</b> | •        | 4       | <b>†</b> | <b>/</b> | <b>&gt;</b> | ļ       | 4       |
| Lane Group 2020            | EBL            | EBT             | EBR           | WBL      | WBT      | WBR      | NBL     | NBT      | NBR      | SBL         | SBT     | SBR     |
| Lane Configurations        | 7              | <b>∱</b> ∱      |               | ř        | <b>^</b> | 7        | Ť       | f)       |          | 7           | £       |         |
| Traffic Volume (vph)       | 529            | 711             | 20            | 21       | 841      | 237      | 19      | 17       | 17       | 132         | 10      | 154     |
| Future Volume (vph)        | <del>529</del> | <del></del> †11 | 20            | 21       | 841      | 237      | 19      | 17       | 17       | 132         | 10      | 154     |
| Ideal Flow (vphpl)         | 1900           | 1900            | 1900          | 1900     | 1900     | 1900     | 1900    | 1900     | 1900     | 1900        | 1900    | 1900    |
| Lane Width (m)             | 3.3            | 3.5             | 3.5           | 2.9      | 3.5      | 3.5      | 3.5     | 3.5      | 3.5      | 3.6         | 3.6     | 3.6     |
| Storage Length (m)         | 85.0           |                 | 0.0           | 85.0     |          | 85.0     | 0.0     |          | 0.0      | 40.0        |         | 0.0     |
| Storage Lanes              | 1              |                 | 0             | 1        |          | 1        | 1       |          | 0        | 1           |         | 0       |
| Taper Length (m)           | 75.0           |                 |               | 80.0     |          |          | 7.6     |          |          | 40.0        |         |         |
| Lane Util. Factor          | 1.00           | 0.95            | 0.95          | 1.00     | 0.95     | 1.00     | 1.00    | 1.00     | 1.00     | 1.00        | 1.00    | 1.00    |
| Frt                        |                | 0.996           |               |          |          | 0.850    |         | 0.925    |          |             | 0.859   |         |
| Flt Protected              | 0.950          |                 |               | 0.950    |          |          | 0.950   |          |          | 0.950       |         |         |
| Satd. Flow (prot)          | 1616           | 3130            | 0             | 1665     | 3216     | 1365     | 1785    | 1738     | 0        | 1736        | 1602    | 0       |
| Flt Permitted              | 0.168          |                 |               | 0.366    |          |          | 0.650   |          |          | 0.734       |         |         |
| Satd. Flow (perm)          | 286            | 3130            | 0             | 641      | 3216     | 1365     | 1221    | 1738     | 0        | 1341        | 1602    | 0       |
| Right Turn on Red          |                |                 | Yes           |          |          | Yes      |         |          | Yes      |             |         | Yes     |
| Satd. Flow (RTOR)          |                | 4               |               |          |          | 244      |         | 18       |          |             | 159     |         |
| Link Speed (k/h)           |                | 80              |               |          | 80       |          |         | 50       |          |             | 80      |         |
| Link Distance (m)          |                | 247.2           |               |          | 227.5    |          |         | 62.5     |          |             | 163.3   |         |
| Travel Time (s)            |                | 11.1            |               |          | 10.2     |          |         | 4.5      |          |             | 7.3     |         |
| Peak Hour Factor           | 0.97           | 0.97            | 0.97          | 0.97     | 0.97     | 0.97     | 0.97    | 0.97     | 0.97     | 0.97        | 0.97    | 0.97    |
| Heavy Vehicles (%)         | 8%             | 14%             | 0%            | 0%       | 11%      | 17%      | 0%      | 0%       | 0%       | 4%          | 0%      | 2%      |
| Adj. Flow (vph)            | 545            | 733             | 21            | 22       | 867      | 244      | 20      | 18       | 18       | 136         | 10      | 159     |
| Shared Lane Traffic (%)    | 010            | 700             |               |          | 001      |          | 20      | 10       | 10       | 100         | 10      | 100     |
| Lane Group Flow (vph)      | 545            | 754             | 0             | 22       | 867      | 244      | 20      | 36       | 0        | 136         | 169     | 0       |
| Enter Blocked Intersection | No             | No              | No            | No       | No       | No       | No      | No       | No       | No          | No      | No      |
| Lane Alignment             | Left           | Left            | Right         | Left     | Left     | Right    | Left    | Left     | Right    | Left        | Left    | Right   |
| Median Width(m)            | Lon            | 3.3             | rugiit        | Loit     | 3.3      | rugiit   | Loit    | 3.6      | ragin    | Loit        | 3.6     | rugiit  |
| Link Offset(m)             |                | 0.0             |               |          | 0.0      |          |         | 0.0      |          |             | 0.0     |         |
| Crosswalk Width(m)         |                | 4.9             |               |          | 4.9      |          |         | 4.9      |          |             | 4.9     |         |
| Two way Left Turn Lane     |                | 1.0             |               |          | 1.0      |          |         | 1.0      |          |             |         |         |
| Headway Factor             | 1.04           | 1.01            | 1.01          | 1.11     | 1.01     | 1.01     | 1.01    | 1.01     | 1.01     | 1.00        | 1.00    | 1.00    |
| Turning Speed (k/h)        | 24             | 1.01            | 14            | 24       |          | 14       | 24      | 1.0.     | 14       | 24          | 1.00    | 14      |
| Number of Detectors        | 1              | 2               |               | 1        | 2        | 1        | 1       | 2        | • •      | 1           | 2       |         |
| Detector Template          | Left           | Thru            |               | Left     | Thru     | Right    | Left    | Thru     |          | Left        | Thru    |         |
| Leading Detector (m)       | 6.1            | 30.5            |               | 6.1      | 30.5     | 6.1      | 6.1     | 30.5     |          | 6.1         | 30.5    |         |
| Trailing Detector (m)      | 0.0            | 0.0             |               | 0.0      | 0.0      | 0.0      | 0.0     | 0.0      |          | 0.0         | 0.0     |         |
| Detector 1 Position(m)     | 0.0            | 0.0             |               | 0.0      | 0.0      | 0.0      | 0.0     | 0.0      |          | 0.0         | 0.0     |         |
| Detector 1 Size(m)         | 6.1            | 1.8             |               | 6.1      | 1.8      | 6.1      | 6.1     | 1.8      |          | 6.1         | 1.8     |         |
| Detector 1 Type            | CI+Ex          | Cl+Ex           |               | CI+Ex    | CI+Ex    | CI+Ex    | CI+Ex   | Cl+Ex    |          | CI+Ex       | CI+Ex   |         |
| Detector 1 Channel         | OI · LX        | OI · LX         |               | OI · LX  | OI · LX  | OI · LX  | OI · LX | OI · LX  |          | OI · LX     | OI · LX |         |
| Detector 1 Extend (s)      | 0.0            | 0.0             |               | 0.0      | 0.0      | 0.0      | 0.0     | 0.0      |          | 0.0         | 0.0     |         |
| Detector 1 Queue (s)       | 0.0            | 0.0             |               | 0.0      | 0.0      | 0.0      | 0.0     | 0.0      |          | 0.0         | 0.0     |         |
| Detector 1 Delay (s)       | 0.0            | 0.0             |               | 0.0      | 0.0      | 0.0      | 0.0     | 0.0      |          | 0.0         | 0.0     |         |
| Detector 2 Position(m)     | 0.0            | 28.7            |               | 0.0      | 28.7     | 0.0      | 0.0     | 28.7     |          | 0.0         | 28.7    |         |
| Detector 2 Size(m)         |                | 1.8             |               |          | 1.8      |          |         | 1.8      |          |             | 1.8     |         |
| Detector 2 Type            |                | CI+Ex           |               |          | CI+Ex    |          |         | CI+Ex    |          |             | CI+Ex   |         |
| Detector 2 Channel         |                | OITEX           |               |          | OITEX    |          |         | OLLEY    |          |             | OFFEX   |         |
| Detector 2 Extend (s)      |                | 0.0             |               |          | 0.0      |          |         | 0.0      |          |             | 0.0     |         |
| Turn Type                  | nm±nt          | NA              |               | Perm     | NA       | Perm     | Perm    | NA       |          | Perm        | NA      |         |
| ruin rype                  | pm+pt          | INA             |               | r ellili | INA      | r ellili | генн    | IVA      |          | r ellili    | INA     |         |

#### TOWN OF CALEDON Rice Milher, Cimings 2032 FutureTotal PM 1:#10819/Tottenham Road & Highway 9 04-06-2020 t 4 **EBR WBL WBT WBR NBL NBT NBR** SBL **SBT** Lane Group **EBL B**BT **SBR** Protected Phases 2 5 6 8 2 6 6 8 Permitted Phases 4 2 Detector Phase 5 6 6 6 4 4 8 8 Switch Phase Minimum Initial (s) 7.0 20.0 20.0 20.0 20.0 10.0 10.0 10.0 10.0 Minimum Split (s) 10.0 37.6 37.6 37.6 37.6 38.6 38.6 38.6 38.6 32.0 39.4 39.4 39.4 38.6 38.6 Total Split (s) 71.4 38.6 38.6 Total Split (%) 29.1% 64.9% 35.8% 35.8% 35.8% 35.1% 35.1% 35.1% 35.1% Maximum Green (s) 29.0 63.8 31.8 31.8 31.8 30.0 30.0 30.0 30.0 Yellow Time (s) 3.0 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 All-Red Time (s) 0.0 1.7 1.7 1.7 1.7 2.7 2.7 2.7 2.7 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 7.6 3.0 7.6 7.6 7.6 8.6 8.6 8.6 8.6 Lead/Lag Lead Lag Lag Lag Lead-Lag Optimize? Yes Yes Yes Yes Vehicle Extension (s) 3.0 4.0 4.0 4.0 4.0 3.0 3.0 3.0 3.0 Recall Mode None None Max Max Max Max None None None Walk Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 Pedestrian Calls (#/hr) 0 0 0 0 0 0 0 0 Act Effct Green (s) 68.6 63.9 31.9 31.9 31.9 15.1 15.1 15.1 15.1 Actuated g/C Ratio 0.72 0.67 0.33 0.33 0.33 0.16 0.16 0.16 0.16 0.10 v/c Ratio 0.89 0.36 0.81 0.39 0.10 0.12 0.64 0.44 Control Delay 25.3 38.4 7.8 36.6 5.5 34.5 21.7 51.5 10.4 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 **Total Delay** 38.4 7.8 25.3 36.6 34.5 21.7 51.5 10.4 5.5 LOS D С D С C D В Α Α Approach Delay 29.7 26.3 28.7 20.7 Approach LOS С С С С Queue Length 50th (m) 75.2 2.8 68.0 27.3 2.8 0.0 3.2 23.7 1.6 Queue Length 95th (m) #146.9 46.1 9.1 #116.9 16.7 9.5 11.1 42.3 17.9 Internal Link Dist (m) 223.2 203.5 38.5 139.3 Turn Bay Length (m) 85.0 85.0 85.0 40.0 2101 1075 385 560 614 Base Capacity (vph) 611 214 619 423 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 Reduced v/c Ratio 0.89 0.36 0.10 0.81 0.39 0.05 0.06 0.32 0.28 Intersection Summary Area Type: Other Cycle Length: 110 Actuated Cycle Length: 95.3 Natural Cycle: 110 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.89 Intersection Signal Delay: 25.3 Intersection LOS: C Intersection Capacity Utilization 85.2% ICU Level of Service E Analysis Period (min) 15




Hane A With M. Emings
1:#10819/Tottenham Road & Highway 9

2032 Future Background AM (SAF-20%)

03-24-2020

| KECEIVED                            | _        |                 | -      |         |       |         |         |       |         |         |       |          |
|-------------------------------------|----------|-----------------|--------|---------|-------|---------|---------|-------|---------|---------|-------|----------|
|                                     | •        | +               | *      | •       | •     | •       | 1       | Ī     |         | -       | ¥     | *        |
| Lang Group 2020                     | EBL      | EBT             | EBR    | WBL     | WBT   | WBR     | NBL     | NBT   | NBR     | SBL     | SBT   | SBR      |
| Lane Configurations                 | <u>ነ</u> | <b>∱</b> ∱      |        | ሻ       |       | 7       | ሻ       | ₽     |         | ሻ       | ₽.    |          |
| Traffic Volume (vph)                | 129      | <b>8</b> 04     | 0      | 0       | 705   | 109     | 0       | 0     | 0       | 303     | 0     | 587      |
| Future Volume (vph)                 | 129      | <del>8</del> 04 | 0      | 0       | 705   | 109     | 0       | 0     | 0       | 303     | 0     | 587      |
| Ideal Flow (vphpl)                  | 1900     | 1900            | 1900   | 1900    | 1900  | 1900    | 1900    | 1900  | 1900    | 1900    | 1900  | 1900     |
| Lane Width (m)                      | 3.3      | 3.5             | 3.5    | 2.9     | 3.5   | 3.5     | 3.5     | 3.5   | 3.5     | 3.6     | 3.6   | 3.6      |
| Storage Length (m)                  | 85.0     |                 | 0.0    | 85.0    |       | 85.0    | 0.0     |       | 0.0     | 40.0    |       | 0.0      |
| Storage Lanes                       | 1        |                 | 0      | 1       |       | 1       | 1       |       | 0       | 1       |       | 0        |
| Taper Length (m)                    | 75.0     |                 |        | 80.0    |       |         | 7.6     |       |         | 40.0    |       |          |
| Lane Util. Factor                   | 1.00     | 0.95            | 0.95   | 1.00    | 0.95  | 1.00    | 1.00    | 1.00  | 1.00    | 1.00    | 1.00  | 1.00     |
| Frt                                 |          |                 |        |         |       | 0.850   |         |       |         |         | 0.850 |          |
| Flt Protected                       | 0.950    |                 |        |         |       |         |         |       |         | 0.950   |       |          |
| Satd. Flow (prot)                   | 1616     | 3131            | 0      | 1752    | 3216  | 1365    | 1879    | 1879  | 0       | 1736    | 1583  | 0        |
| Flt Permitted                       | 0.296    |                 |        |         |       |         |         |       |         | 0.757   |       |          |
| Satd. Flow (perm)                   | 503      | 3131            | 0      | 1752    | 3216  | 1365    | 1879    | 1879  | 0       | 1383    | 1583  | 0        |
| Right Turn on Red                   |          |                 | Yes    |         |       | Yes     |         |       | Yes     |         |       | Yes      |
| Satd. Flow (RTOR)                   |          |                 |        |         |       | 114     |         |       |         |         | 374   |          |
| Link Speed (k/h)                    |          | 80              |        |         | 80    |         |         | 50    |         |         | 80    |          |
| Link Distance (m)                   |          | 247.2           |        |         | 227.5 |         |         | 62.5  |         |         | 163.3 |          |
| Travel Time (s)                     |          | 11.1            |        |         | 10.2  |         |         | 4.5   |         |         | 7.3   |          |
| Peak Hour Factor                    | 0.96     | 0.96            | 0.96   | 0.96    | 0.96  | 0.96    | 0.96    | 0.96  | 0.96    | 0.96    | 0.96  | 0.96     |
| Heavy Vehicles (%)                  | 8%       | 14%             | 0%     | 0%      | 11%   | 17%     | 0%      | 0%    | 0%      | 4%      | 0%    | 2%       |
| Adj. Flow (vph)                     | 134      | 838             | 0      | 0       | 734   | 114     | 0       | 0     | 0       | 316     | 0     | 611      |
| Shared Lane Traffic (%)             |          |                 | •      |         |       |         | •       | •     | •       |         |       | • • •    |
| Lane Group Flow (vph)               | 134      | 838             | 0      | 0       | 734   | 114     | 0       | 0     | 0       | 316     | 611   | 0        |
| Enter Blocked Intersection          | No       | No              | No     | No      | No    | No      | No      | No    | No      | No      | No    | No       |
| Lane Alignment                      | Left     | Left            | Right  | Left    | Left  | Right   | Left    | Left  | Right   | Left    | Left  | Right    |
| Median Width(m)                     | 2011     | 3.3             | rugiit | 2010    | 3.3   | i ugiit | 2010    | 3.6   | i ugiit | 2010    | 3.6   | i tigiit |
| Link Offset(m)                      |          | 0.0             |        |         | 0.0   |         |         | 0.0   |         |         | 0.0   |          |
| Crosswalk Width(m)                  |          | 4.9             |        |         | 4.9   |         |         | 4.9   |         |         | 4.9   |          |
| Two way Left Turn Lane              |          | 1.0             |        |         |       |         |         |       |         |         |       |          |
| Headway Factor                      | 1.04     | 1.01            | 1.01   | 1.11    | 1.01  | 1.01    | 1.01    | 1.01  | 1.01    | 1.00    | 1.00  | 1.00     |
| Turning Speed (k/h)                 | 24       | 1.01            | 14     | 24      |       | 14      | 24      | 1.01  | 14      | 24      | 1.00  | 14       |
| Number of Detectors                 | 1        | 2               |        | 1       | 2     | 1       | 1       | 2     | • •     | 1       | 2     | • •      |
| Detector Template                   | Left     | Thru            |        | Left    | Thru  | Right   | Left    | Thru  |         | Left    | Thru  |          |
| Leading Detector (m)                | 6.1      | 30.5            |        | 6.1     | 30.5  | 6.1     | 6.1     | 30.5  |         | 6.1     | 30.5  |          |
| Trailing Detector (m)               | 0.0      | 0.0             |        | 0.0     | 0.0   | 0.0     | 0.0     | 0.0   |         | 0.0     | 0.0   |          |
| Detector 1 Position(m)              | 0.0      | 0.0             |        | 0.0     | 0.0   | 0.0     | 0.0     | 0.0   |         | 0.0     | 0.0   |          |
| Detector 1 Size(m)                  | 6.1      | 1.8             |        | 6.1     | 1.8   | 6.1     | 6.1     | 1.8   |         | 6.1     | 1.8   |          |
| Detector 1 Type                     | CI+Ex    | CI+Ex           |        | Cl+Ex   | CI+Ex | CI+Ex   | CI+Ex   | CI+Ex |         | CI+Ex   | CI+Ex |          |
| Detector 1 Channel                  | OI LX    | OI - EX         |        | O. LX   | OI ZX | OI EX   | OI ZX   | OI EX |         | O. LA   | OI EX |          |
| Detector 1 Extend (s)               | 0.0      | 0.0             |        | 0.0     | 0.0   | 0.0     | 0.0     | 0.0   |         | 0.0     | 0.0   |          |
| Detector 1 Queue (s)                | 0.0      | 0.0             |        | 0.0     | 0.0   | 0.0     | 0.0     | 0.0   |         | 0.0     | 0.0   |          |
| Detector 1 Delay (s)                | 0.0      | 0.0             |        | 0.0     | 0.0   | 0.0     | 0.0     | 0.0   |         | 0.0     | 0.0   |          |
| Detector 2 Position(m)              | 0.0      | 28.7            |        | 0.0     | 28.7  | 0.0     | 0.0     | 28.7  |         | 0.0     | 28.7  |          |
| Detector 2 Size(m)                  |          | 1.8             |        |         | 1.8   |         |         | 1.8   |         |         | 1.8   |          |
| Detector 2 Type                     |          | CI+Ex           |        |         | CI+Ex |         |         | CI+Ex |         |         | CI+Ex |          |
| Detector 2 Type  Detector 2 Channel |          | OI LX           |        |         | OI LX |         |         | OI LX |         |         | OI LX |          |
| Detector 2 Extend (s)               |          | 0.0             |        |         | 0.0   |         |         | 0.0   |         |         | 0.0   |          |
| Turn Type                           | pm+pt    | NA              |        | Perm    | NA    | Perm    | Perm    | 0.0   |         | Perm    | NA    |          |
|                                     | γιιι .   | 11/7            |        | 1 (1111 | 11/7  | i Cilli | 1 01111 |       |         | 1 (1111 | 14/7  |          |

#### TOWN OF CALEDON Rice Milher, Cimings 2032 Future Background AM (SAF-20%) 1:#10819/Tottenham Road & Highway 9 03-24-2020 ↲ **EBR WBL WBT WBR NBL NBT NBR** SBL SBT Lane Group **EBL B**BT **SBR** 2 Protected Phases 5 6 8 2 6 6 8 Permitted Phases 4 2 Detector Phase 5 6 6 6 4 4 8 8 Switch Phase Minimum Initial (s) 7.0 20.0 20.0 20.0 20.0 10.0 10.0 10.0 10.0 Minimum Split (s) 10.0 37.6 37.6 37.6 37.6 38.6 38.6 38.6 38.6 20.0 70.0 50.0 50.0 50.0 40.0 40.0 40.0 40.0 Total Split (s) 45.5% Total Split (%) 18.2% 45.5% 45.5% 36.4% 36.4% 36.4% 63.6% 36.4% 31.4 Maximum Green (s) 17.0 62.4 42.4 42.4 42.4 31.4 31.4 31.4 Yellow Time (s) 3.0 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 All-Red Time (s) 0.0 1.7 1.7 1.7 1.7 2.7 2.7 2.7 2.7 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 7.6 3.0 7.6 7.6 7.6 8.6 8.6 8.6 8.6 Lead/Lag Lead Lag Lag Lag Lead-Lag Optimize? Yes Yes Yes Yes Vehicle Extension (s) 3.0 4.0 4.0 4.0 4.0 3.0 3.0 3.0 3.0 Recall Mode None Max Max Max Max None None None None Walk Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 Pedestrian Calls (#/hr) 0 0 0 0 0 0 0 0 Act Effct Green (s) 67.1 62.5 50.1 50.1 28.3 28.3 Actuated g/C Ratio 0.63 0.58 0.47 0.47 0.26 0.26 v/c Ratio 0.33 0.46 0.49 0.16 0.87 0.88 Control Delay 11.0 14.1 21.9 4.1 61.2 29.8 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 **Total Delay** 11.0 14.1 21.9 4.1 61.2 29.8 LOS В В С Α Ε С Approach Delay 13.7 40.5 19.5 Approach LOS В В D 51.5 Queue Length 50th (m) 11.4 52.8 57.0 0.0 62.8 Queue Length 95th (m) 19.8 67.8 77.6 10.1 #106.4 #117.6 Internal Link Dist (m) 223.2 203.5 38.5 139.3 Turn Bay Length (m) 85.0 85.0 40.0 1828 1506 729 Base Capacity (vph) 492 700 406 Starvation Cap Reductn 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.49 0.16 0.84 0.27 0.46 0.78 Intersection Summary Area Type: Other Cycle Length: 110 Actuated Cycle Length: 107 Natural Cycle: 90 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.88 Intersection Signal Delay: 24.5 Intersection LOS: C Intersection Capacity Utilization 95.1% ICU Level of Service F Analysis Period (min) 15



Hane A With M. Gimings
1:#10819/Tottenham Road & Highway 9

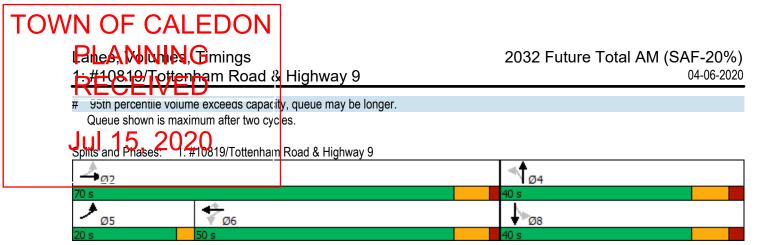
2032 Future background PM (SAF 20%)

03-24-2020

| Lane Configurations     1     1     1     1     1       Traffic Volume (vph)     641     862     3     5     1018     287     4     4     4     160     1       Future Volume (vph)     641     862     3     5     1018     287     4     4     4     160     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SBR<br>186 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Lane Configurations         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                  |            |
| Traffic Volume (vph)         641         62         3         5         1018         287         4         4         4         4         160         1           Future Volume (vph)         641         862         3         5         1018         287         4         4         4         4         160         1           Ideal Flow (vphpl)         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900                                           | 106        |
| Future Volume (vph)         641         862         3         5         1018         287         4         4         4         160         1           Ideal Flow (vphpl)         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900                                |            |
| Ideal Flow (vphpl)         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900 <td>186</td> | 186        |
| Lane Width (m)       3.3       3.5       3.5       2.9       3.5       3.5       3.5       3.5       3.6       3.6         Storage Length (m)       85.0       0.0       85.0       0.0       0.0       40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1900       |
| Storage Length (m) 85.0 0.0 85.0 0.0 0.0 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.6        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0        |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U          |
| Taper Length (m)       75.0       80.0       7.6       40.0         Lane Util. Factor       1.00       0.95       0.95       1.00       0.95       1.00       1.00       1.00       1.00       1.00       1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.00       |
| Frt 0.850 0.925 0.851                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00       |
| Fit 0.650 0.925 0.651  Fit Protected 0.950 0.950 0.950 0.950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0          |
| Flt Permitted 0.115 0.316 0.592 0.752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0          |
| Satd. Flow (perm) 196 3133 0 554 3216 1365 1112 1738 0 1374 1585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0          |
| Right Turn on Red Yes Yes Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Yes        |
| Satd. Flow (RTOR) 299 4 194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
| Link Speed (k/h) 80 80 50 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
| Link Distance (m) 247.2 227.5 62.5 163.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| Travel Time (s) 11.1 10.2 4.5 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00       |
| Peak Hour Factor 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.96       |
| Heavy Vehicles (%) 8% 14% 0% 0% 11% 17% 0% 0% 0% 4% 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2%         |
| Adj. Flow (vph) 668 898 3 5 1060 299 4 4 4 167 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 194        |
| Shared Lane Traffic (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
| Lane Group Flow (vph) 668 901 0 5 1060 299 4 8 0 167 195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0          |
| Enter Blocked Intersection No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No         |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Right      |
| Median Width(m) 3.3 3.6 3.6 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| Link Offset(m) 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| Crosswalk Width(m) 4.9 4.9 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
| Two way Left Turn Lane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.00       |
| Headway Factor 1.04 1.01 1.01 1.01 1.01 1.01 1.01 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00       |
| Turning Speed (k/h) 24 14 24 14 24 14 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14         |
| Number of Detectors 1 2 1 2 1 1 2 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
| Detector Template Left Thru Left Thru Right Left Thru Left Thru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| Leading Detector (m) 6.1 30.5 6.1 30.5 6.1 30.5 6.1 30.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| Trailing Detector (m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
| Detector 1 Position(m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| Detector 1 Size(m) 6.1 1.8 6.1 1.8 6.1 1.8 6.1 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
| Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
| Detector 1 Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
| Detector 1 Extend (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
| Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
| Detector 1 Delay (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
| Detector 2 Position(m) 28.7 28.7 28.7 28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| Detector 2 Size(m) 1.8 1.8 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
| Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
| Detector 2 Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
| Detector 2 Extend (s) 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| Turn Type pm+pt NA Perm NA Perm NA Perm NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |

#### TOWN OF CALEDON Rice Milher, Cimings 2032 Future background PM (SAF 20%) 1:#10819/Tottenham Road & Highway 9 03-24-2020 4 **EBR WBL WBT WBR NBL NBT NBR** SBL **SBT** Lane Group **EBL B**BT **SBR** 2 Protected Phases 5 6 8 2 6 6 8 Permitted Phases 4 2 Detector Phase 5 6 6 6 4 4 8 8 Switch Phase Minimum Initial (s) 7.0 20.0 20.0 20.0 20.0 10.0 10.0 10.0 10.0 Minimum Split (s) 10.0 37.6 37.6 37.6 37.6 38.6 38.6 38.6 38.6 32.0 39.4 39.4 39.4 38.6 38.6 Total Split (s) 71.4 38.6 38.6 Total Split (%) 29.1% 64.9% 35.8% 35.8% 35.8% 35.1% 35.1% 35.1% 35.1% Maximum Green (s) 29.0 63.8 31.8 31.8 31.8 30.0 30.0 30.0 30.0 Yellow Time (s) 3.0 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 All-Red Time (s) 0.0 1.7 1.7 1.7 1.7 2.7 2.7 2.7 2.7 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 7.6 3.0 7.6 7.6 7.6 8.6 8.6 8.6 8.6 Lead Lead/Lag Lag Lag Lag Yes Lead-Lag Optimize? Yes Yes Yes Vehicle Extension (s) 3.0 4.0 4.0 4.0 4.0 3.0 3.0 3.0 3.0 Recall Mode None Max Max Max Max None None None None Walk Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 Pedestrian Calls (#/hr) 0 0 0 0 0 0 0 0 Act Effct Green (s) 68.6 63.9 31.9 31.9 31.9 16.9 16.9 16.9 16.9 Actuated g/C Ratio 0.71 0.66 0.33 0.33 0.33 0.17 0.17 0.17 0.17 0.03 v/c Ratio 1.19 0.44 1.00 0.46 0.02 0.03 0.70 0.45 Control Delay 25.4 127.2 9.4 63.0 31.8 24.6 53.3 8.5 5.8 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 **Total Delay** 127.2 9.4 25.4 63.0 31.8 24.6 53.3 8.5 5.8 LOS F Α С Ε C C D Α Α Approach Delay 27.0 59.6 50.3 29.2 Approach LOS С Ε D С Queue Length 50th (m) ~136.2 38.1 0.6 ~104.6 0.0 0.6 0.6 29.7 0.2 Queue Length 95th (m) #227.0 63.4 #168.1 19.1 3.4 4.5 50.8 17.2 3.6 Internal Link Dist (m) 223.2 203.5 38.5 139.3 Turn Bay Length (m) 85.0 85.0 85.0 40.0 540 2063 344 624 Base Capacity (vph) 563 181 1055 648 425 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0 Reduced v/c Ratio 0.44 0.03 1.00 0.46 0.01 0.01 0.39 0.31 1.19 Intersection Summary Area Type: Other Cycle Length: 110 Actuated Cycle Length: 97.1 Natural Cycle: 150 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 1.19 Intersection Signal Delay: 52.3 Intersection LOS: D Intersection Capacity Utilization 96.0% ICU Level of Service F Analysis Period (min) 15

# TOWN OF CALEDON | Panes With Ex, Fimings | 2032 Future background PM (SAF 20%) | 1:#10819/Tottenham Road & Highway 9 | 03-24-2020 | - Voiume exceeds capacity, queue is inepretically infinite. Queue shown is maximum after two cycles. ### 19819 | 1:#10819/Tottenham Road & Highway 9 | - O2 71.45 | 38.6 s | | Ø5


Hane A With M. Emings
1:#10819/Tottenham Road & Highway 9

2032 Future Total AM (SAF-20%)

04-06-2020

| KECEIVED                   | À       |                 | _     | _     |          | _     | _     |       |       |       |       |       |
|----------------------------|---------|-----------------|-------|-------|----------|-------|-------|-------|-------|-------|-------|-------|
|                            |         | +               | •     | •     | •        |       | 1     | T     |       | *     | ¥     | *     |
| Lang Group 2020            | EBL     | EBT             | EBR   | WBL   | WBT      | WBR   | NBL   | NBT   | NBR   | SBL   | SBT   | SBR   |
| Lane Configurations        | 7       | <b>↑</b> Ъ      |       | 7     | <b>^</b> | 7     | ሻ     | f)    |       | ሻ     | f)    |       |
| Traffic Volume (vph)       | 128     | 797             | 13    | 12    | 699      | 108   | 16    | 7     | 14    | 300   | 13    | 582   |
| Future Volume (vph)        | 128     | <del></del> 797 | 13    | 12    | 699      | 108   | 16    | 7     | 14    | 300   | 13    | 582   |
| Ideal Flow (vphpl)         | 1900    | 1900            | 1900  | 1900  | 1900     | 1900  | 1900  | 1900  | 1900  | 1900  | 1900  | 1900  |
| Lane Width (m)             | 3.3     | 3.5             | 3.5   | 2.9   | 3.5      | 3.5   | 3.5   | 3.5   | 3.5   | 3.6   | 3.6   | 3.6   |
| Storage Length (m)         | 85.0    |                 | 0.0   | 85.0  |          | 85.0  | 0.0   |       | 0.0   | 40.0  |       | 0.0   |
| Storage Lanes              | 1       |                 | 0     | 1     |          | 1     | 1     |       | 0     | 1     |       | 0     |
| Taper Length (m)           | 75.0    |                 |       | 80.0  |          |       | 7.6   |       |       | 40.0  |       |       |
| Lane Util. Factor          | 1.00    | 0.95            | 0.95  | 1.00  | 0.95     | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  |
| Frt                        |         | 0.998           |       |       |          | 0.850 |       | 0.898 |       |       | 0.853 |       |
| Flt Protected              | 0.950   |                 |       | 0.950 |          |       | 0.950 |       |       | 0.950 |       |       |
| Satd. Flow (prot)          | 1616    | 3132            | 0     | 1665  | 3216     | 1365  | 1785  | 1687  | 0     | 1736  | 1590  | 0     |
| Flt Permitted              | 0.299   |                 |       | 0.335 |          |       | 0.141 |       |       | 0.743 |       |       |
| Satd. Flow (perm)          | 508     | 3132            | 0     | 587   | 3216     | 1365  | 265   | 1687  | 0     | 1357  | 1590  | 0     |
| Right Turn on Red          |         |                 | Yes   |       |          | Yes   |       |       | Yes   |       |       | Yes   |
| Satd. Flow (RTOR)          |         | 2               |       |       |          | 113   |       | 15    |       |       | 375   |       |
| Link Speed (k/h)           |         | 80              |       |       | 80       |       |       | 50    |       |       | 80    |       |
| Link Distance (m)          |         | 247.2           |       |       | 227.5    |       |       | 62.5  |       |       | 163.3 |       |
| Travel Time (s)            |         | 11.1            |       |       | 10.2     |       |       | 4.5   |       |       | 7.3   |       |
| Peak Hour Factor           | 0.96    | 0.96            | 0.96  | 0.96  | 0.96     | 0.96  | 0.96  | 0.96  | 0.96  | 0.96  | 0.96  | 0.96  |
| Heavy Vehicles (%)         | 8%      | 14%             | 0%    | 0%    | 11%      | 17%   | 0%    | 0%    | 0%    | 4%    | 0%    | 2%    |
| Adj. Flow (vph)            | 133     | 830             | 14    | 13    | 728      | 113   | 17    | 7     | 15    | 313   | 14    | 606   |
| Shared Lane Traffic (%)    |         |                 |       |       |          |       |       |       |       |       |       |       |
| Lane Group Flow (vph)      | 133     | 844             | 0     | 13    | 728      | 113   | 17    | 22    | 0     | 313   | 620   | 0     |
| Enter Blocked Intersection | No      | No              | No    | No    | No       | No    | No    | No    | No    | No    | No    | No    |
| Lane Alignment             | Left    | Left            | Right | Left  | Left     | Right | Left  | Left  | Right | Left  | Left  | Right |
| Median Width(m)            |         | 3.3             |       |       | 3.3      |       |       | 3.6   |       |       | 3.6   |       |
| Link Offset(m)             |         | 0.0             |       |       | 0.0      |       |       | 0.0   |       |       | 0.0   |       |
| Crosswalk Width(m)         |         | 4.9             |       |       | 4.9      |       |       | 4.9   |       |       | 4.9   |       |
| Two way Left Turn Lane     |         |                 |       |       |          |       |       |       |       |       |       | 4.00  |
| Headway Factor             | 1.04    | 1.01            | 1.01  | 1.11  | 1.01     | 1.01  | 1.01  | 1.01  | 1.01  | 1.00  | 1.00  | 1.00  |
| Turning Speed (k/h)        | 24      |                 | 14    | 24    |          | 14    | 24    |       | 14    | 24    |       | 14    |
| Number of Detectors        | 1       | 2               |       | 1     | 2        | 1     | 1     | 2     |       | 1     | 2     |       |
| Detector Template          | Left    | Thru            |       | Left  | Thru     | Right | Left  | Thru  |       | Left  | Thru  |       |
| Leading Detector (m)       | 6.1     | 30.5            |       | 6.1   | 30.5     | 6.1   | 6.1   | 30.5  |       | 6.1   | 30.5  |       |
| Trailing Detector (m)      | 0.0     | 0.0             |       | 0.0   | 0.0      | 0.0   | 0.0   | 0.0   |       | 0.0   | 0.0   |       |
| Detector 1 Position(m)     | 0.0     | 0.0             |       | 0.0   | 0.0      | 0.0   | 0.0   | 0.0   |       | 0.0   | 0.0   |       |
| Detector 1 Size(m)         | 6.1     | 1.8             |       | 6.1   | 1.8      | 6.1   | 6.1   | 1.8   |       | 6.1   | 1.8   |       |
| Detector 1 Type            | CI+Ex   | CI+Ex           |       | CI+Ex | CI+Ex    | CI+Ex | CI+Ex | CI+Ex |       | Cl+Ex | CI+Ex |       |
| Detector 1 Channel         | 0.0     | 0.0             |       | 0.0   | 0.0      | 0.0   | 0.0   | 0.0   |       | 0.0   | 0.0   |       |
| Detector 1 Extend (s)      | 0.0     | 0.0             |       | 0.0   | 0.0      | 0.0   | 0.0   | 0.0   |       | 0.0   | 0.0   |       |
| Detector 1 Queue (s)       | 0.0     | 0.0             |       | 0.0   | 0.0      | 0.0   | 0.0   | 0.0   |       | 0.0   | 0.0   |       |
| Detector 1 Delay (s)       | 0.0     | 0.0             |       | 0.0   | 0.0      | 0.0   | 0.0   | 0.0   |       | 0.0   | 0.0   |       |
| Detector 2 Position(m)     |         | 28.7            |       |       | 28.7     |       |       | 28.7  |       |       | 28.7  |       |
| Detector 2 Size(m)         |         | 1.8             |       |       | 1.8      |       |       | 1.8   |       |       | 1.8   |       |
| Detector 2 Type            |         | CI+Ex           |       |       | CI+Ex    |       |       | CI+Ex |       |       | CI+Ex |       |
| Detector 2 Channel         |         | 0.0             |       |       | 0.0      |       |       | 0.0   |       |       | 0.0   |       |
| Detector 2 Extend (s)      | nm · nt | 0.0             |       | Dorm  | 0.0      | Dorm  | Dorm  | 0.0   |       | Dorm  | 0.0   |       |
| Turn Type                  | pm+pt   | NA              |       | Perm  | NA       | Perm  | Perm  | NA    |       | Perm  | NA    |       |

#### TOWN OF CALEDON Rice Milher, Cimings 2032 Future Total AM (SAF-20%) 1:#10819/Tottenham Road & Highway 9 04-06-2020 ↲ **EBR WBL WBT WBR NBL NBT NBR** SBL **SBT** Lane Group **EBL B**BT **SBR** 2 Protected Phases 5 6 8 2 6 6 8 Permitted Phases 4 2 Detector Phase 5 6 6 6 4 4 8 8 Switch Phase Minimum Initial (s) 7.0 20.0 20.0 20.0 20.0 10.0 10.0 10.0 10.0 Minimum Split (s) 10.0 37.6 37.6 37.6 37.6 38.6 38.6 38.6 38.6 20.0 50.0 50.0 50.0 40.0 40.0 40.0 40.0 Total Split (s) 70.0 Total Split (%) 18.2% 45.5% 45.5% 45.5% 36.4% 36.4% 36.4% 63.6% 36.4% 31.4 Maximum Green (s) 17.0 62.4 42.4 42.4 42.4 31.4 31.4 31.4 Yellow Time (s) 3.0 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 All-Red Time (s) 0.0 1.7 1.7 1.7 1.7 2.7 2.7 2.7 2.7 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 7.6 3.0 7.6 7.6 7.6 8.6 8.6 8.6 8.6 Lead Lead/Lag Lag Lag Lag Lead-Lag Optimize? Yes Yes Yes Yes Vehicle Extension (s) 3.0 4.0 4.0 4.0 4.0 3.0 3.0 3.0 3.0 Recall Mode None Max Max Max Max None None None None Walk Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 Pedestrian Calls (#/hr) 0 0 0 0 0 0 0 0 Act Effct Green (s) 67.1 62.5 50.1 50.1 50.1 28.4 28.4 28.4 28.4 Actuated g/C Ratio 0.63 0.58 0.47 0.47 0.47 0.27 0.27 0.27 0.27 0.05 v/c Ratio 0.32 0.46 0.48 0.16 0.24 0.05 0.87 0.89 Control Delay 11.0 14.2 18.5 21.9 4.1 40.6 16.4 62.2 31.0 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 **Total Delay** 11.0 14.2 18.5 21.9 40.6 16.4 62.2 31.0 4.1 LOS В В В С В Ε С Α D Approach Delay 13.8 26.9 19.5 41.5 Approach LOS С В В D 56.4 1.1 Queue Length 50th (m) 11.3 53.3 1.5 0.0 2.8 62.4 53.8 Queue Length 95th (m) 19.7 68.3 5.4 76.9 10.1 9.5 6.9 #106.3 #120.9 Internal Link Dist (m) 223.2 203.5 38.5 139.3 Turn Bay Length (m) 85.0 85.0 85.0 40.0 1827 1505 77 506 731 Base Capacity (vph) 494 274 699 398 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 Reduced v/c Ratio 0.46 0.05 0.48 0.16 0.22 0.04 0.85 0.27 0.79 Intersection Summary Area Type: Other Cycle Length: 110 Actuated Cycle Length: 107.1 Natural Cycle: 90 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.89 Intersection Signal Delay: 24.9 Intersection LOS: C Intersection Capacity Utilization 95.6% ICU Level of Service F Analysis Period (min) 15



Hane A With M. Gimings
1:#10819/Tottenham Road & Highway 9

2032 Future Total PM (SAF-20%)

04-06-2020

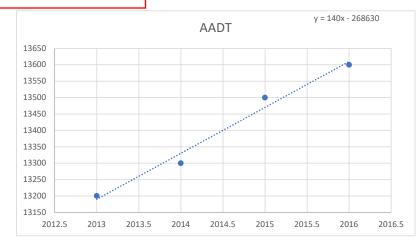
| RECEIVED                   |       | <u> </u>     | <u>,</u> |       | _        | _     | _     | _     |       | $\overline{}$ |       |       |
|----------------------------|-------|--------------|----------|-------|----------|-------|-------|-------|-------|---------------|-------|-------|
|                            | خر    | -            | *        | •     | •        |       |       | T     |       | *             | +     | *     |
| Jane Group 2020            | EBL   | EBT          | EBR      | WBL   | WBT      | WBR   | NBL   | NBT   | NBR   | SBL           | SBT   | SBR   |
| Lane Configurations        | 7     | <b>↑</b> Դ   |          | 7     | <b>^</b> | 7     | ሻ     | f)    |       |               | f)    |       |
| Traffic Volume (vph)       | 637   | <b>\$</b> 55 | 20       | 21    | 1010     | 285   | 19    | 17    | 17    | 159           | 10    | 185   |
| Future Volume (vph)        | 637   | 855          | 20       | 21    | 1010     | 285   | 19    | 17    | 17    | 159           | 10    | 185   |
| ldeal Flow (vphpl)         | 1900  | 1900         | 1900     | 1900  | 1900     | 1900  | 1900  | 1900  | 1900  | 1900          | 1900  | 1900  |
| Lane Width (m)             | 3.3   | 3.5          | 3.5      | 2.9   | 3.5      | 3.5   | 3.5   | 3.5   | 3.5   | 3.6           | 3.6   | 3.6   |
| Storage Length (m)         | 85.0  |              | 0.0      | 85.0  |          | 85.0  | 0.0   |       | 0.0   | 40.0          |       | 0.0   |
| Storage Lanes              | 1     |              | 0        | 1     |          | 1     | 1     |       | 0     | 1             |       | 0     |
| Taper Length (m)           | 75.0  |              |          | 80.0  |          |       | 7.6   |       |       | 40.0          |       |       |
| Lane Util. Factor          | 1.00  | 0.95         | 0.95     | 1.00  | 0.95     | 1.00  | 1.00  | 1.00  | 1.00  | 1.00          | 1.00  | 1.00  |
| Frt                        |       | 0.997        |          |       |          | 0.850 |       | 0.925 |       |               | 0.857 |       |
| Flt Protected              | 0.950 |              |          | 0.950 |          |       | 0.950 |       |       | 0.950         |       |       |
| Satd. Flow (prot)          | 1616  | 3131         | 0        | 1665  | 3216     | 1365  | 1785  | 1738  | 0     | 1736          | 1598  | 0     |
| Flt Permitted              | 0.115 |              |          | 0.316 |          |       | 0.577 |       |       | 0.734         |       |       |
| Satd. Flow (perm)          | 196   | 3131         | 0        | 554   | 3216     | 1365  | 1084  | 1738  | 0     | 1341          | 1598  | 0     |
| Right Turn on Red          |       |              | Yes      |       |          | Yes   |       |       | Yes   |               |       | Yes   |
| Satd. Flow (RTOR)          |       | 4            |          |       |          | 294   |       | 18    |       |               | 191   |       |
| Link Speed (k/h)           |       | 80           |          |       | 80       |       |       | 50    |       |               | 80    |       |
| Link Distance (m)          |       | 247.2        |          |       | 227.5    |       |       | 62.5  |       |               | 163.3 |       |
| Travel Time (s)            |       | 11.1         |          |       | 10.2     |       |       | 4.5   |       |               | 7.3   |       |
| Peak Hour Factor           | 0.97  | 0.97         | 0.97     | 0.97  | 0.97     | 0.97  | 0.97  | 0.97  | 0.97  | 0.97          | 0.97  | 0.97  |
| Heavy Vehicles (%)         | 8%    | 14%          | 0%       | 0%    | 11%      | 17%   | 0%    | 0%    | 0%    | 4%            | 0%    | 2%    |
| Adj. Flow (vph)            | 657   | 881          | 21       | 22    | 1041     | 294   | 20    | 18    | 18    | 164           | 10    | 191   |
| Shared Lane Traffic (%)    |       |              |          |       |          |       |       |       |       |               |       |       |
| Lane Group Flow (vph)      | 657   | 902          | 0        | 22    | 1041     | 294   | 20    | 36    | 0     | 164           | 201   | 0     |
| Enter Blocked Intersection | No    | No           | No       | No    | No       | No    | No    | No    | No    | No            | No    | No    |
| Lane Alignment             | Left  | Left         | Right    | Left  | Left     | Right | Left  | Left  | Right | Left          | Left  | Right |
| Median Width(m)            |       | 3.3          | •        |       | 3.3      |       |       | 3.6   |       |               | 3.6   |       |
| Link Offset(m)             |       | 0.0          |          |       | 0.0      |       |       | 0.0   |       |               | 0.0   |       |
| Crosswalk Width(m)         |       | 4.9          |          |       | 4.9      |       |       | 4.9   |       |               | 4.9   |       |
| Two way Left Turn Lane     |       |              |          |       |          |       |       |       |       |               |       |       |
| Headway Factor             | 1.04  | 1.01         | 1.01     | 1.11  | 1.01     | 1.01  | 1.01  | 1.01  | 1.01  | 1.00          | 1.00  | 1.00  |
| Turning Speed (k/h)        | 24    |              | 14       | 24    |          | 14    | 24    |       | 14    | 24            |       | 14    |
| Number of Detectors        | 1     | 2            |          | 1     | 2        | 1     | 1     | 2     |       | 1             | 2     |       |
| Detector Template          | Left  | Thru         |          | Left  | Thru     | Right | Left  | Thru  |       | Left          | Thru  |       |
| Leading Detector (m)       | 6.1   | 30.5         |          | 6.1   | 30.5     | 6.1   | 6.1   | 30.5  |       | 6.1           | 30.5  |       |
| Trailing Detector (m)      | 0.0   | 0.0          |          | 0.0   | 0.0      | 0.0   | 0.0   | 0.0   |       | 0.0           | 0.0   |       |
| Detector 1 Position(m)     | 0.0   | 0.0          |          | 0.0   | 0.0      | 0.0   | 0.0   | 0.0   |       | 0.0           | 0.0   |       |
| Detector 1 Size(m)         | 6.1   | 1.8          |          | 6.1   | 1.8      | 6.1   | 6.1   | 1.8   |       | 6.1           | 1.8   |       |
| Detector 1 Type            | CI+Ex | CI+Ex        |          | CI+Ex | CI+Ex    | CI+Ex | CI+Ex | Cl+Ex |       | CI+Ex         | CI+Ex |       |
| Detector 1 Channel         |       |              |          |       |          |       |       |       |       |               |       |       |
| Detector 1 Extend (s)      | 0.0   | 0.0          |          | 0.0   | 0.0      | 0.0   | 0.0   | 0.0   |       | 0.0           | 0.0   |       |
| Detector 1 Queue (s)       | 0.0   | 0.0          |          | 0.0   | 0.0      | 0.0   | 0.0   | 0.0   |       | 0.0           | 0.0   |       |
| Detector 1 Delay (s)       | 0.0   | 0.0          |          | 0.0   | 0.0      | 0.0   | 0.0   | 0.0   |       | 0.0           | 0.0   |       |
| Detector 2 Position(m)     |       | 28.7         |          |       | 28.7     |       |       | 28.7  |       |               | 28.7  |       |
| Detector 2 Size(m)         |       | 1.8          |          |       | 1.8      |       |       | 1.8   |       |               | 1.8   |       |
| Detector 2 Type            |       | CI+Ex        |          |       | CI+Ex    |       |       | Cl+Ex |       |               | CI+Ex |       |
| Detector 2 Channel         |       |              |          |       |          |       |       |       |       |               |       |       |
| Detector 2 Extend (s)      |       | 0.0          |          |       | 0.0      |       |       | 0.0   |       |               | 0.0   |       |
| Turn Type                  | pm+pt | NA           |          | Perm  | NA       | Perm  | Perm  | NA    |       | Perm          | NA    |       |
| 71                         | 1 17' |              |          |       |          |       |       |       |       |               |       |       |

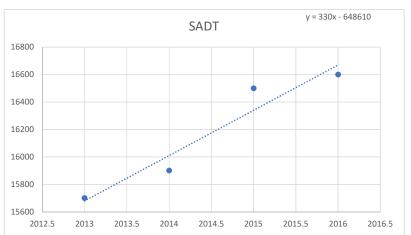
#### TOWN OF CALEDON Rice Milher, Cimings 2032 Future Total PM (SAF-20%) 1:#10819/Tottenham Road & Highway 9 04-06-2020 ↲ **EBR WBL WBT WBR NBL NBT NBR** SBL **SBT** Lane Group **EBL B**BT **SBR** 2 Protected Phases 5 6 8 2 6 6 8 Permitted Phases 4 2 Detector Phase 5 6 6 6 4 4 8 8 Switch Phase Minimum Initial (s) 7.0 20.0 20.0 20.0 20.0 10.0 10.0 10.0 10.0 Minimum Split (s) 10.0 37.6 37.6 37.6 37.6 38.6 38.6 38.6 38.6 32.0 39.4 39.4 39.4 38.6 38.6 Total Split (s) 71.4 38.6 38.6 Total Split (%) 29.1% 64.9% 35.8% 35.8% 35.8% 35.1% 35.1% 35.1% 35.1% Maximum Green (s) 29.0 63.8 31.8 31.8 31.8 30.0 30.0 30.0 30.0 Yellow Time (s) 3.0 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 All-Red Time (s) 0.0 1.7 1.7 1.7 1.7 2.7 2.7 2.7 2.7 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 7.6 3.0 7.6 7.6 7.6 8.6 8.6 8.6 8.6 Lead Lead/Lag Lag Lag Lag Lead-Lag Optimize? Yes Yes Yes Yes Vehicle Extension (s) 3.0 4.0 4.0 4.0 4.0 3.0 3.0 3.0 3.0 Recall Mode None Max Max Max Max None None None None Walk Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 Pedestrian Calls (#/hr) 0 0 0 0 0 0 0 0 Act Effct Green (s) 68.6 64.0 31.9 31.9 31.9 17.0 17.0 17.0 17.0 Actuated g/C Ratio 0.71 0.66 0.33 0.33 0.33 0.17 0.17 0.17 0.17 0.12 v/c Ratio 1.17 0.44 0.99 0.46 0.11 0.11 0.70 0.46 Control Delay 27.3 120.0 9.4 58.9 33.8 20.8 53.7 9.5 5.8 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 **Total Delay** 120.0 9.4 27.3 58.9 33.8 20.8 53.7 9.5 5.8 LOS F Α С Ε C C D Α Α Approach Delay 56.0 46.9 25.5 29.4 Approach LOS С С Ε D 2.8 Queue Length 50th (m) ~131.8 38.0 2.9 101.0 0.0 3.2 29.2 1.6 Queue Length 95th (m) #222.9 63.7 9.6 #164.2 18.9 9.4 10.9 49.9 18.9 Internal Link Dist (m) 223.2 203.5 38.5 139.3 Turn Bay Length (m) 85.0 85.0 85.0 40.0 2061 1054 335 550 626 Base Capacity (vph) 563 181 645 414 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0 Reduced v/c Ratio 0.44 0.12 0.99 0.46 0.06 0.07 0.32 1.17 0.40 Intersection Summary Area Type: Other Cycle Length: 110 Actuated Cycle Length: 97.2 Natural Cycle: 150 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 1.17 Intersection Signal Delay: 48.9 Intersection LOS: D Intersection Capacity Utilization 95.8% ICU Level of Service F Analysis Period (min) 15

#### 



Jul 15, 2020


## APPENDIX F


Growth Rate Analysis

## TOWN OF CALEDON PLANNING

RECEIVED ta - Hwy 9 @ SIMCOE ROAD 10(N)

|      |     | Year A | AADT S | ADT   |       |       |             |       |             |       |
|------|-----|--------|--------|-------|-------|-------|-------------|-------|-------------|-------|
|      |     | 2013   | 13200  | 15700 | 18.9% | 20.7% | Α           | ADT   | S           | ADT   |
| .hul | 15  | 20204  | 13300  | 15900 | 19.5% | 20.0% | 2013        | 13200 | 2013        | 15700 |
| oai  | 10, | 2015   | 13500  | 16500 | 22.2% |       | 2016        | 13600 | 2016        | 16600 |
|      |     | 2016   | 13600  | 16600 | 22.1% |       | Growth Rate | 1.00% | Growth Rate | 1.88% |
|      |     |        |        |       |       |       |             |       |             |       |







Jul 15, 2020

## APPENDIX G

ITE Trip Generation Excerpts

# TOWN OF CALEDON PLANNING RECEIVED

## Land Use: 945

#### Jul 15a2010e/Service Station with Convenience Market

#### Description

This land use includes gasoline/service stations with convenience markets where the primary business is the fueling of motor vehicles. These service stations may also have ancillary facilities for servicing and repairing motor vehicles and may have a car wash. Some commonly sold convenience items are newspapers, coffee or other beverages, and snack items that are usually consumed in the car. The sites included in this land use category have the following two specific characteristics:

- The gross floor area of the convenience market is between 2,000 and 3,000 gross square feet
- The number of vehicle fueling positions is at least 10

Convenience market (Land Use 851), convenience market with gasoline pumps (Land Use 853), gasoline/service station (Land Use 944), truck stop (Land Use 950), and super convenience market/gas station (Land Use 960) are related uses.

#### **Additional Data**

The independent variable, vehicle fueling positions, is defined as the maximum number of vehicles that can be fueled simultaneously.

Gasoline/service stations in this land use include "pay-at-the-pump" and traditional fueling stations.

Time-of-day distribution data for this land use are presented in Appendix A. For the five general urban/suburban sites with data, the overall highest vehicle volumes during the AM and PM on a weekday were counted between 7:30 and 8:30 a.m. and 3:45 and 4:45 p.m., respectively.

A multi-variable regression analysis based on both the convenience market gross floor area (GFA) and the number of vehicle fueling positions (VFP) produced a series of fitted curve equations. The equations are in the form of:

Vehicle Trips = [(VFP Factor) x (Number of VFP)] + [(GFA Factor) x (GFA)] + (Constant)

The values for the VFP factor, GFA factor, and constant are presented in the following table for each time period for which a fitted curve equation could produce an R<sup>2</sup> value of at least 0.50.

| Time Period                              | VFP Factor    | <b>GFA Factor</b> | Constant | R <sup>2</sup> |  |  |  |
|------------------------------------------|---------------|-------------------|----------|----------------|--|--|--|
| Weekday, AM Peak Hour of Generator       | 15.6          | 108               | -295     | 0.62           |  |  |  |
| Weekday, PM Peak Hour of Generator       | Not Available |                   |          |                |  |  |  |
| Weekday, AM Peak Hour of Adjacent Street | 15.7          | 97.3              | -284     | 0.59           |  |  |  |
| Weekday, PM Peak Hour of Adjacent Street |               |                   |          |                |  |  |  |

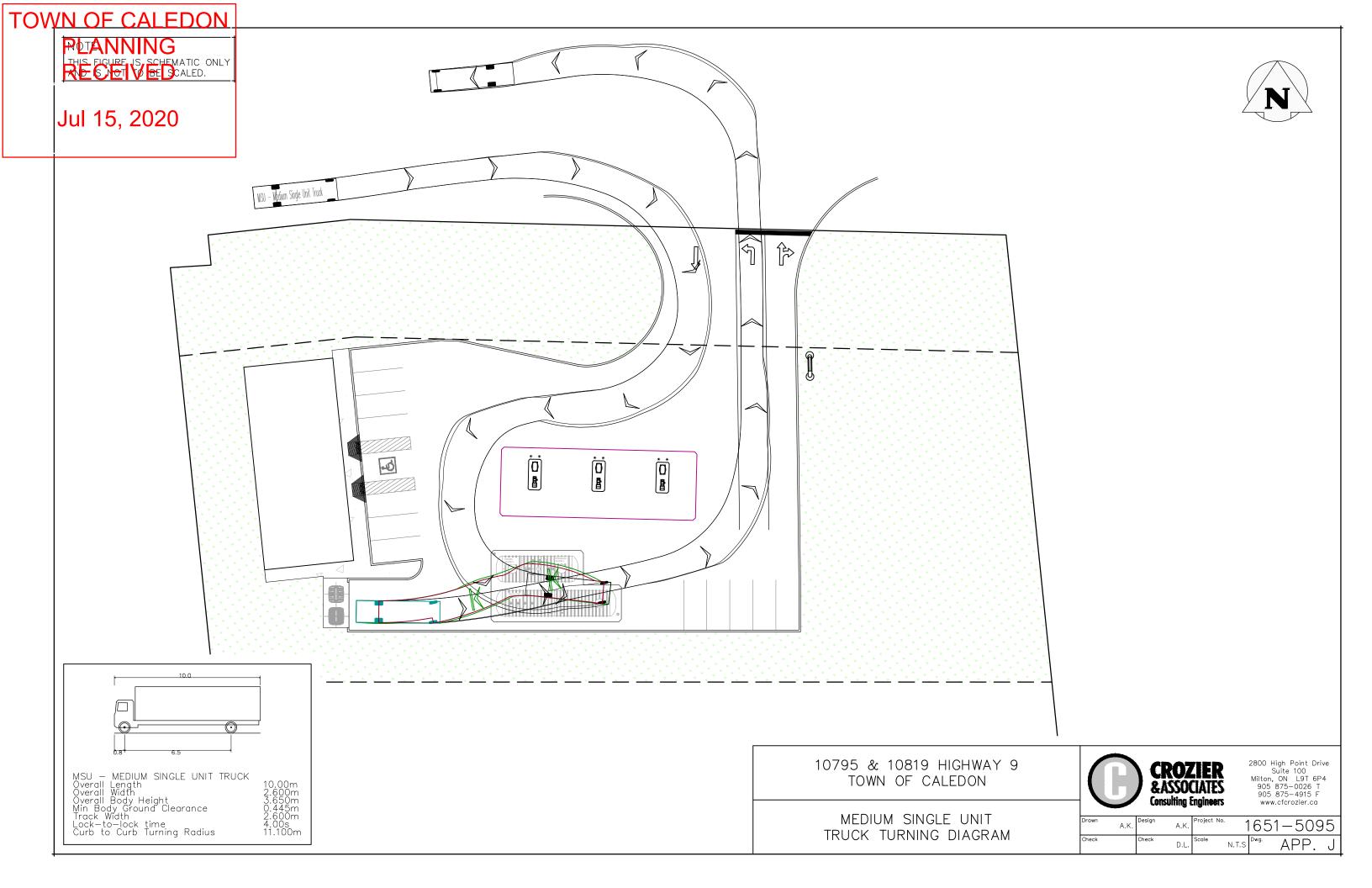


# TOWN OF CALEDON PLANNING RECEIVED

The sites were surveyed in the 1980s, the 1990s, the 2000s, and the 2010s in Alberta (CA), California Connecticut, Florida, Indiana, Iowa, Kentucky, Minnesota, New Hampshire, New Jersey, Texas, and Wicconsin.

#### Source Numbers

245, 340, 350, 385, 440, 617, 813, 864, 865, 883, 888, 954, 960, 977






Jul 15, 2020

## APPENDIX H

Vehicle Turning Analysis





Juligite 1: 2020 te Location Plan

Figure 2: Boundary Road Network

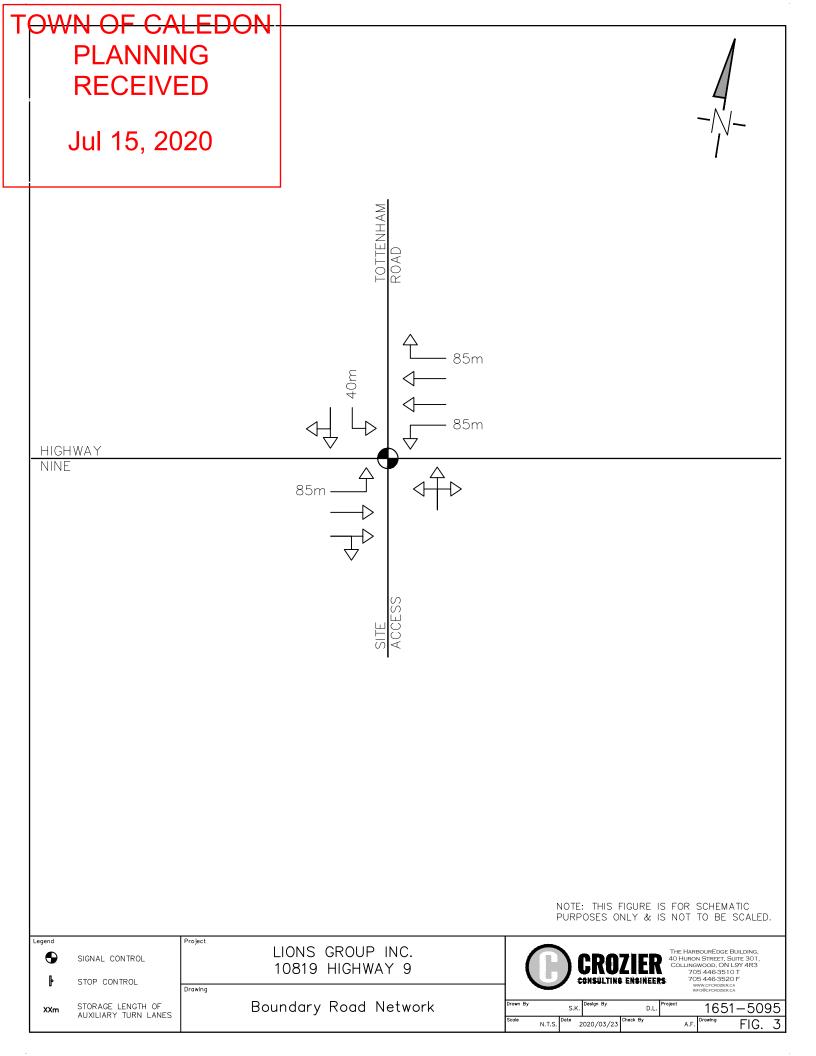
Figure 3: 2019 Existing Traffic Volumes

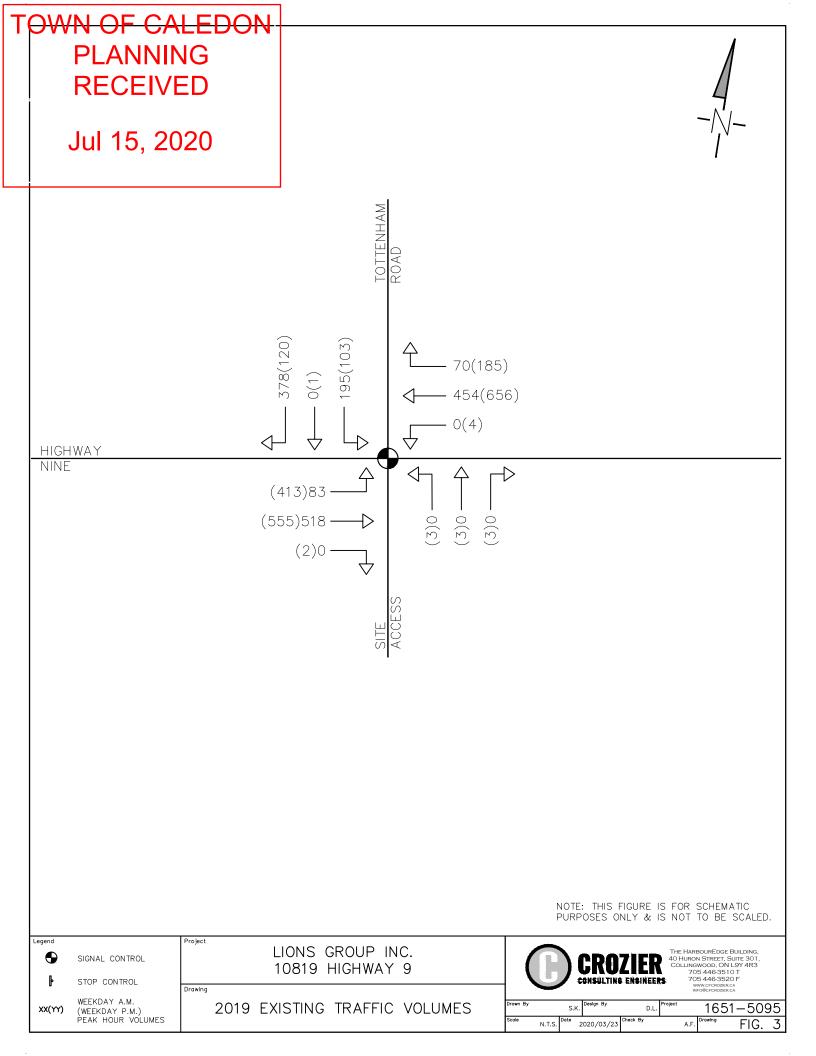
Figure 4: 2022 Future Background Traffic Volumes
Figure 5: 2027 Future Background Traffic Volumes
Figure 6: 2032 Future Background Traffic Volumes

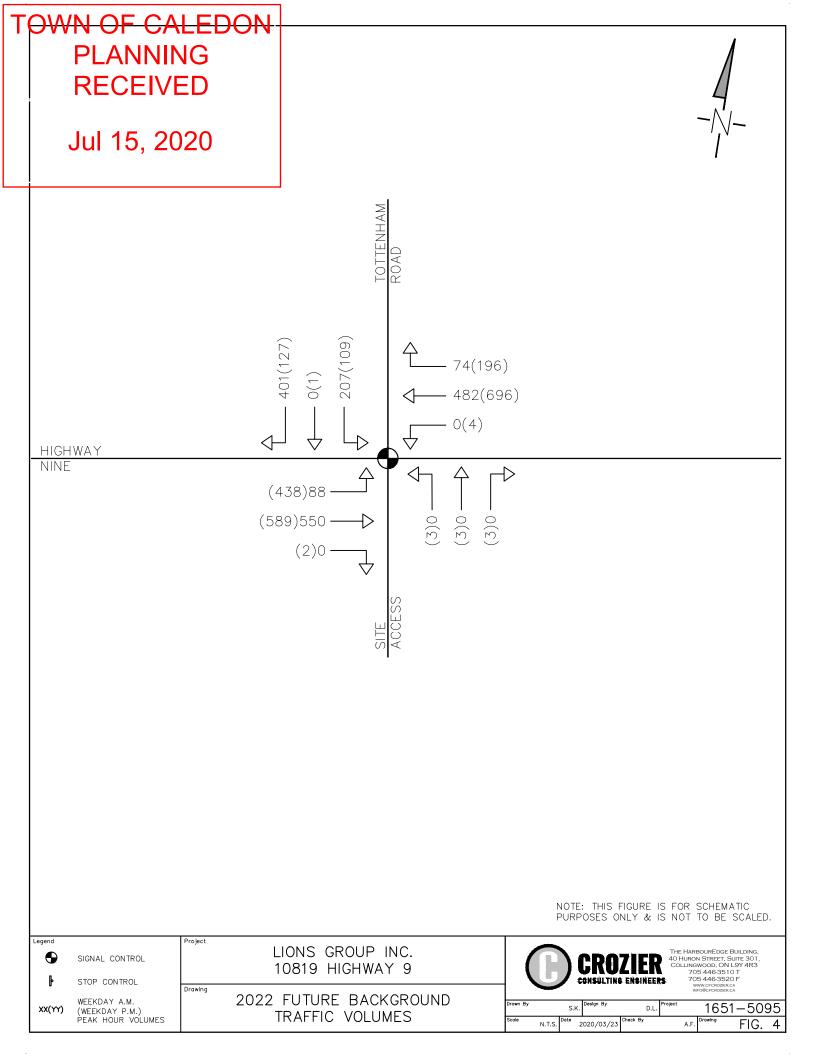
Figure 7: Primary Trip Distribution

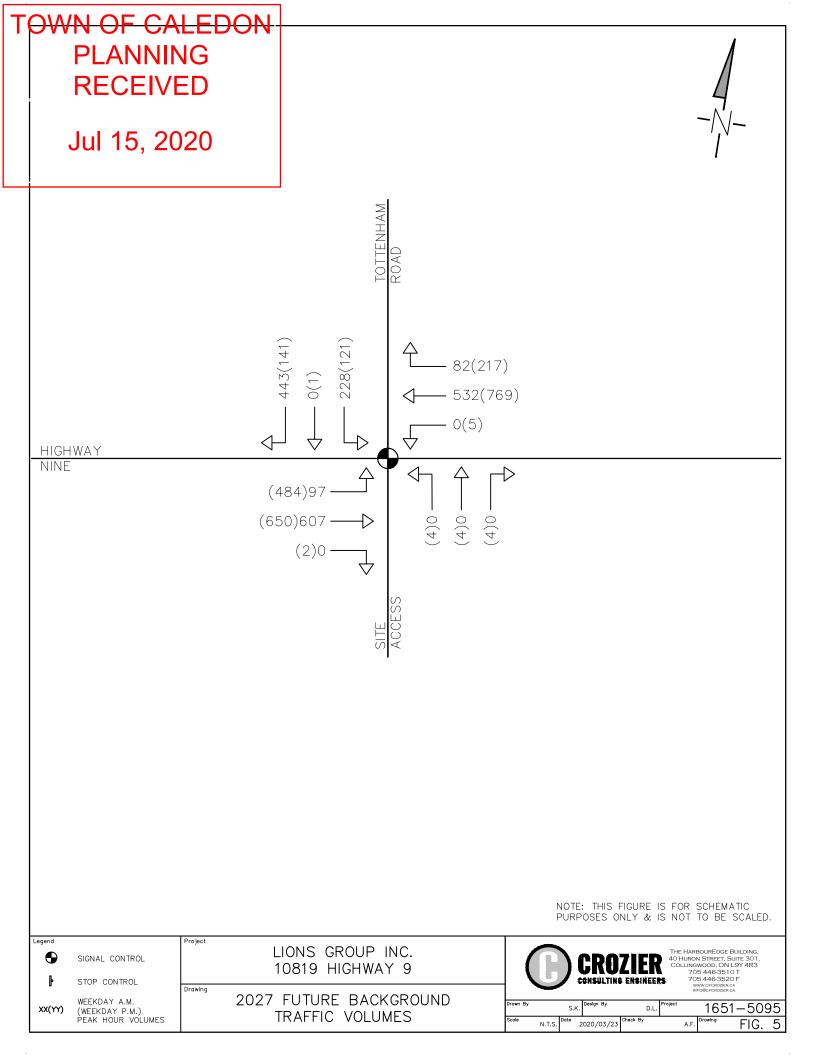
Figure 8: Pass-By Trip Distribution

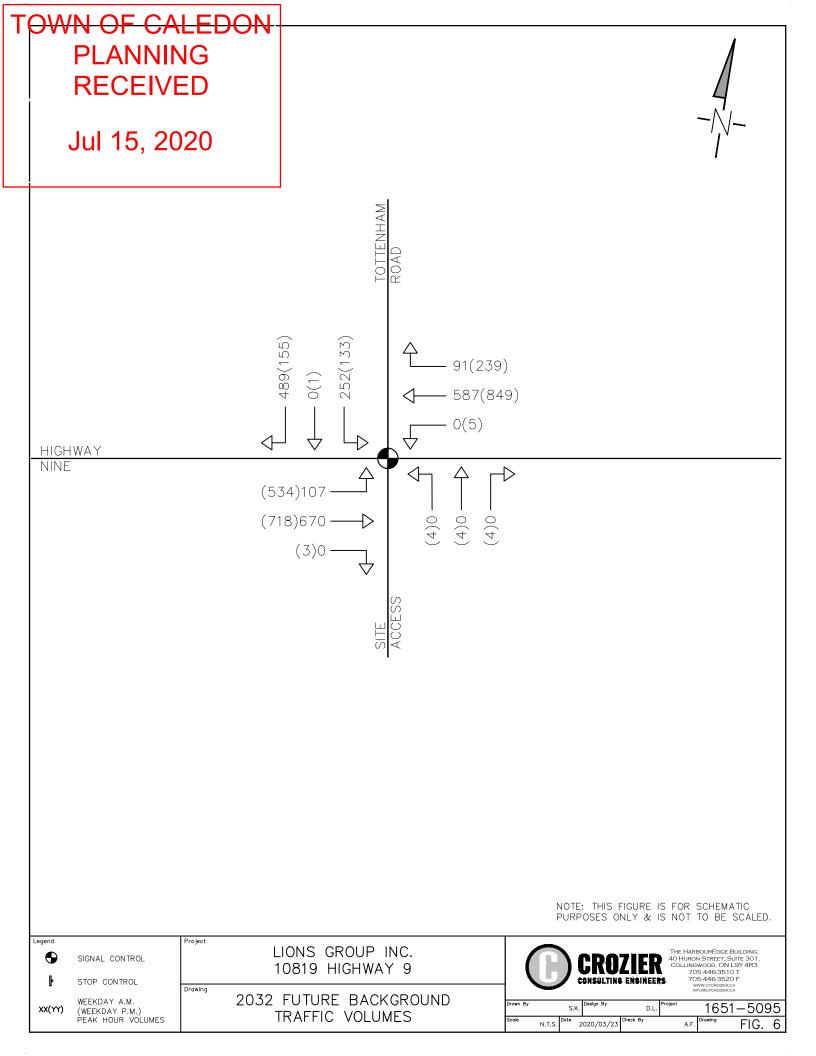
Figure 9: Primary Trip Assignment

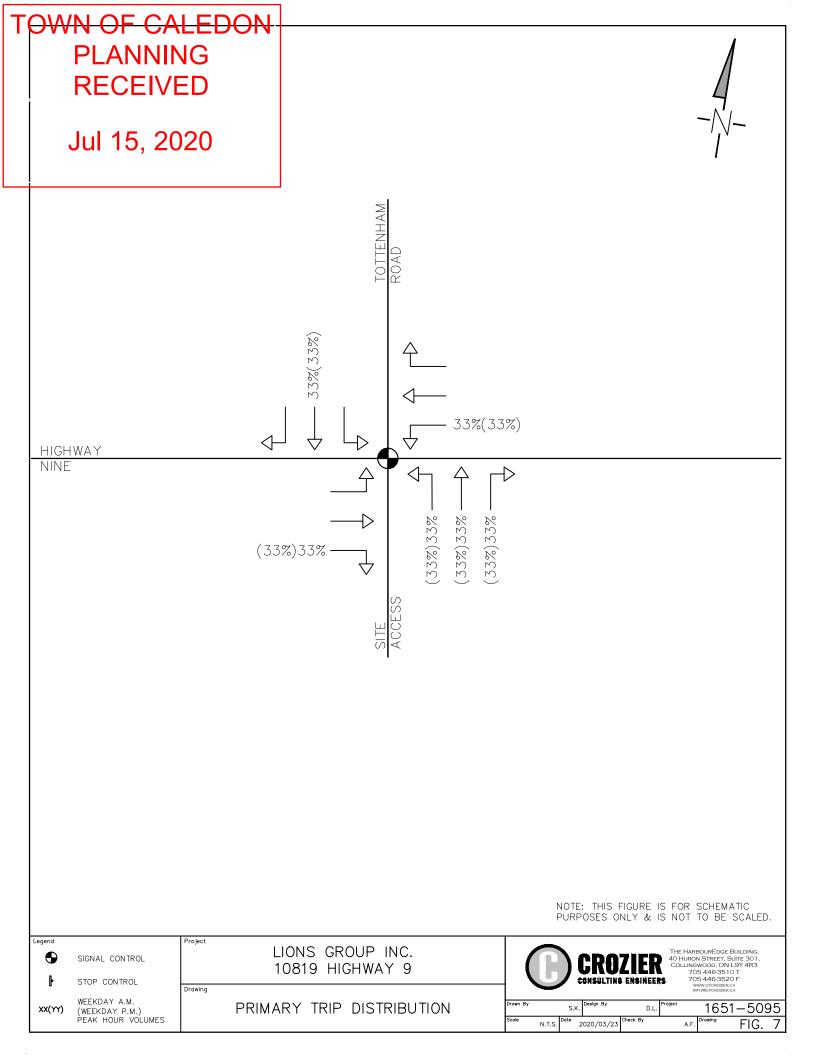

Figure 10: Pass-By Trip Assignment


Figure 11: 2022 Future Total Traffic Volumes
Figure 12: 2027 Future Total Traffic Volumes
Figure 13: 2032 Future Total Traffic Volumes


Figure 14: 2032 Future Background Sensitivity Traffic Volumes

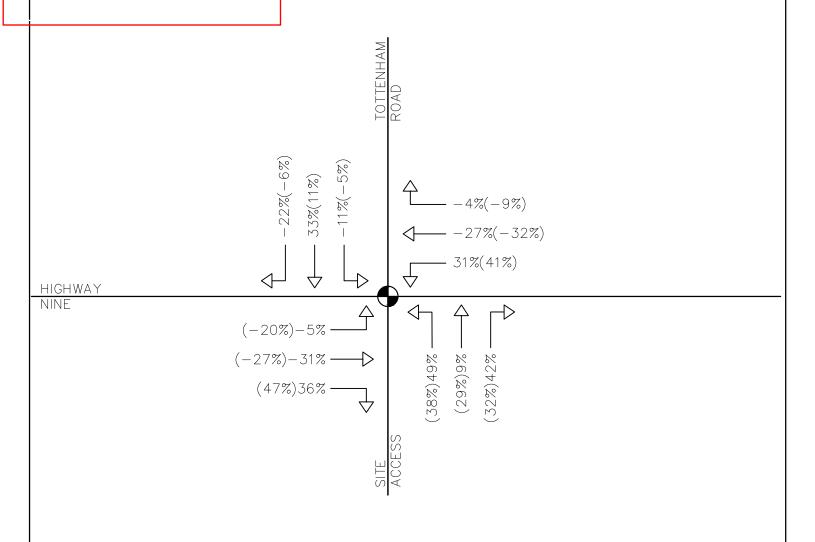

**Figure 15:** 2032 Future Total Sensitivity Traffic Volumes












## T<del>OWN OF CALEDON</del> PLANNING RECEIVED

Jul 15, 2020



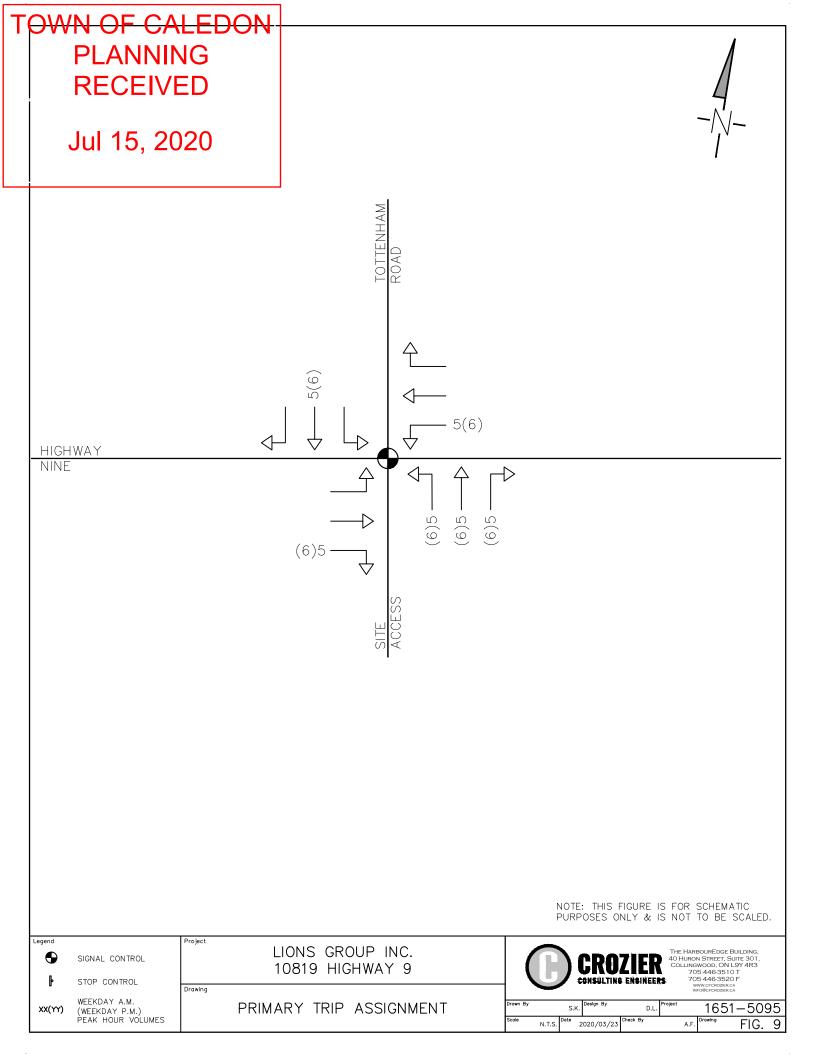
NOTE: THIS FIGURE IS FOR SCHEMATIC PURPOSES ONLY & IS NOT TO BE SCALED.

SIGNAL CONTROL
STOP CONTROL

WEEKDAY A.M.
(WEEKDAY P.M.)
PEAK HOUR VOLUMES

Project

LIONS GROUP INC.
10819 HIGHWAY 9


Drawing

PASS—BY TRIP DISTRIBUTION



THE HARBOUREDGE BUILDING, 40 HURON STREET, SUITE 301, COLLINGWOOD, ON L9Y 4R3 705 446-3510 T 705 446-3520 F WWW.CFCROZIERCA INFORCEROZIERCA

| rawn By |        | S.K.   | Design By  | D.L.     | Project | 1651    | -509 | 95 |
|---------|--------|--------|------------|----------|---------|---------|------|----|
| cale    | N.T.S. | Date 2 | 2020/03/23 | Check By | A.F.    | Drawing | FIG. | 8  |



# **PLANNING RECEIVED** Jul 15, 2020 - -6(-8) 7(10) <u>HIGHWAY</u> NINE (-5)-1NOTE: THIS FIGURE IS FOR SCHEMATIC PURPOSES ONLY & IS NOT TO BE SCALED. Project Legend THE HARBOUREDGE BUILDING, 40 HURON STREET, SUITE 301, COLLINGWOOD, ON L9Y 4R3 705 446-3510 T 705 446-3520 F WW.CFCROZIERCA LIONS GROUP INC. • SIGNAL CONTROL 10819 HIGHWAY 9

CONSULTING ENGINEERS

D.L.

S.K.

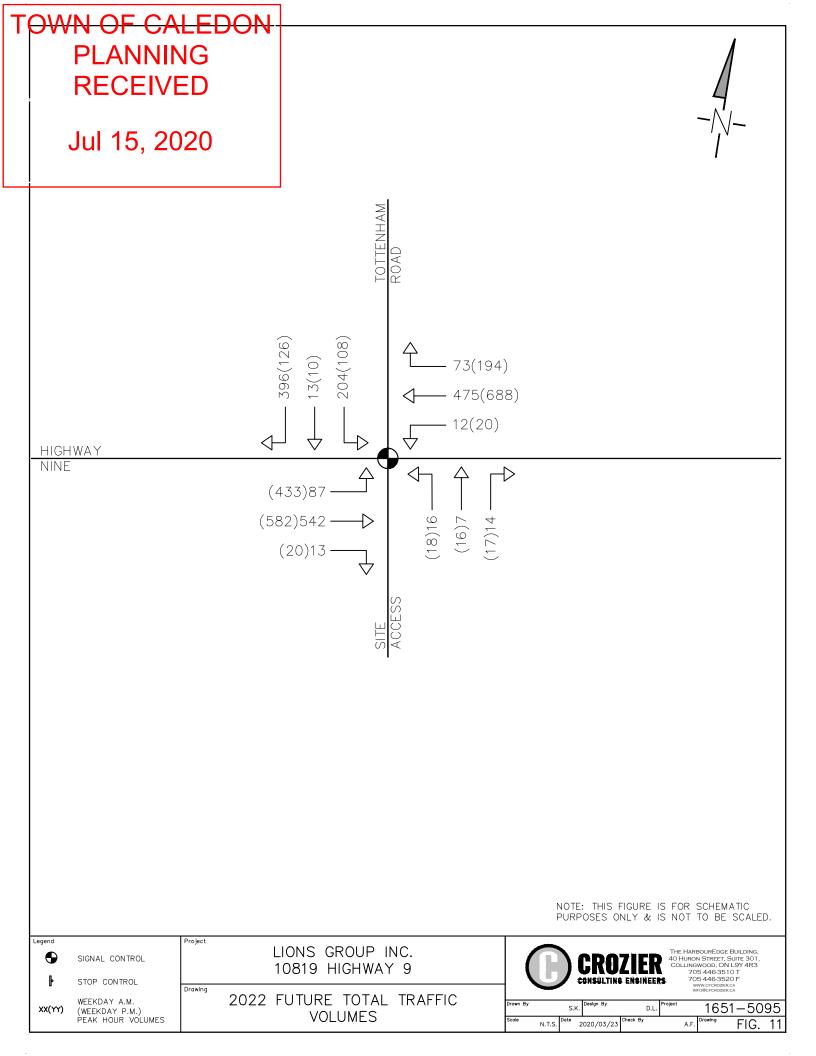
N.T.S.

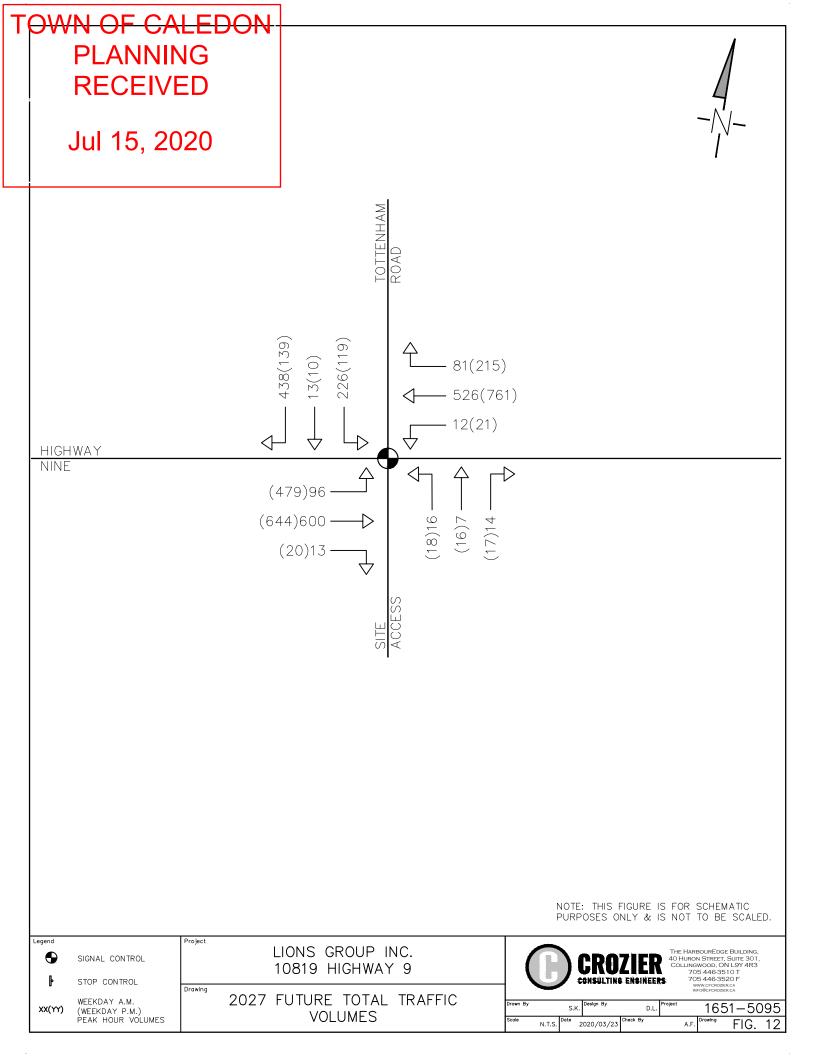
ote 2020/03/23

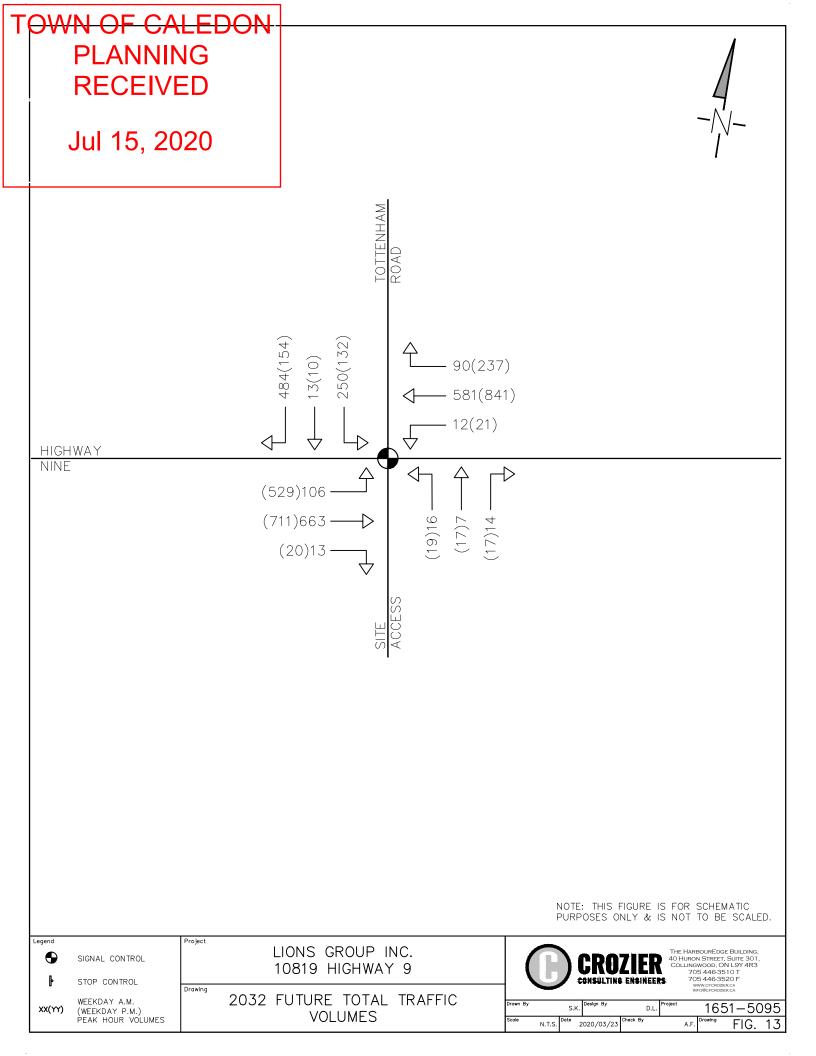
1651-5095

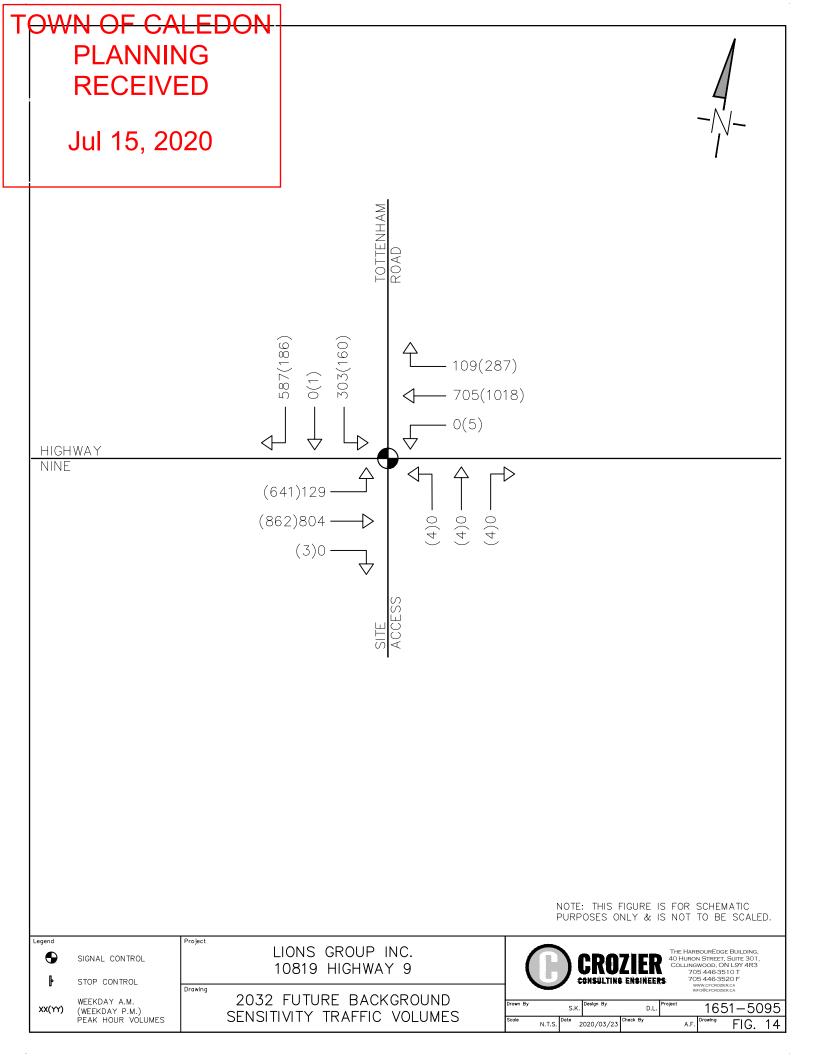
FIG. 10

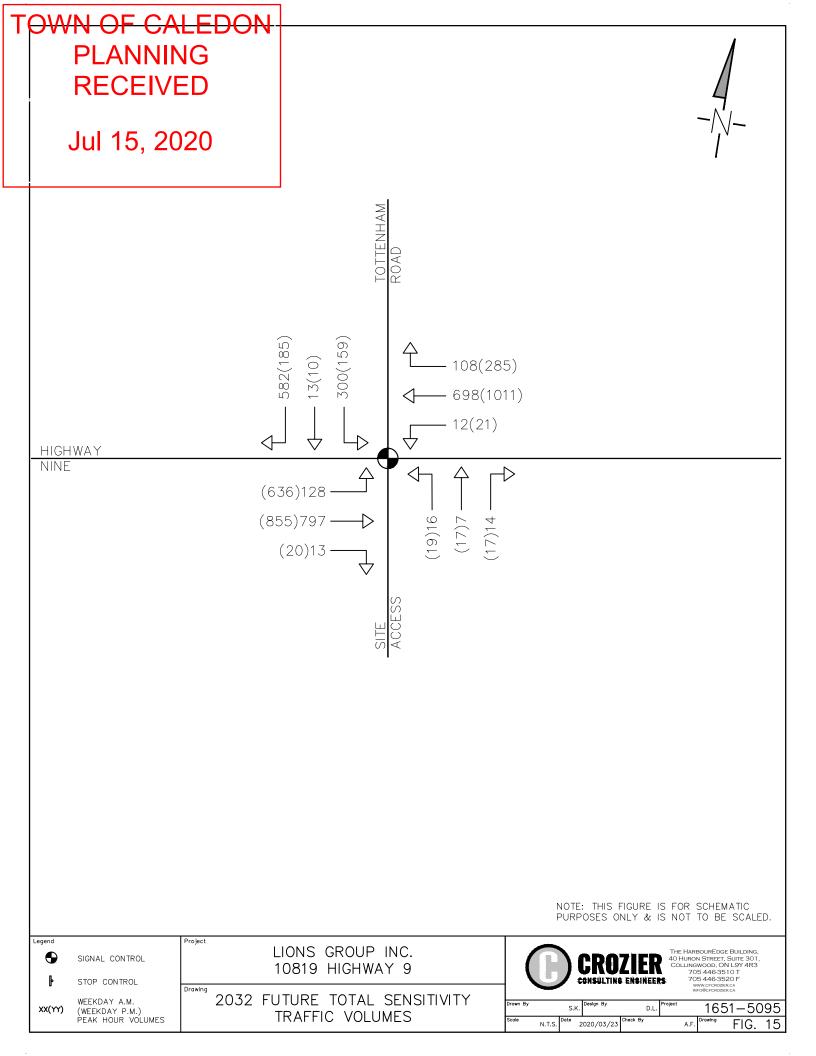
ŀ


XX(YY)


STOP CONTROL


WEEKDAY A.M. (WEEKDAY P.M.) PEAK HOUR VOLUMES


Drawing


PASS-BY TRIP ASSIGNMENT









