TOWN OF CALEDON PLANNING RECEIVED

Jul 15, 2020

FUNCTIONAL SERVICING AND STORMWATER MANAGEMENT REPORT

10819 HIGHWAY 9

TOWN OF CALEDON REGION OF PEEL

PREPARED FOR:

LIONS GROUP INC.

PREPARED BY:

C.F. CROZIER & ASSOCIATES INC. 211 YONGE STREET, SUITE 301 TORONTO, ON M5B 1M4

MAY 2020

CFCA FILE NO. 1651-5095

The material in this report reflects best judgment in light of the information available at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. C.F. Crozier & Associates Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

11	Revision Number	Date		Comments
JUI		Oct	ober 28, 2019	Issued for Temporary ZBA (Not Submitted)
	Rev. 1	Мау	8, 2020	Issued for Temporary ZBA

PLice Province G	Functional Servicing and Stormwater Management Report May 2020
RECEIVED TABLE OF CONTENTS	
Jul. 1 5, IN 20 20 CTION	1
2.0 SITE DESCRIPTION	1
3.0 SANITARY SERVICIN	G1
3.1 Existing Sanitary	(Servicing 1
3.2 Design Sanitary	Flow
3.3 Proposed Sanita	arv Servicing
4.0 WATER SERVICING	2
4 1 Existing Water S	ervicing 2
4.1 Design Water D	emand 2
4.3 Fire Flow Demai	nd
4.4 Proposed Water	Servicing
5.0 DRAINAGE CONDIT	IONS
5.1 Existing Drainag	۹۵ عا
5.2 Proposed Drain	nde 3
	290
6.0 STORMWATER MAN	AGEMENT4
6.1 Stormwater Quo	antity Control4
6.2 Stormwater Qua	ality Control
7.0 EROSION AND SEDI	MENT CONTROLS DURING CONSTRUCTION
8.0 CONCLUSIONS AND	O RECOMMENDATIONS6

TOWN OF CALEDON

Table-1:	2026stimated So	anitary Design Flows
Table 2:	Estimated D	esign Water Demand
Table 3:	Estimated Fi	re Demand Flows
Table 4:	Land Area C	Comparison
Table 5:	Comparison	of Pre- and Post-Development Runoff Coefficients and Flow Rates
Table 6:	Summary of	Rooftop Control Calculations

LIST OF APPENDICES

TOWN OF CALEDON

PLice Robert G T0819 Highway 9, Town of Caledor

- Appendix A: Sanitary Flow Calculations
- Appendix B: Water Demand Calculations
- Appendix C: Stormwater Management Design Calculations

LIST OF FIGURES

- Figure 1: Removals Plan and Erosion & Sediment Control Plan
- Figure 2: Site Servicing Plan
- Figure 3: Site Grading Plan
- Figure 4: Sections
- Figure 5: Pre- and Post-Development Drainage Plans

Juc. f 5 ozier 2000 Ciates Inc. (Crozier) was retained by Lions Group Inc. to prepare a Functional Servicing & Stormwater Management Report to support the Zoning By-Law Amendment for the property located at 10819 Highway 9 in the Town of Caledon.

The purpose of this report is to demonstrate that the proposed site can be developed in accordance with the Town of Caledon and Region of Peel guidelines from a functional servicing & stormwater management perspective.

2.0 Site Description

The site covers an area of approximately 0.64 ha and is currently occupied by an automotive service building, residential dwelling, associated surface parking, and landscape areas. The site is located in an extractive industrial and rural zoned neighbourhood in the Town of Caledon and is bound by Highway 9 to the north, rural residential properties to the east and west, and an Oak Ridges Moraine environmental policy area to the south.

According to the Site Plan provided by Glen Schnarr & Associates Inc. dated May 23, 2019, the proposed development will consist of a gas station with associated convenience building, an above-ground parking area, and landscaped areas.

3.0 Sanitary Servicing

3.1 Existing Sanitary Servicing

The site is currently serviced by a septic system, which will be decommissioned prior to construction.

3.2 Design Sanitary Flow

Design sanitary demand for the subject property was calculated using the Ontario Building Code. A summary of the results is presented in **Table 1** and detailed calculations are provided in **Appendix C**.

Standard	Type of Building	Average Flow (L/day)	
Ontario Building Code Act	Gas Station	5260	

Table 1: Estimated Sanitary Design Flows

The proposed sanitary sewage treatment system must be designed for a septic flow of 5260 L/day for the development, as determined by the Ontario Building Code table 8.2.1.3.B. This flow rate was determined based on an assumption of 6 fuel outlets and 2 washrooms for the site.

3.3 Proposed Sanitary Servicing

A septic system is proposed for the sanitary servicing of the gas station. The proposed septic system will have a design capacity of 5260 L/day and include an anaerobic digester tank with pump

chamber, a Waterloo Biofilter treatment system, and a Type A dispersal bed for the distribution of the treated wastewater effluent. The proposed anaerobic digester will hold the sewage long Uendon to the solids to sink and the oil and grease to float. The effluent will then be pumped into the proposed Waterloo Biofilter Wire Mesh Basket Model 50 or approved equivalent for treatment. The treated effluent will then be pumped into the Type A dispersal bed with a 660 m² sand layer footprint and a 110 m² stone layer footprint. The detailed septic system calculations are presented in **Appendix B**.

The Site Servicing Plan (**Figure 2**) and the Site Grading Plan (**Figure 3**) illustrate the location of the proposed septic system and service connections for sanitary servicing for the development. Details of the septic system are found in **Figure 4**. The internal sanitary plumbing within the building will be designed by the mechanical engineer in accordance with the Ontario Building Code (OBC).

4.0 Water Servicing

TOWN OF CALEDON

9, Town of Caledon

4.1 Existing Water Servicing

A review of the Ontario Water Resources Commission Act's Water Well Record dated May 30, 1968 indicates that there is an existing well located on the subject property. Further information on the existing well is provided in **Appendix A**, where a copy of the well record is provided.

4.2 Design Water Demand

The water demand for the proposed development was calculated assuming that the sanitary flows from the site are equivalent to the water demand. As such, a water demand of 5260 L/day, or 0.06L/s, was used to calculate the water demand for the development. Peaking factors were used with reference to the Region of Peel Public Works Watermain Design Criteria (June 2010). Refer to **Appendix B** for detailed water demand calculations.

Standard	Average Daily Demand (L/s)	Maximum Daily Demand Peaking Factor	Peak Hour Demand Peaking Factor	Maximum Daily Demand (L/s)	Peak Hourly Demand (L/s)
OBC/Region of Peel	0.06	1.4	3.0	0.09	0.18

Table 2: Estimated Design Water Demand

Using the Ontario Building Code Table 8.2.1.3.B. and the Region of Peel Design Criteria for domestic water demand, the projected daily demand and peak hourly flows for the site will be 0.06 L/s and 0.18 L/s, respectively.

4.3 Fire Flow Demand

The Fire Underwriters Survey method was used to estimate the fire flow requirements for the proposed development. This calculation estimates the flow rate required to service the development. The proposed convenience store building is assumed to be of ordinary construction and to have no sprinkler system.

Table 3 summarizes the required fire flow and duration to meet fire protection for the proposed development. Refer to **Appendix B** for detailed fire flow calculations.

Ju	I 15, 2020	able 3: Estimated Fire Demai	nd Flows	
	Method	Demand Flow (L/s)	Duration (h)	Volume (m³)
	Fire Underwriter's Survey (1999)	50	1.25	225

A fire cistern with a volume of 225 m³ is proposed to accommodate a fire flow of 50 L/s for a duration of 1.25 hours.

Please note that the Fire Underwriters Survey value is a conservative estimate for comparison purposes only. The mechanical engineer for this development will complete the required analyses for fire protection and the architect will design fire separation methods per the determined fire flow rate.

4.4 **Proposed Water Servicing**

TOWN OF CALEDON

9, Town of Caledon

The existing well on-site will conflict with the proposed site plan, and as such will be decommissioned. The development is proposed to be serviced by a new well located on-site for domestic water demand, and a proposed 225 m³ cistern for fire water demand. Please refer to Figure 1 for approximate location of proposed water servicing. The exact location of this proposed well will be coordinated with a hydrogeological engineer at detailed design stage.

5.0 **Drainage Conditions**

The subject property is part of the Nottawasaga Valley Conservation Authority (NVCA), therefore the stormwater management design will adhere to the NVCA Stormwater Technical Guide (December 2013) guidelines.

5.1 **Existing Drainage**

The subject property currently consists of asphalt, grass, tree cover, and two buildings, with property access via Highway 9. According to the Cole Sherman drawing dated March 10, 2000, an existing minor system on-site drains to a 150 mm diameter CSP culvert beneath Highway 9 which outlets to a ditch located north of the road. Figure 2 illustrates the existing storm sewer and manhole locations. A review of the topographic survey prepared by Avanti Surveying Inc. (January 22, 2019) indicates that stormwater runoff from the property drains from the south property line to the catchbasins located at the north property line.

5.2 **Proposed Drainage**

The proposed development consists of a gas station complete with gas pumps, a gas bar, parking, and landscaped areas. Upon development, the minor storm event will be collected by catchbasins located within the paved area at the north end of the site. These catchbasins will discharge to the existing culvert located beneath Highway 9, which drains to the ditch along the north boulevard of Highway 9.

The Preliminary Site Servicing and Site Grading Plans (Figure 2 and Figure 3) illustrate the proposed site drainage, the location and design of the storm sewer, and all connections. Please refer to Urigina 5 2020 whights the pre- and post-development pervious and impervious areas for the site. Table 4 summarizes the results.

Conditions	Impervious Area (m²)	Pervious Area (m²)	MTO Setback Area (m ²)	Total Area (m²)	Runoff Coefficient
Pre-Development	1861	4539	-	6400	0.46
Post-Development	1429	3599	1375	6400	0.43

Table 4: Land Area Comparison

6.0 Stormwater Management

9, Town of Caledon

TOWN OF CALEDON

PLIANN

A review of the stormwater management criteria and drainage plans for the subject property was completed to establish the required on-site stormwater management controls.

6.1 Stormwater Quantity Control

The pre-development runoff coefficient for the site was determined to be 0.46. The proposed commercial development includes a gas station with a convenience store and parking area. The post-development runoff coefficient for the commercial development was determined to be 0.43. As shown in **Table 5**, post-development peak flows decrease from pre-development peak flows. Site grading constraints limit the ability to use an underground storage chamber to store and control the increase in flow. Rooftop control measures will be used to control the flow rate from the roof to 1.4 L/s based on the roof drain release rate of 42L/s/ha. This further limits the increase in flow rate from pre-development to post-development. Based on the pre-development flows exceeding the post-development flow rates, no further quantity control measures are proposed for the site. Detailed stormwater management calculations are located in **Appendix C**.

Site Area (ha)	Pre-Dev. Runoff Coefficient	Post-Dev. Runoff Coefficient	Design storm event	Pre-Dev. Peak Flow Rate (L/s)	Post-Dev. Peak Flow Rate (L/s)
	0.46	0.43	2	52	47
			5	69	62
0.53			10	81	72
0.55			25	95	84
			50	105	94
			100	115	103

Note: Post-Development peak flow rates represent both uncontrolled flows and flow rates from the site draining to the proposed catchbasins, including a rooftop flow rate of 1.1 L/s. Rooftop flow rate calculations are shown in **Table 6**.

TOWN OF CALEDON	
PLice Point A Contract of Caledon	
RECEIVED	

L		anons
1	Runoff Coefficient (100-Yr Storm Event)	0.9
	Rooftop Area (ha)	0.026
	Rooftop unit release rate (L/s/ha)1	42
	Rooftop release rate (L/s)	1.1

Table 6: Summary of Rooftop Control Calculations

Notes:

1. Release rate determined assuming a roof drain standard controlled release rate of 10 GPM (0.63 L/s/in), 6 in of depth, and the The Ontario Building Code (2006) standard which requires at least 1 drain per 900 m², equivalent to 11.11 drains/ha * 6 in * 0.63L/s/in = 42 L/s

6.2 Stormwater Quality Control

The stormwater quality criteria outlined in the Region of Peel Public Works Stormwater Design Criteria and Procedural Manual requires Level 1 enhanced treatment through the long-term removal of 80% total suspended solids (TSS). As such, a Stormceptor model EFO4 oil and grit separator was selected. EFO models provide enhanced oil capture and removal compared to STC and EF models, and as such was selected for the proposed gas station. The Stormceptor EFO4 will provide 63% TSS removal for the site. Rooftop flows bypass the proposed oil and grit separator and are assumed to be clean (80% TSS removal).

7.0 Erosion and Sediment Controls During Construction

Erosion and sediment controls will be installed prior to the beginning of any construction activities. They will be maintained until the site is stabilized or as directed by the Site Engineer and/or Town of Caledon. The Preliminary Erosion & Sediment Control Plan (**Figure 1**) identifies the location of the recommended controls. Controls will be inspected after each significant rainfall event and maintained in proper working condition.

The following erosion and sediment controls will be included during construction on the site:

<u>Heavy Duty Silt Fencing</u>

Silt fencing will be installed on the perimeter of the site to intercept sheet flow. Additional silt fence may be added based on field decisions by the Site Engineer and Owner, prior to, during and following construction.

Rock Mud Mat

A rock mud mat will be installed at the entrance to the construction zone to prevent mud tracking from the site onto surrounding lands and the perimeter roadway network. All construction traffic will be restricted to this access only.

8.0 Conclusions and Recommendations

9, Town of Caledori

TOWN OF CALEDON

Jutha 500 202 elopment can be serviced for water, sanitary, and stormwater in accordance with the Town of Caledon and Region of Peel requirements and standards. Our conclusions and recommendations include:

- 1. The existing well on-site will be decommissioned and a new well is proposed to provide the water demand for the proposed development. The average daily water demand and peak hour water demand for the subject property are 0.06 L/s and 0.18 L/s, respectively.
- 2. Fire protection will be provided through a proposed 225 m³ fire water cistern for the fire demand flow of 50 L/s for a duration of 1.25 hours.
- 3. Sanitary servicing for the proposed development will be provided by a septic system. The sanitary flow for the subject property is 5260 L/day.
- 4. Stormwater conveyance for the subject property will be provided through a storm sewer connection to the existing 150 mm culvert beneath Highway 9.
- 5. Stormwater quality control for the site will be provided by a Stormceptor model EFO4 oil and grit separator for the site surface and "clean" rooftop area.
- 6. Erosion and sediment controls will be implemented on-site during construction and will be maintained until the site is stabilized.

Based on the above conclusions, we recommend the approval of the Zoning By-Law Amendment, from the perspective of functional servicing and preliminary stormwater management.

C.F. CROZIER & ASSOCIATES INC.

James Boyd, E.I.T. Civil

C.F. CROZIER & ASSOCIATES INC.

Ashish Shukla, P.Eng. Associate, Civil

/kw

N:\1600\1651-Lions Group Inc\5095-10795&10819 Highway 9\Reports\2020.03.13_FSR&SWM.docx

APPENDIX A

Sanitary Flow Calculations

WN OF CALEDC PLANNING RECEIVED	N						
Jul 15, 202 CRO & ASSO Consulting	ZIIER CIATES Engineers	Project: Project No.:	10819 Highway 9 1651-5095	Design by: Check by:	KW MC	Date: Updated:	2019-08-21 2020-03-13
			SANITARY FLOW CALC 10819 Highway	CULATIONS (OBC) 9, Caledon			
							References/Notes
PROPOSED SANITARY	<u>FLOW</u>						
GAS BAR	Assumina 2	water closets (WC) (and 6 fuel outlets				Development Concept Plan Proposed Gas Bar,
	7 (33011) ing 2	950 L/WC	560 L/fuel	outlet			GSAI, MQy 23, 2019
		2 WC	6 fuel o	utlets			
		1900 L/day	3360 L/day				Building Code Act, 1992 Table 8.2.1.3.B.
	TOTAL	5260 0.0609) L/Day 7 L/s				
TOTAL SANITARY FLOV	V	5260) L/day				MOE ECA Permit Required for demand
		0.0609	9 L/s				greater

N:\1600\1651-Lions Group Inc\5095-10795&10819 Highway 9\Design\Civil_Water\2019.08.21 Sanitary & Septic

Image: Description of the second s	N OF CALEDON PLANNING RECEIVED					
COMMERCIAL SEPTIC DESIGN (OBC) 10819 Highway 9, Caledon Ansarobic Diaster (Waterloo Bioffler) References/N Design Rev 5260 U/day Minimum Tank Capacity 15780 L Disposal & Treatment: Waterloo Bioffler Wire Mesh Basici Model BA75 Waterloo Bioffler Wire Mesh Basici Model BA75 Disposal & Treatment: Waterloo Bioffler Wire Mesh Basici Model BA75 Version L4 (May Ubiprovit: Type A Dispensiol Bed SAND LAYER Soil Trime 1 50 mins/cm Bailing Code Soil Trime 1 50 mins/cm Le 30.0 m We 22.0 m We 22.0 m Provided Stand Area 468 sq. m Le 30.0 m We 22.0 m Building Code Provided Stand Area 640.0 sg. m 100 sg. m Stone Area 4//3 Soil Trime Building Code Le 30.0 m Soil Trime Building Code Version Flow Q 5/00 Stone Area 4////00 Required Stone Area 4////00 Building Code 100 m We 20.0 m Soil Trime 00.0 m 100 sg. m Virinnum sond depth = 400mm 02C 8.77.1 (40) 03C 8.77.1 (40)	ul 15, 202 CROZIER & ASSOCIATES	Project: Project No.:	10819 Highway 9 1651-5095	Design by: KW Check by: MC	Date: Updated:	2019-08-21 2020-03-13
Ancerobic Digester (Woterloo Bioffler) Design flow 5260 L/day Minimum Tank Capacity 15760 L DisPOSAL & TREATMENT SYSTEM Waterloo Bioffler Wite Mesh Backet Madel BA75 Disposal & Treatment: Waterloo Bioffler Wite Mesh Backet Madel BA75 Waterloo Bioffler Wite Mesh Backet Madel BA75 Disposal : Type A Disposal Bod Soil T-time T 500 mins/cm SaND LAYER Soil T-time T 500 mins/cm Soil Colors and Meao 658 sq. m Building Code Le 300 m 1992 Section 6 W= 22.0 m Provided Sand Area 6400 sp. m Stone Area A = Q/R Required Stone Area 10.0 m W= 10.0 m W= 10.0 m W= 10.0 m W= 10.0 m Provided Stone Area = 11.0 m W= 10.0 m W= 10.0 m We 10.0 m 20.0 m Minimum stone depth = 400mm OBC 87.7.1 [46] OBC 87.7.1 [46] 0BC 87.7.1 [46]	Consoning Engineers		COMMERCIAL SEPTIC 10819 Highway 9	DESIGN (OBC) , Caledon		
Design flow 5240 L/dey Minimum Tank Capacity 15780 L DisPosAL & TREATMENT SYSTEM Waterloo Bioffler Wire Mesh Bosket Model BA/35 Disposal: Treatment: Waterloo Bioffler Wire Mesh Bosket Model BA/35 Disposal: Upp A Disposal Bed SAND LAYER Soli T-time T Soli T-time T 50 mins/cm Italia San flow Q 5240 L/dey Septic Area A = Q°17400 Required Sand Area 6458 sq.m Italia San flow Q 5240 L/dey Stone LAYER Building Code Italia San flow Q 5240 L/dey Stone LAYER Building Code Italia San flow Q 5240 L/dey Boli T-time T 30.0 m W= 22.0 m Provided Sand Area 640.0 sq. m Stone Area A Q/3 Required Sane Area Q/3 Required Stone Area 110.0 m W= 10.0 m Provided Stone Area 110.0 sq. m Minimum stone depth = 400mm 080 8.7.7.1 (4b) Minimum stone depth = 300mm 080 8.7.7.1 (4b)	Anaerobic Digester (Waterloo B	Biofilter)				References/Notes
Displaying Displaying Displaying Displaying Minimum Tank Capacity 15780 L Writerioo biof Displaying Treatment: Waterioo Biofilter Wire Mesh Bosket Model BA75 Writerioo biof Disposit: Type A Dispersol Bed Soft 7-fme assumes Soft 7-fme assumes SAND LAYER Soft 7-fme assumes Soft 7-fme assumes Soft Trime T 50 mins/cm Biofing/Code Total Son Row Q 5260 U/day Building Code Septic Area A QPT/400 Building Code Recauled Stand Area 640.0 sq. m 1999 Section 8 Version J.4 (May 22.0 m Provided Sond Area 640.0 sq. m Stone LAYER Soft Trime assumes Building Code 1999 Section 8 Total Son Riow G 5260 U/day Building Code 1999 Section 8 Stone Area A Q/B 10.0 m 1999 Section 8 1999 Section 8 Normal Code Area 10.0 m 10.0 m 1992 Section 8 1992 Section 8 Winimum sond depth = 400mm 10.0 sq. m OBC 8.7.7.1 (48) OBC 8.7.7.1 (48)		5240 L (day				
DSPOSAL & TREATMENT SYSTEM Wolferboo biolitier Wire Mesh Basket Model BA75 Treatment: Waterboo Biolitier Wire Mesh Basket Model BA75 Disposed: Type A Dispersol Bed SAND LAYER Soil T-fime 1 S0 mins/cm Soil T-fime 1 S0 mins/cm Total Son Flow Q 5260 L/day Septic Area A = Q*T/400 Required Sand Area = 658 sq. m L = 30.0 m W = 22.0 m Provided Sand Area = 640.0 sq. m Stone Layer Boil Clay Stone Area A = O/B Boil D. Jong Barn Building Code Boil Son Flow Q 5260 L/day B 50 Stone Area A = O/B Required Sand Area = 640.0 sq. m Building Code 1992 Section 8 Building Code 1992 Section 8 Via 10.0 m Weilding Code Winimum sand depth = 600mm OBC 8.7.7.1 (4b) Winimum stone depth = 300mm OBC 8.7.7.1 (4b)	Minimum Tank Capacity	15780 L				
Discrete at International Values Waterloo Biolity Treatment: Waterloo Biolity Waterloo Biolity Disposal: Type A Dispersal Bed Soil T-lime A Dispersal Bed SaND LAYER Soil T-lime T Soil T-lime T S0 mins/cm Tatal San Riow Q 5240 L/day Septic Area A = Q°T/400 Required Sand Area 658 sq. m L= 30.0 m W= 22.0 m Provided Sand Area 660.0 sq. m Stone Layer 500 Solone Area Tatal San Riow Q 5240 L/day Building Code 1992 Section 8 Tatal San Riow Q 5240 L/day Building Code 1992 Section 8 Tatal San Riow Q 5240 L/day Building Code 1992 Section 8 Tatal San Riow Q 5240 L/day Building Code 1992 Section 8 Stone Area A= Q/8 Required Stone Area A Q/8 Required Stone Area = 10.0 m W= 10.0 m Provided Stone Area = 10.0 sq. m Minimum stone depth = 300mm 08C 8.7.7.1 [48] <td>DISPOSAL & TREATMENT SYSTEM</td> <td></td> <td></td> <td></td> <td></td> <td></td>	DISPOSAL & TREATMENT SYSTEM					
Treatment: Waterioo Biofilier Wire Mash Basket Model BA75 Version 1.4 (May) Disposal: Type A Dispersal Bed Soll T-time T Soll T-time T 50 mins/cm Soll T-time T 50 mins/cm Total San Flow Q 5260 L/day Belding Code 1992 Section 8 Bilding Code 1992 Section 8 Le 30.0 m We 22.0 m Provided Sand Area = Stone LayEr 640.0 sq. m Stone Karea A = Q/8 Required Sand Area = 0.2520 L/day B 50 Stone Karea A = Q/8 Required Sand Area = 0.05 sq. m Stone Karea A = Q/8 Required Stone Area A = Q/8 Required Stone Area = 110.0 m W= 10.0 m Provided Stone Area = 110.0 sq. m Minimum sand depth = 400mm OBC 8.7.2.1 (45) Minimum stone depth = 300mm OBC 8.7.2.1 (45)						Waterloo biofilter Designer Manual
SAND LAYER Soil T-time T 50 mins/cm Soil T-time T 50 mins/cm be 50 mins/c Total San Flow Q 5220 L/day Building Code Septic Area A Q*T/400 Building Code Required Sand Area= 658 sq. m Building Code L= 30.0 m W= 22.0 m Provided Sand Area= 660.0 sq. m Building Code STONE LAYER Building Code 1992 Section 8 Total San Flow Q 5280 L/day Building Code Stone Area A Q/8 Building Code Required Stone Area = Q/8 Building Code Provided Stone Area = Q/8 Building Code Required Stone Area = 105 sq. m Building Code L= 11.0 m W= 10.0 m Provided Stone Area = 110.0 sq. m OBC 8.7.7.1 (4b) Minimum stone depth = 300mm OBC 8.7.7.1 (4b) OBC 8.7.7.1 (4b)	Treatment: Wate Disposal: Type	erloo Biofilter Wire Mesh Bask A Dispersal Bed	et Model BA75			Version 1.4 (May 201
SAND LATER Soil T-time T 50 mins/cm Soil T-time assun Total San Flow Q 5240 L/day be 50 mins/c Septic Area A = Q*17400 Building Code Required Sand Area 658 sq. m 1992 Section 8 L= 30.0 m 22.0 m Provided Sand Area 660.0 sq. m STONE LAYER Building Code Total San Flow Q 5260 L/day B 50 Stone Area A= Q/8 Required Stone Area Q/8 Required Stone Area Q/8 Required Stone Area 11.0 m W= 10.0 m Provided Stone Area 110.0 sq. m Minimum sand depth = 600mm OBC 8.7.7.1 (4b) Minimum stone depth = 300mm OBC 8.7.7.1 (4b)						
Total San Flow Q 5260 L/day Septic Area A = Q*T/400 Required Sand Area = 658 sq. m L = 30.0 m W = 22.0 m Provided Sand Area = 660.0 sq. m STONE LAYER B Total San Flow Q 5260 L/day B 50 Stone LAYER Q/B Required Stone Area = Q/B Required Stone Area = 105 sq. m L = 11.0 m W = 10.0 m Provided Stone Area = 110.0 sq. m Minimum sand depth = 600mm OBC 8.7.7.1 (4b) Minimum sand depth = 300mm OBC 8.7.7.1 (4b)	Soil T-time T	50 mins/cm				Soil T-time assumed be 50 mins/cm
Septic Area A = Q*T/400 Building Code 1992 Section 8 Required Sand Area = 30.0 m 1992 Section 8 L = 30.0 m 1992 Section 8 W = 22.0 m 1992 Section 8 Provided Sand Area = 660.0 sq. m 1992 Section 8 STONE LAYER 50 1992 Section 8 Total San Flow Q 5260 L/day 8 Stone Area A = Q/B 1992 Section 8 Required Stone Area = 100 sq. m 1992 Section 8 L = 11.0 m 1992 Section 8 W = 10.0 m 1992 Section 8 Provided Stone Area = 110.0 sq. m 08C 8.7.7.1 (4b) Minimum sand depth = 600mm 08C 8.7.7.1 (4b) 08C 8.7.7.1 (4b)	Total San Flow Q	5260 L/day				
Required Sand Area 658 sq, m 1992 Section 8 L= 30.0 m 1992 Section 8 W= 22.0 m 1992 Section 8 Provided Sand Area 660.0 sq, m STONE LAYER 660.0 sq, m Total San Flow Q 5260 L/day B 50 Stone Area A= Q/B Required Stone Area = 105 sq, m L= 11.0 m W= 10.0 m Provided Stone Area = 110.0 sq, m	Septic Area A =	Q*T/400				Building Code Act
L= 30.0 m W= 22.0 m Provided Sand Area = 660.0 sq. m STONE LAYER Total San Flow Q 5260 L/day B 50 Stone Area A= Q/B Required Stone Area = 105 sq. m L= 11.0 m W= 10.0 m Provided Stone Area = 110.0 sq. m Minimum sand depth = 600mm Minimum stone depth = 300mm	Required Sand Area=	658 sq. m				1992 Section 8.7.7.
W= 22.0 m Provided Sand Area = 660.0 sq. m STONE LAYER Total San Flow Q 5260 L/day B 50 Stone Area A= Q/B Required Stone Area = 105 sq. m L= 11.0 m W= 10.0 m Provided Stone Area = 110.0 sq. m Minimum stone depth = 500mm OBC 8.7.7.1 (4b)	L=	30.0 m				
Provided Sand Area = 660.0 sq. m STONE LAYER Total San Flow Q 5260 L/day B 50 Stone Area A = Q/B Required Stone Area = 105 sq. m L = 11.0 m W = 10.0 m Provided Stone Area = 110.0 sq. m Minimum sond depth = 600mm OBC 8.7.7.1 (4b) Minimum stone depth = 300mm OBC 8.7.7.1 (6B)	W=	22.0 m				
STONE LAYER Total San Flow Q 5260 L/day B 50 B 50 Stone Area A= Q/B Required Stone Area= 105 sq. m L= 11.0 m W= 10.0 m Provided Stone Area= 110.0 sq. m Minimum sand depth = 600mm OBC 8.7.7.1 (4b) Minimum stone depth = 300mm OBC 8.7.7.1 (6B)	Provided Sand Area=	660.0 sq. m				
Total San Flow Q 5260 L/day B 50 Stone Area A= Q/B Required Stone Area= 105 sq. m L= 11.0 m W= 10.0 m Provided Stone Area= 110.0 sq. m Minimum sand depth = 600mm OBC 8.7.7.1 (4b) Minimum stone depth = 300mm OBC 8.7.7.1 (6B)	STONE LAYER					
B 50 Building Code 1992 Section 8 Stone Area A= Q/B 1992 Section 8 Required Stone Area= 105 sq. m 1992 Section 8 L= 11.0 m 10.0 m W= 10.0 m 00 sq. m Minimum sand depth = 600mm OBC 8.7.7.1 (4b) Minimum stone depth = 300mm 0BC 8.7.7.1 (6B)	Total San Flow Q	5260 L/day				
Stone Area A= Q/B 1992 Section 8 Required Stone Area= 105 sq. m 100 m L= 11.0 m 10.0 m W= 10.0 m 08C 8.7.7.1 (4b) Minimum stone depth = 300mm OBC 8.7.7.1 (6B)	В	50				Building Code Act
Required Stone Area= 105 sq. m L= 11.0 m W= 10.0 m Provided Stone Area= 110.0 sq. m Minimum sand depth = 600mm Minimum stone depth = 300mm	Stone Area A=	Q/B				1992 Section 8.7.7.
L= 11.0 m W= 10.0 m Provided Stone Area= 110.0 sq. m Minimum sand depth = 600mm OBC 8.7.7.1 (4b) Minimum stone depth = 300mm OBC 8.7.7.1 (6B)	Required Stone Area=	105 sq. m				
W=10.0 mProvided Stone Area=110.0 sq. mMinimum sand depth = 600mmOBC 8.7.7.1 (4b)Minimum stone depth = 300mmOBC 8.7.7.1 (6B)	L=	11.0 m				
Provided Stone Area = 110.0 sq. m Minimum sand depth = 600mm OBC 8.7.7.1 (4b) Minimum stone depth = 300mm OBC 8.7.7.1 (6B)	W=	10.0 m				
Minimum sand depth = 600mm Minimum stone depth = 300mm OBC 8.7.7.1 (6B)	Provided Stone Area=	110.0 sq. m				
Minimum stone depth = 300mm	Minimum sand depth = 600mm					OBC 8.7.7.1 (4b)
	Minimum stone depth = 300mm	1				OBC 8.7.7.1 (6B)

GAS BAR	2795.0 sq ft	
	259.66 sq m	
TOTAL GFA	2795.0 sq ft	
	259.66 sq m	

APPENDIX B

Water and Septic Calculations

TOWN PL RE	OF CALEDON ANNING CEIVED						
Jul	15, 20 CROZIER &ASSOCIATES Consulting Engineers	Project: Project No.:	10819 Highway 9 1651-5095	Design by: Check by:	KW MC	Date: Updated:	2019-08-23 2020-03-13
		WATER	DEMAND CALC 10819	CULATIONS (OBC and Regi Highway 9, Caledon	on of Pee	èl)	
							References/Notes
	PROPOSED WATER DEMAND						Building Code Act, 1992 Table 8.2.1.3.B. (See Sanitary Flow)
	Commercial Average	e Daily Demand	5260	L/d			Calculations)
	PEAKING FACTORS						
	Maximum Daily Demand:	1.40					Region of Peel Design Criteria Manual -
	Peak Hour Demand:	3.00					Watermain Design
	FLOWS		(1.7c)	I			Demands
		(L/UUy)	(L/S)				
	Average Daily Demand:	5260	0.06				
	Maximum Daily Demand:	7364	0.09				
	Peak Hour Demand:	15780	0.18				

N:\1600\1651-Lions Group Inc\5095-10795&10819 Highway 9\Design\Civil_Water\2019.08.21 Sanitary & Septic

	OZIER SSUCIATES	10819 Highwa Fire Protection CFCA File: 16	y 9 n Volume Calculation 51-5095	Date: 2019-08-30 Design: KW Check: JH
Water Supply fo	or Public Fire P ers Survey	Protection - 1999 Part II - Guide	e for Determination of Required	Fire Flow
1. An estimate c	of fire flow required	l for a given area may	be determined by the formula:	
where	F = the required	F = 220 * C * sqrt A fire flow in litres per r	ninute	
	C = coefficient re = = =	elated to the type of cr = 1.5 for r = 1.0 for r = 0.8 for r = 0.6 for r	onstruction: wood frame construction (structure e ordinary construction (brick or other r non-combustible construction (unprol irre-resistive construction (fully protect	essentially all combustible) nasonry walls, combustible floor and interio ected metal structural components) ted frame, floors, roof)
	A = The total flo 50 percent b	or area in square met below grade) in the bu	res (including all storeys, but excluiilding considered.	uding basements at least
Proposed Bu	uildings			
C =	1.0	Building Area = Assume ordinary co	260.0 sq.m nstruction	
Therefore	e F = 3,547	′ L/min		
Fir	e flow determined 30,000 30,000 25,000 25,000	above shall not exce) L/min for wood fram) L/min for ordinary co) L/min for non-combu) L/min for fire-resistiv	ed: e construction onstruction ustible construction re construction	
2. Values obtain be increased	ed in No. 1 may b by up to 25% surc	e reduced by as much charge for occupancie	n as 25% for occupancies having s having a high fire hazard.	ow contents fire hazard or may
Non-Combus Limited Combus Combus	stible -25% stible -15% stible 0%	6 6 (No Change)	Free Burning Rapid Burning 2	5% 25%
Non-Combus	tible		-25%	
	-887 2,661	′ L/min <i>L/min</i>		
Note: Flow de	etermined shall no	t be less than 2,000 L	/min	
3. Sprinklers - The credit for NFPA sprinkle	The value obtaine the system will be er standards.	ed in No. 2 above may a maximum of 30% t	rbe reduced by up to 50% for com for an adequately designed syster	plete automatic sprinkler protection. n conforming to NFPA 13 and other
As	part of this anal	ysis, building is ass	umed to have no sprinkler prote	ection (no reduction),

	NG							
Fire Protection		·						
Fire Protection	(<mark>ay</mark> 9)						Date: 20	019-08-30
CECA Ellas 1	on Volume Calc	ulation					Designed By: K	W
CECA FILE. I	651-5095						Checked By: J	H Pa
Jul 15. 2()20 ——							
Water Supply	y for Public Fire P	rotection - 19	99					
Fire Underw	riters Survey							
		Part II - G	uide for Deter	mination o	of Require	d Fire Flow	1	
4. Exposure	- To the value obtaine	ed in No. 2, a per	centage should	be added	for structu	es exposed	within 45 metres	
by the fire	area under considera	ation. The percer	ntage shall dep	end upon th	ne height, a	area, and co	nstruction of the	
building(s) being exposed, the s	separation, openi	ngs in the expo	sed buildin the buildir	g(s), the le	ngth and he	eight of exposure,	
exposed t	ouilding(s) and the effe	ect of hillside loca	ations on the po	ssible spre	ad of fire.	eu, ine occ	upancy of the	
		-						
	Separation	Charge	Separation	<u> </u>	harge			
	0 to 3 m	25%	20.1 to 30 m	1	0% %			
	10.1 to 20 m	20% 15%	30.1 10 45 11	5	70			
			-1					
Eveneed	huildinga							
Exposed	buildings		Charge Su	charge				
Name		Distance (m)	(%) (L/s	s)				
North	N/A			0.0				
South	N/A N/A			0.0				
West	Adjacent Dwelling	40	5%	221.7				
				222 L	/min Surc	harge		
							Required Duratio	on of Fire Flow
Determin	e Required Fire Flow	V					Flow Required	Duration (bours)
	No.1	3.547	,				2.000 or less	1.0
	No. 2	-887	' reduction				3,000	1.2
	No. 3	в с) reduction				4,000	1.5
	No. 4	<u>222</u>	<pre>surcharge</pre>				5,000	1.7
	Poquirod Flow	2 002) /min				6,000	2.0
Rounded to	nearest 1000 L/min:	: 3.000)L/min or		50.0 L/s		10,000	2.0
Tot	al Volume Required:	225000) L		793 US	GPM	12,000	2.5
	· · ·						14,000	3.0
							16,000	3.5
							18,000	4.0
							20,000	4.5
							22,000	0.0
							24.000	5.5
							24,000 26,000	5.5 6.0
							24,000 26,000 28,000	5.5 6.0 6.5
							24,000 26,000 28,000 30,000	5.5 6.0 6.5 7.0
							24,000 26,000 28,000 30,000 32,000	5.5 6.0 6.5 7.0 7.5
							24,000 26,000 28,000 30,000 32,000 34,000 36,000	5.5 6.0 6.5 7.0 7.5 8.0
							24,000 26,000 28,000 30,000 32,000 34,000 36,000 38,000	5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0

TOWN OF CALEDON

* Commensurate with a 1.2 Metre burial over the top slab in firm soil away from any area of vehicular traffic.

For recommended installation procedures refer to Wilkinson Installation Guidelines and Lifting and Assembly Instructions.

APPENDIX C

Stormwater Management Calculations

TOWN OF CALEDON PLANNING RECEIVED

Jul 15, 2020

Project: 10819 Highway 9 Project No.: 1651-5095 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Created By: KW -----

Date: 2019-08-21
 Created By: KW
 Date: 2019-08-21

 Checked By: JB
 Updated: 2020-03-13

Modified Rational Calculations - Input Parameters

- - - - -_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -----

Storm Data:

мто

Time of Concentrati	T _c =	0.16667	min	=	
Return Period	A	В	С	l (mm/hr)	Equations:
2 yr	22.00	-0.70	0.00	76.98	
5 yr	29.10	-0.70	0.00	101.82	
10 yr	33.80	-0.70	0.00	118.26	
25 yr	39.70	-0.70	0.00	138.91	Q = (
50 yr	44.10	-0.70	0.00	154.30	post
100 yr	48.40	-0.70	0.00	169.35	

=	•	10 mins
Equa	tior	15:
		Intensity
		i(T _d) = A*T^B
		Peak Flow
	a	$R_{post} = 0.0028 \bullet C_{post} \bullet i(T_d) \bullet A$

Pre - Development Conditions						
Catchment	Land Use	Area (ha)	Area (m²)	С	Weighted Average C ¹	
100	Pervious	0.39	3938	0.25	0.15	
100	Impervious	0.18	1801	0.9	0.24	
101 (External)	Pervious	0.02	247	0.25	0.01	
102	Pervious	0.00	14.35	0.25	0.00	
102	Impervious	0.03	296.65	0.9	0.04	
	Total	0.63	6297	-	0.44	
103	Pervious	0.03	314	0.25	0.01	
(uncontrolled)	Impervious	0.01	57	0.9	0.01	
Total S	ite	0.67	6668	-	0.46	
Total Site (Minus MTO Setback)		0.53	5293	-	0.46	

Post - Development Conditions								
Catchment	Land Use	Area (ha)	Area (m ²)	С	Weighted Average C			
	Pervious	0.30	2975	0.25	0.18			
200	Impervious	0.12	1169	0.9	0.25			
	Total	0.41	4144	-	0.43			
201 (External)	Pervious	0.02	247	0.25	0.25			
	Total	0.02	4391	-	0.25			
202 (Roof)	Impervious	0.03	260	0.9	0.90			
203 (Uncontrolled)	Pervious	0.05	528	0.25	0.25			
204 (Uncontrolled)	Pervious	0.01	114	0.25	0.25			
Total Site		0.53	5293	-	0.43			

TOWN OF CALEDON PLANNING RECEIVED

Jul 15, 2020

CROZIER &ASSOCIATES Consulting Engineers Project No.: 1651-5095 Created By: KW Checked By: JB

Date: 2019-08-21 Updated: 2020-03-13

Modified Rational Calculations - Peak Flows Summary

			Peak Flows (m ³ /s)			
Return Period	Adjusted C _{pre}	Adjusted C _{post}	Q _{pre}	Q _{unc}	Q _{post}	Q _{total}
2 yr	0.460	0.425	0.052	0.003	0.046	0.047
5 yr	0.460	0.425	0.069	0.005	0.061	0.062
10 yr	0.460	0.425	0.081	0.005	0.071	0.072
25 yr	0.460	0.425	0.095	0.006	0.083	0.084
50 yr	0.460	0.425	0.105	0.007	0.093	0.094
100 yr	0.460	0.425	0.115	0.008	0.102	0.103

Equations:

Peak Flow $\mathbf{Q}_{post} = \mathbf{0.0028} \bullet \mathbf{C}_{post} \bullet \mathbf{i}(\mathbf{T}_{d}) \bullet \mathbf{A}$ Rooftop Area: Rooftop Release Rate: Rooftop Flowrate: 0.03 ha 0.042 m³/s/ha 0.0011 m³/s

 Project:
 10819 Highway 9
 Created By:
 KW
 Date:
 2019-08-21

 ject No.:
 1651-5095
 >hecked By:
 JB
 Updated:
 2020-03-13
 Project No.: 1651-5095

.

Modified Rational Calculations - 100-Year Storm Event

Control Criteria

100 yr: Control Post-Development Peak Flows to Pre-Development Peak Flow

100 yr: Uncontrolled Post-Development Flow:

0.008 Q_{post} = m³/s

100 yr: Pre-Development Flow:

Q_{pre} = 0.115 m³/s

	Storage Volu	me Determin	ation		
T _d (min)	i (mm/hr)	T _d (sec)	Q _{Uncont} (m ³ /s)	S_d (m ³)	
5	274.91	300	0.173	0.1	1
10	169.35	600	0.107	-5.2	1
15	127.55	900	0.080	-14.2	1
20	104.32	1200	0.066	-25.0	1 🕇
25	89.25	1500	0.056	-36.8	Discharge
30	78.57	1800	0.050	-49.4	1
35	70.55	2100	0.044	-62.4	
40	64.26	2400	0.041	-75.9	
45	59.18	2700	0.037	-89.7	$ \qquad \qquad$
50	54.98	3000	0.035	-103.8	
55	51.44	3300	0.032	-118.1	
60	48.40	3600	0.031	-132.6	T _c T _d ^{Time}
65	45.77	3900	0.029	-147.2	
70	43.46	4200	0.027	-162.0	
75	41.41	4500	0.026	-176.9]
80	39.58	4800	0.025	-191.9]
85	37.94	5100	0.024	-207.0]
Required Stor	age Volume:			0.1]

Peak Flow	
$Q_{post} = 0.0028 \bullet C_{post} \bullet i(T_d) \bullet A$	

Storage $S_{d} = Q_{post} \bullet T_{d} - Q_{target} (T_{d} + T_{c}) / 2$

Project: 10819 Highway 9 **Project No.:** 1651-5095

Created By: KW Checked By: JB

Date: 2019-08-21 Updated: 2020-03-13

Modified Rational Calculations - 50-Year Storm Event

Control Criteria

50 yr: Control Post-Development Peak Flows to Pre-Development Peak Flow

50 yr: Uncontrolled Post-Development Flow:

 $Q_{post} = 0.003 \text{ m}^3/\text{s}$

50 yr: Pre-Development Flow:

 $Q_{pre} = 0.105 \text{ m}^{3}/\text{s}$

	Storage Volu	ıme Determir			
T _d (min)	i (mm/hr)	T _d (sec)	Q _{Uncont} (m ³ /s)	S _d (m ³)	
5	250.49	300	0.158	0.0	
10	154.30	600	0.097	-4.7	
15	116.22	900	0.073	-12.9	1
20	95.05	1200	0.060	-22.8	
25	81.32	1500	0.051	-33.5	Discharge
30	71.59	1800	0.045	-45.0	
35	64.28	2100	0.041	-56.9	
40	58.55	2400	0.037	-69.2	
45	53.92	2700	0.034	-81.8	Q_a
50	50.09	3000	0.032	-94.6	
55	46.87	3300	0.030	-107.6	
60	44.10	3600	0.028	-120.8	T _c T _d ^{Time}
65	41.70	3900	0.026	-134.1	
70	39.60	4200	0.025	-147.6	
75	37.73	4500	0.024	-161.2	
80	36.07	4800	0.023	-174.9	
85	34.57	5100	0.022	-188.6	
Required Stor	age Volume:			0.0	
-	-			-	•

Peak Flow $Q_{post} = 0.0028 \bullet C_{post} \bullet i(T_d) \bullet A$

Storage $S_d = Q_{post} \bullet T_d - Q_{target} (T_d + T_c) / 2$

Project: 10819 Highway 9 Project No.: 1651-5095

 Created By: KW
 Date: 2019-08-21

 Checked By: JB
 Updated: 2020-03-13

_ _ _ _ _ _ _ _ _ _ _ _ _

Modified Rational Calculations - 25-Year Storm Event

Control Criteria

25 yr: Control Post-Development Peak Flows to Pre-Development Peak Flow

25 yr: Uncontrolled Post-Development Flow:

0.083 Q_{post}= m³/s

25 yr: Pre-Development Flow:

Q_{pre}= 0.095 m³/s

	Storage Volu	me Determin			
T _d (min)	i (mm/hr)	T _d (sec)	Q _{Uncont} (m ³ /s)	S_d (m ³)	
5	225.50	300	0.142	0.0	
10	138.91	600	0.088	-4.3	
15	104.62	900	0.066	-11.7	
20	85.57	1200	0.054	-20.5	↑
25	73.21	1500	0.046	-30.2	Discharge
30	64.45	1800	0.041	-40.5	
35	57.86	2100	0.036	-51.2	
40	52.71	2400	0.033	-62.3	
45	48.54	2700	0.031	-73.6	$ \rangle Q_a$
50	45.10	3000	0.028	-85.2	
55	42.19	3300	0.027	-96.9	
60	39.70	3600	0.025	-108.8	T _c T _d ^{Time}
65	37.54	3900	0.024	-120.8	
70	35.64	4200	0.022	-132.9	
75	33.97	4500	0.021	-145.1	
80	32.47	4800	0.020	-157.4]
85	31.12	5100	0.020	-169.8]
Required Stor	rage Volume:	-	-	0.0]

Peak Flow	
$Q_{post} = 0.0028 \bullet C_{post} \bullet i(T_d) \bullet A$	

Storage $S_d = Q_{post} \bullet T_d - Q_{target} (T_d + T_c) / 2$

Project: 10819 Highway 9 Project No.: 1651-5095

 Created By: KW
 Date: 2019-08-21

 Checked By: JB
 Updated: 2020-03-13
 _ _ _ _ _ _ _ _ _ _

Modified Rational Calculations - 10-Year Storm Event

Control Criteria

10 yr: Control Post-Development Peak Flows to Pre-Development Peak Flow

10 yr: Uncontrolled Post-Development Flow:

0.071 Q_{post} = m³/s

10 yr: Pre-Development Flow:

Q_{pre} = 0.081 m³/s

	Storage Volu	me Determin			
T _d (min)	i (mm/hr)	T _d (sec)	Q _{Uncont} (m ³ /s)	S_d (m ³)	
5	191.98	300	0.121	0.0	1
10	118.26	600	0.075	-3.6	1
15	89.08	900	0.056	-9.9	1
20	72.85	1200	0.046	-17.4	1 🕇
25	62.33	1500	0.039	-25.7	Discharge
30	54.87	1800	0.035	-34.5	1
35	49.27	2100	0.031	-43.6	
40	44.88	2400	0.028	-53.0	
45	41.33	2700	0.026	-62.7	$ / Q_a$
50	38.39	3000	0.024	-72.5	
55	35.92	3300	0.023	-82.5	
60	33.80	3600	0.021	-92.6	T _c T _d ^{Time}
65	31.96	3900	0.020	-102.8]
70	30.35	4200	0.019	-113.1	
75	28.92	4500	0.018	-123.5	
80	27.64	4800	0.017	-134.0]
85	26.50	5100	0.017	-144.6]
Required Stor	age Volume:			0.0]

Peak Flow	
$Q_{post} = 0.0028 \bullet C_{post} \bullet i(T_d) \bullet A$	

Storage $S_{d} = Q_{post} \bullet T_{d} - Q_{target} (T_{d} + T_{c}) / 2$

Project: 10819 Highway 9 Project No.: 1651-5095

 Created By: KW
 Date: 2019-08-21

 Checked By: JB
 Updated: 2020-03-13

Modified Rational Calculations - 5-Year Storm Event

Control Criteria

5 yr: Control Post-Development Peak Flows to Pre-Development Peak Flow

5 yr: Uncontrolled Post-Development Flow:

 $Q_{post} =$ 0.061 m³/s

5 yr: Pre-Development Flow:

Q_{pre}= 0.069 m³/s

	Storage Volu	me Determin			
T _d (min)	i (mm/hr)	T _d (sec)	Q _{Uncont} (m ³ /s)	S_d (m ³)	
5	165.29	300	0.104	0.0	1
10	101.82	600	0.064	-3.1	1
15	76.69	900	0.048	-8.5	1
20	62.72	1200	0.040	-15.0	1 🕇
25	53.66	1500	0.034	-22.1	Discharge
30	47.24	1800	0.030	-29.7	1
35	42.41	2100	0.027	-37.5	
40	38.63	2400	0.024	-45.7	
45	35.58	2700	0.022	-54.0	
50	33.06	3000	0.021	-62.4	
55	30.92	3300	0.020	-71.0	
60	29.10	3600	0.018	-79.7	T _c T _d ^{Time}
65	27.52	3900	0.017	-88.5	
70	26.13	4200	0.016	-97.4	1
75	24.90	4500	0.016	-106.4	1
80	23.80	4800	0.015	-115.4	1
85	22.81	5100	0.014	-124.5	1
Required Stor	age Volume:		-	0.0	1

Peak Flow	
$Q_{post} = 0.0028 \bullet C_{post} \bullet i(T_d) \bullet A$	

Storage $S_d = Q_{post} \bullet T_d - Q_{target} (T_d + T_c) / 2$

Project: 10819 Highway 9 Project No.: 1651-5095

 Created By: KW
 Date: 2019-08-21

 Checked By: JB
 Updated: 2020-03-13

Modified Rational Calculations - 2-Year Storm Event

Control Criteria

2 yr: Control Post-Development Peak Flows to Pre-Development Peak Flow

2 yr: Uncontrolled Post-Development Flow:

Q_{post}= 0.046 m³/s

2 yr: Pre-Development Flow:

Q_{pre} = 0.052 m³/s

	Storage Volu	me Determin			
T_d (min)	i (mm/hr)	T _d (sec)	Q _{Uncont} (m ³ /s)	S_d (m ³)	
5	124.96	300	0.079	0.0	
10	76.98	600	0.049	-2.4	
15	57.98	900	0.037	-6.5	1
20	47.42	1200	0.030	-11.4	1 +
25	40.57	1500	0.026	-16.7	Discharge
30	35.71	1800	0.023	-22.4	
35	32.07	2100	0.020	-28.4	
40	29.21	2400	0.018	-34.5	
45	26.90	2700	0.017	-40.8	$\left \right \left \right \left \right\rangle Q_{a}$
50	24.99	3000	0.016	-47.2	
55	23.38	3300	0.015	-53.7	
60	22.00	3600	0.014	-60.3	T _c T _d ^{Time}
65	20.80	3900	0.013	-66.9	
70	19.75	4200	0.012	-73.6	
75	18.82	4500	0.012	-80.4	
80	17.99	4800	0.011	-87.2]
85	17.25	5100	0.011	-94.1]
quired Stor	age Volume:			0.0	1

Peak Flow	
$Q_{post} = 0.0028 \bullet C_{post} \bullet i(T_d) \bullet A$	

Storage $S_d = Q_{post} \bullet T_d - Q_{target} (T_d + T_c) / 2$

TOWN OF CALEDON PLANNING RECEIVED

Jul 15, 2020

CROZIER &ASSOCIATES Consulting Engineers **Project:** 10819 Highway 9 **roject No.:** 1651-5095

 Created By: KW
 Date: 2019-08-21

 Checked By: JB
 Updated: 2020-03-13

Modified Rational Calculations - Summary

_ _ _ _ _ _ _ _ _

	P	Doguirod		
Storm Event (yr)	Pre- Development	Post-Deve (L/	Storage	
	(L/s)	Uncontrolled	Controlled	()
2	0.052	0.003	0.047	0.0
5	0.069	0.005	0.062	0.0
10	0.081	0.005	0.072	0.0
25	0.095	0.006	0.084	0.0
50	0.105	0.007	0.094	0.0
100	0.115	0.008	0.103	0.1

Location summary

These are the locations in the selection.

IDF Curve: 43° 59' 15" N, 79° 47' 45" W (43.987500,-79.795833)

Results

An IDF curve was found.

Coordinate: 43.987500, -79.795833 IDF curve year: 2010

IDF CHRVE: 3 59 \5"₩,79° 47' 45" W (43.987500,-79.795833)

Retrieved: Fri, 30 Aug 2019 20:07:53 GIV T

Data year: 2010 IDF ourve year 2020

Return period	2-yr	5-yr	10-yr	25-yr	50-yr	100-yr
А	22.0	29.1	33.8	39.7	44.1	48.4
В	-0.699	-0.699	-0.699	-0.699	-0.699	-0.699

Statistics

Rainfall intensity (mm hr⁻¹)

Duration	5-min	10-min	15-min	30-min	1-hr	2-hr	6-hr	12-hr	24-hr
2-yr	125.0	77.0	58.0	35.7	22.0	13.6	6.3	3.9	2.4
5-yr	165.3	101.8	76.7	47.2	29.1	17.9	8.3	5.1	3.2
10-yr	192.0	118.3	89.1	54.9	33.8	20.8	9.7	6.0	3.7
25-yr	225.5	138.9	104.6	64.4	39.7	24.5	11.3	7.0	4.3
50-yr	250.5	154.3	116.2	71.6	44.1	27.2	12.6	7.8	4.8
100-yr	274.9	169.3	127.6	78.6	48.4	29.8	13.8	8.5	5.2

Rainfall depth (mm)

Duration	5-min	10-min	15-min	30-min	1-hr	2-hr	6-hr	12-hr	24-hr
2-yr	10.4	12.8	14.5	17.9	22.0	27.1	37.7	46.5	57.3
5-yr	13.8	17.0	19.2	23.6	29.1	35.9	49.9	61.5	75.7
10-yr	16.0	19.7	22.3	27.4	33.8	41.6	58.0	71.4	88.0
25-yr	18.8	23.2	26.2	32.2	39.7	48.9	68.1	83.9	103.3
50-yr	20.9	25.7	29.1	35.8	44.1	54.3	75.6	93.2	114.8
100-yr	22.9	28.2	31.9	39.3	48.4	59.6	83.0	102.3	126.0

Terms of Use

You agree to the Terms of Use of this site by reviewing, using, or interpreting these data.

Ontario Ministry of Transportation | Terms and Conditions | About Last Modified: September 2016

Stormceptor[®]EF Sizing Report

Jul 15, 2020

ESTIMATED NET ANNNUAL SEDIMENT (TSS) LOAD REDUCTION STORMCEPTOR®

Province :	Ontario		Pro
City :	Caledon		Pro
Nearest Rainfall Station :	TORONTO CENTRAL		Des
NCDC Rainfall Station Id :	0100		Des
Years Of Rainfall Data :	18		Des
			EOF
Drainage Area (ha) :	0.64		EOF
% Imperviousness :	48.0		EOF
Runoff Co	efficient 'c' : 0.58		
Partical Size Distribution :	CA ETV		
Target TSS Removal (%) :	50.0		
Require Hydrocarbon Spill Ca	pture?	Yes	
Upstream Flow Control? No			
Required Water Quality Runo	ff Volume Capture (%) :		
Peak Conveyance (maximum)	Flow Rate (L/s) :		
Site Sediment Transport Rate	(kg/ha/vr):		

Project Name :	10819 Highway 9
Project Number :	19540
Designer Name :	Katrina Weel
Designer Company :	CF Crozier & Associates
Designer Email/Phone :	kweel@cfcrozier.ca
EOR Name :	
EOR Company :	
EOR Email/Phone :	

Net Annual Sediment (TSS) Load Reduction Sizing Summary					
Stormceptor Model	TSS Removal Provided (%)				
EFO4	63				
EFO6	67				
EFO8	69				
EFO10	70				
EFO12	70				

Recommended Stormceptor EFO Model : EFO4

Estimated Net Annual Sediment (TSS) Load Reduction (%) : 63

Stormceptor[®] EF Sizing Report

Jul 15, 2020

THIRD-PARTY TESTING AND VERIFICATION

Stormceptor® EF and Stormceptor® EFO are the latest evolutions in the Stormceptor® oil-grit separator (OGS) technology series, and are designed to remove a wide variety of pollutants from stormwater and snowmelt runoff. These technologies have been third-party tested in accordance with the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators and performance has been third-party verified in accordance with the ISO 14034 Environmental Technology Verification (ETV) protocol.

PERFORMANCE

► Stormceptor® EF and EFO remove stormwater pollutants through gravity separation and floatation, and feature a patentpending design that generates positive removal of total suspended solids (TSS) throughout each storm event, including highintensity storms. Captured pollutants include sediment, free oils, and sediment-bound pollutants such as nutrients, heavy metals, and petroleum hydrocarbons. Stormceptor is sized to remove a high level of TSS from the frequent rainfall events that contribute the vast majority of annualrunoff volume and pollutant load. The technology incorporates an internal bypass to convey excessive stormwater flows from high-intensity storms through the device without resuspension and washout (scour) of previously captured pollutants. Proper routine maintenance ensures high pollutant removal performance and protection of downstream waterwavs.

PARTICAL SIZE DISTRIBUTION (PSD)

► The **Canadian ETV PSD** shown in the table below was used, or in part, for this sizing. This is the identical PSD that is referenced in the Canadian ETV *Procedure for Laboratory Testing of Oil-Grit Separators* for both sediment removal testing and scour testing. The Canadian ETV PSD contains a wide range of particle sizes in the sand and silt fractions, and is considered reasonably representative of the particle size fractions found in typical urban stormwater runoff.

Particle	Percent Less	Particle Size	Dercent	
Size (µm)	Than	Fraction (µm)	Percent	
1000	100	500-1000	5	
500	95	250-500	5	
250	90	150-250	15	
150	75	100-150	15	
100	60	75-100	10	
75	50	50-75	5	
50	45	20-50	10	
20	35	8-20	15	
8	20	5-8	10	
5	10	2-5	5	
2	5	<2	5	

TOV PLANNING RECEIVED

Stormceptor[®]EF Sizing Report

Jul 15 RainFall Intensity (mm / hr)	, 2020 Percent Rainfall Volume (%)	Cumulative Rainfall Volume (%)	Flow Rate (L/s)	Flow Rate (L/min)	Surface Loading Rate (L/min/m²)	Removal Efficiency (%)	Incremental Removal (%)	Cumulative Removal (%)
1	53.7	53 7	1.05	63.0	52.0	69	36.9	36.9
2	16.0	70.6	2.00	126.0	105.0	63	10.5	47.5
2	8.6	70.0	3.14	188.0	157.0	58	5.0	52 5
3	6.0	95.2	J.14 4 10	251.0	200.0	50 E4	2.4	52.5
4	0.4	0.00	4.18	251.0	209.0	54	3.4	53.9
5	3.1	88.7	5.23	314.0	262.0	52	1.0	57.5
5	2.0	90.7	0.28	377.0	314.0	51	1.0	58.6
/	1.5	92.2	7.32	439.0	366.0	49	0.7	59.3
8	0.7	92.9	8.37	502.0	418.0	48	0.3	59.6
9	1.8	94.7	9.42	565.0	471.0	46	0.8	60.4
10	1.3	96.0	10.46	628.0	523.0	44	0.6	61.0
11	0.9	96.9	11.51	690.0	575.0	43	0.4	61.4
12	0.4	97.3	12.55	753.0	628.0	42	0.2	61.6
13	0.4	97.7	13.60	816.0	680.0	42	0.2	61.7
14	0.4	98.1	14.65	879.0	732.0	41	0.2	61.9
15	0.2	98.3	15.69	942.0	785.0	41	0.1	62.0
16	0.0	98.3	16.74	1004.0	837.0	41	0.0	62.0
17	0.0	98.3	17.78	1067.0	889.0	41	0.0	62.0
18	0.2	98.5	18.83	1130.0	942.0	40	0.1	62.1
19	0.0	98.5	19.88	1193.0	994.0	40	0.0	62.1
20	0.0	98.5	20.92	1255.0	1046.0	39	0.0	62.1
21	0.0	98.5	21.97	1318.0	1098.0	39	0.0	62.1
22	0.0	98.5	23.02	1381.0	1151.0	38	0.0	62.1
23	0.0	98.5	24.06	1444.0	1203.0	37	0.0	62.1
24	0.4	98.9	25.11	1506.0	1255.0	36	0.1	62.2
25	0.0	98.9	26.15	1569.0	1308.0	36	0.0	62.2

TOV**SNOF CALEDON** PLANNING RECEIVED

Stormceptor[®]EF Sizing Report

,	RainFell Intensity (mm / hr)	Percent Bainfal Volume (%)	Cumulative Rainfall Volume (%)	Flow Rate (L/s)	Flow Rate (L/min)	Surface Loading Rate (L/min/m ²)	Removal Efficiency (%)	Incremental Removal (%)	Cumulative Removal (%)
	26	0.2	99.1	27.20	1632.0	1360.0	35	0.1	62.3
	27	0.0	99.1	28.25	1695.0	1412.0	34	0.0	62.3
	28	0.0	99.1	29.29	1758.0	1465.0	33	0.0	62.3
	29	0.2	99.3	30.34	1820.0	1517.0	32	0.1	62.4
	30	0.0	99.3	31.39	1883.0	1569.0	30	0.0	62.4
	31	0.0	99.3	32.43	1946.0	1622.0	29	0.0	62.4
	32	0.2	99.5	33.48	2009.0	1674.0	29	0.1	62.4
	33	0.2	99.7	34.52	2071.0	1726.0	28	0.1	62.5
	34	0.0	99.7	35.57	2134.0	1778.0	27	0.0	62.5
	35	0.0	99.7	36.62	2197.0	1831.0	26	0.0	62.5
	36	0.0	99.7	37.66	2260.0	1883.0	25	0.0	62.5
	37	0.0	99.7	38.71	2322.0	1935.0	25	0.0	62.5
	38	0.0	99.7	39.75	2385.0	1988.0	24	0.0	62.5
	39	0.0	99.7	40.80	2448.0	2040.0	23	0.0	62.5
	40	0.0	99.7	41.85	2511.0	2092.0	23	0.0	62.5
	41	0.0	99.7	42.89	2574.0	2145.0	22	0.0	62.5
	42	0.0	99.7	43.94	2636.0	2197.0	22	0.0	62.5
	43	0.0	99.7	44.99	2699.0	2249.0	21	0.0	62.5
	44	0.0	99.7	46.03	2762.0	2302.0	21	0.0	62.5
	45	0.0	99.7	47.08	2825.0	2354.0	20	0.0	62.5
	46	0.0	99.7	48.12	2887.0	2406.0	20	0.0	62.5
	47	0.2	99.9	49.17	2950.0	2458.0	19	0.0	62.5
	48	0.0	99.9	50.22	3013.0	2511.0	19	0.0	62.5
	49	0.0	99.9	51.26	3076.0	2563.0	19	0.0	62.5
	50	0.0	99.9	52.31	3139.0	2615.0	18	0.0	62.5
					Estimated Net A	Annual Sedim	ent (TSS) Loa	d Reduction =	62 %

Stormceptor[®]EF Sizing Report

				Maximum Pip	e Diamete	r / Peak C	Conveyance			
EF / EFO			iameter	Min Angle Inlet / Outlet Pipes	Max Inle Diame	et Pipe eter	Max Out Diam	et Pipe eter	Peak Cor Flow	nveyance Rate
		(m)	(ft)		(mm)	(in)	(mm)	(in)	(L/s)	(cfs)
	EF4 / EFO4	1.2	4	90	609	24	609	24	425	15
	EF6 / EFO6	1.8	6	90	914	36	914	36	990	35
	EF8 / EFO8	2.4	8	90	1219	48	1219	48	1700	60
	EF10 / EFO10	3.0	10	90	1828	72	1828	72	2830	100
	EF12 / EF012	3.6	12	90	1828	72	1828	72	2830	100

SCOUR PREVENTION AND ONLINE CONFIGURATION

► Stormceptor® EF and EFO feature an internal bypass and superior scour prevention technology that have been demonstrated in third-party testing according to the scour testing provisions of the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators, and the exceptional scour test performance has been third-party verified in accordance with the ISO 14034 ETV protocol. As a result, Stormceptor EF and EFO are approved for online installation, eliminating the need for costly additional bypass structures, piping, and installation expense.

DESIGN FLEXIBILITY

► Stormceptor® EF and EFO offers design flexibility in one simplified platform, accepting stormwater flow from a single inlet pipe or multiple inlet pipes, and/or surface runoff through an inlet grate. The device can also serve as a junction structure, accommodate a 90-degree inlet-to-outlet bend angle, and can be modified to ensure performance in submerged conditions.

OIL CAPTURE AND RETENTION

► While Stormceptor® EF will capture and retain oil from dry weather spills and low intensity runoff, **Stormceptor® EFO** has demonstrated superior oil capture and greater than 99% oil retention in third-party testing according to the light liquid reentrainment testing provisions of the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators**. Stormceptor EFO is recommended for sites where oil capture and retention is a requirement.

TOV**SNOF CALE**DON PLANNING RECEIVED

Stormceptor[®] EF Sizing Report

INLET-TO-OUTLET DROP

Elevation differential between inlet and outlet pipe inverts is dictated by the angle at which the inlet pipe(s) enters the unit.

0(degree)-45(degree):The inlet pipe is 1-inch (25mm) higher than the outlet pipe. 45(degree)-90(degree):The inlet pipe is 2-inches (50mm) higher than the outlet pipe.

HEAD LOSS

The head loss through Stormceptor EF is similar to that of a 60-degree bend structure. The applicable K value for calculating minor losses through the unit is 1.1. For submerged conditions the applicable K value is 3.0.

· · · · · · · · · · · · · · · · · · · ·												
Stormceptor EF / EFO	Moo Diam	del eter	Depth Pipe In Sump	(Outlet vert to Floor)	Oil Vo	il Volume Recommende Sediment Maintenance Dep		mmended Maximum diment Sediment Volume * ance Depth *		Maximum Sediment Mass **		
	(m)	(ft)	(m)	(ft)	(L)	(Gal)	(mm)	(in)	(L)	(ft³)	(kg)	(lb)
EF4 / EFO4	1.2	4	1.52	5.0	197	52	203	8	1190	42	1904	5250
EF6 / EFO6	1.8	6	1.93	6.3	348	92	305	12	3470	123	5552	15375
EF8 / EFO8	2.4	8	2.59	8.5	545	144	610	24	8780	310	14048	38750
EF10 / EFO10	3.0	10	3.25	10.7	874	231	610	24	17790	628	28464	78500
EF12 / EF012	3.6	12	3.89	12.8	1219	322	610	24	31220	1103	49952	137875

Pollutant Canacity

*Increased sump depth may be added to increase sediment storage capacity

** Average density of wet packed sediment in sump = 1.6 kg/L (100 lb/ft³)

Feature	Benefit	Feature Appeals To	
Patent-pending enhanced flow treatment	Superior, verified third-party	Pegulator, Specifying & Design Engineer	
and scour prevention technology	performance	Regulator, specifying & besign Engineer	
Third-party verified light liquid capture	Proven performance for fuel/oil hotspot	Regulator, Specifying & Design Engineer,	
and retention for EFO version	locations	Site Owner	
Functions as bend, junction or inlet	Design flexibility	Specifying & Design Engineer	
Minimal drop between inlet and outlet	Site installation ease	Contractor	
winning arop between met and outlet	Site instantation case	contractor	
Large diameter outlet riser for inspection and maintenance	Easy maintenance access from grade	Maintenance Contractor & Site Owner	

STANDARD STORMCEPTOR EF/EFO DRAWINGS

For standard details, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef STANDARD STORMCEPTOR EF/EFO SPECIFICATION

For specifications, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

Stormceptor[®]EF Sizing Report

Jul 15, 20 and of TSS Removal vs Surface Loading Rate Based on Third-Party Test Results

		Stormeer					
SLR (L/min/m²)	TSS % REMOVAL						
1	70	660	46	1320	48	1980	35
30	70	690	46	1350	48	2010	34
60	67	720	45	1380	49	2040	34
90	63	750	45	1410	49	2070	33
120	61	780	45	1440	48	2100	33
150	58	810	45	1470	47	2130	32
180	56	840	45	1500	46	2160	32
210	54	870	45	1530	45	2190	31
240	53	900	45	1560	44	2220	31
270	52	930	44	1590	43	2250	30
300	51	960	44	1620	42	2280	30
330	50	990	44	1650	42	2310	30
360	49	1020	44	1680	41	2340	29
390	48	1050	45	1710	40	2370	29
420	48	1080	45	1740	39	2400	29
450	48	1110	45	1770	39	2430	28
480	47	1140	46	1800	38	2460	28
510	47	1170	46	1830	37	2490	28
540	47	1200	47	1860	37	2520	27
570	46	1230	47	1890	36	2550	27
600	46	1260	47	1920	36	2580	27
630	46	1290	48	1950	35		

FIGURES

NN Brites	WORKNY 9 OLD MORINAY 9 SITE LOCATION
	KET FLAN SCALE: N.T.S.
e of fire	LEGEND PROPERTY LINE PROPERTY LINE EXISTING STORM SEWER & MANHOLE EXISTING SINGLE / DOUBLE CATCHBASIN PROPOSED STANDPIPE / DRY HYDRANT PROPOSED WELL PROPOSED STORM SEWER & MANHOLE PROPOSED SINGLE / DOUBLE CATCHBASIN PROPOSED SINGLE / DOUBLE CATCHBASIN PROPOSED SANITARY SEWER & MANHOLE
	LAP JOINT DETAIL
	SCALE: N.T.S. EX. PAVEMENT
TO STORM, 6 CONDITIONS AVED AREAS 5 DETAIL	
WITH THE MOST CURRENT VERSION OF THE ELINES, PREPARED BY THE TOWN OF CALEDON RIO PROVINCIAL STANDARDS AND	
RED OUT IN ACCORDANCE WITH THE AND SAFETY ACT AND REGULATIONS FOR	
R TO COMMENCING CONSTRUCTION WITHIN THE UST CONTACT THE FOLLOWING:	1 ISSUED FOR SECOND SUBMISSION 2020/MAY/08 0 ISSUED FOR FIRST SUBMISSION (NOT SUBMITTED) 2019/0CT/28 No. ISSUE / REVISION YYYY/MMM/DD
Y SERVICES	
ISCHARGED TO A LOCATION APPROVED BY THE AND CONSERVATION AUTHORITY PRIOR TO THE LLED PRIOR TO ANY CONSTRUCTION ON THE SITE CONSTRUCTION PERIOD TO THE SATISFACTION OF N AUTHORITY. VIDED FROM THE LIMITS OF ALL SIDEWALKS AND MTHIN THE MUNICIPAL RICHT OF WAY. IF THIS IE RELOCATED AT THE APPLICANT'S EXPENSE. (36H THE PROPOSED ENTRANCE. THROUGH ALL ENTRANCES TO THE SITE AND THE LAKS SHALL BE COMPLETELY REMOVED AND THICKNESS, JOMPG AND 5X TO 7% AIR COMMERCIAL AND INSTITUTIONAL ENTRANCES. IT THE ORIGINAL APPROVED SITE PLAN MUST BE DR APPROVAL PRIOR TO CONSTRUCTION. SOURDED TO SUPPORT AN IB TON VEHICLE. IM MINIMUM OF TOPSOL AND SOD TO THE LIC WORKS AND ENGINEERING DEPARTMENT. HALT DRIVEWAY APRON WITHIN THE MUNICIPAL	ELEVATION NOTE: ELEVATION ARE GEODETC AND ARE REFERRED TO THE TOWN OF CALEDON BENCHMARK No. 0011912U377 ELEVATION = 271.200m LOCAL BENCHMARK: BEARINGS ARE ASTRONOMIC AND ARE REFERRED TO THE NORTH LIMIT OF PART 1, AS SHOWN ON FLAN 43R-20138 HAVING A BEARING OF N72'59'30'W. SURVEY COMPLETED BY AVANTI SURVEYING INC. (2019/JAN/22) REFERENCE No:: 18-278 DISTANCES ARE IN METERS AND MAY BE CONVERTED TO FEET BY DIVIDING BY 0.3048. STEL PLAN NOTES: DESION ELEVENTS ARE BASED ON SITE PLAN BY GSAI INC. DEVELOPMENT CONCEPT PLAN (2019/MAY/23) PROJECT NO:: 972-001 THIS DRAWING IS THE EXCLUSIVE PROPERTY OF C.F. CROZIER & ASSOCIATES INC. AND THE ORTHORY BOST PLAN PART OF IT WITHOUT PRIOR WHITEN CONSENT OF THIS OFFICE IS STICLY PROHIBITED. THE CONTRACTOR SHALL VERIFY ALL DIMENSIONS, LEVELS, AND DATUMS ON SITE AND REPORT ANY DISCREPANCES OR OMISSIONS TO THIS OFFICE PRIOR TO CONSTRUCTION. THIS DRAWING IS THE EXCLUSIVE CROPESTOOD IN CONJUNCTION WITH ALL OTHER PLANS AND DOCUMENTS APULCABLE OT MIS PROVEND ON DISTA CONSTRUCTION. THIS DRAWING IS TO BE READ AND UNDERSTOOD IN CONJUNCTION WITH ALL OTHER PLANS AND DOCUMENTS APULCABLE OT THIS PROVEND AND THE STEL AND REPORT ANY DISCREPANCES OR OMISSIONS TO THIS OFFICE PRIOR TO CONSTRUCTION. THIS DRAWING IS THE EXCLUSIVE CROPESTOOD IN CONJUNCTION WITH ALL OTHER PLANS AND DOCUMENTS APULCABLE OTHIS PROVED AND THE STEL AND THE DRAWING IS TO BE READ AND UNDERSTOOD IN CONJUNCTION WITH ALL OTHER PLANS AND DOCUMENTS APULCABLE OTHIS PROVED FROM TO CONSTRUCTION. THIS DRAWING IS TO BE READ AND UNDERSTOOD IN CONJUNCTION WITH ALL OTHER PLANS AND DOCUMENTS APOLICABLE OTHIS PROVED FROM TO CONSTRUCTION. THIS DRAWING IS THE PROVIDE TO DO TO SCALLE THIS DRAWING. ALL EXISTING UNDERREADURAD UTILITIES TO BE VERIFIED IN THE FIELD BY THE CONTRACTOR PRORT TO CONSTRUCTION.
WITH RESPECT TO THE EXPECTED USAGE. SED WITH THE TOWN.	Project 10819 HIGHWAY 9 TOWN OF CALEDON
ZBA#0000-000	SITE SERVICING PLAN
Stomp ProFESSION Stomp ProFESSION A SHUKLA TOTIB8224 ROF 100188224 ROF 10018824 ROF 100180 ROF 10018024 ROF 100180 ROF 100180 ROF 100180	Drawn J.B. Design K.W. Project No. 1651-5095 Check J.H. Check A.S. Sode 1:300 Design FIG. 2

	HOWNY 9 OF	Z		
	SCALE: N.T.S			
IENT	LEGEND PROPERTY LINE EXISTING CONTOUR (0.5m) EXISTING CONTOUR (1.0m) EXISTING CONTOUR (1.0m) EXISTING DITCH X EXISTING FENCE x215.00 PROPOSED GRADE PROPOSED GRADE FLOW DIRECTION 2.03 PROPOSED RETAINING WALL PROPOSED SLOPE (3:1 MAX.) BUILDING ENTRANCE (PERSONNEL DOOR) PROPOSED MAJOR OVERLAND FLOW DIRECTIN August overland flow directing	ON		
	-O- PROPOSED STANDPIPE / DRY HYDRANT			
EEP WITH THE MOST CURRENT VERSION OF THE ELINES, PREPARED BY THE TOWN OF CALEDON IO PROVINCIAL STANDARDS AND IED OUT IN ACCORDANCE WITH THE AND SAFETY ACT AND REGULATIONS FOR				
TO COMMENCING CONSTRUCTION WITHIN THE				
JST CONTACT THE FOLLOWING:	1 ISSUED FOR SECOND SUBMISSION 2020/M.	AY/08		
	No. ISSUE / REVISION (NOT SUBMITTED) 2019/01	MM/DD		
s				
Y SERVICES SCHARGED TO A LOCATION APPROVED BY THE AND CONSERVATION AUTHORITY PRIOR TO THE	ELEVATION NOTE: ELEVATIONS ARE GEODETIC AND ARE REFERRED TO THE TOWN OF CALEDON BENOMMARK No. 0011912U377			
CONSTRUCTION PERIOD TO THE SATISFACTION OF I AUTHORITY. VIDEO FROM THE LIMITS OF ALL SIDEWALKS AND VIDEO FROM THE LIMITS OF ALL SIDEWALKS AND UTHIN THE MUNICIPAL RIGHT OF WAY. IF THIS E RELOCATED THE APPLICANT'S EXPENSE. GH THE PROPOSED ENTRANCE. THE ORIGINAL ENTRANCES TO THE SITE AND THE ALKS SHALL BE COMPLETELY REMOVED AND THICKNESS, 30MPO AND 5% TO 7% AIR OMMERCIAL AND INSTITUTIONAL ENTRANCES. THE ORIGINAL APPROVED SITE PLAN MUST BE R APPROVAL PRIOR TO CONSTRUCTION. QUIRED TO SUPPORT AN 18 TON VEHICLE. IN MINIMUM OF TOPSOL AND SOD TO THE JIC WORKS AND ENGINEERING DEPARTMENT. IAALT DRIVEWAY APRON WITHIN THE MUNICIPAL	ELEVATION = 271.200m LOCAL BENCHMARK; BEARINGS ARE ASTRONOMIC AND ARE REFERED TO THE NORTH LIMIT OF PART 1, AS SHOWN ON PLAN 43R-20138 HAVING A BEARING OF N72'59'30"W. SURVEY COMPLETED BY AVANTI SURVEYING INC. (2019/JAN/22) REFERENCE NO: 18-278 DISTANCES ARE IN METERS AND MAY BE CONVERTED TO FEET BY DIVIDING BY 0.3048. SITE PLAN NOTES; DESIGN ELEMENTS ARE BASED ON SITE PLAN BY GSAI INC. DEVELOPMENT CONCEPT PLAN (2019/MAY/23) PROJECT NO:: 972-001 DRAMING IS THE EXCLUSIVE PROPERTY OF C.F. CROZIER & ASSOCIATES INC. AND THE REPRODUCTION OF ANY PART OF IT WITHOUT PRIOR WRITTEN CONSENT OF THIS OFFICE IS STICLY PROHIBITED. THE CONTRACTOR SHALL VERIFY ALL DIMENSIONS, LEVELS, AND DATUMS ON SITE AND REPORT ANY DISCREPANCES OR GMISSIONS TO THIS OFFICE PRIOR TO CONSTRUCTION.			
	THIS DRAWING IS TO BE READ AND UNDERSTOOD IN CONJUNCTION WITH ALL OT PLANS AND DOCUMENTS APPLICABLE TO THIS PROJECT. DO NOT SCALE THIS DR	IER AWING.		
WITH RESPECT TO THE EXPECTED USAGE. ED WITH THE TOWN.	ALL EXISTING UNDERGROUND UTILITIES TO BE VERIFIED IN THE FIELD BY THE CONTRACTOR PRIOR TO CONSTRUCTION. Project 10819 HIGHWAY 9 TOWN OF CALEDON			
	REGION OF PEEL			
ZBA#0000-000	Drawing SITE GRADING PLAN			
Stamp Ref ESS (AW) So A SHIKIA TOIB8284 Rol MCE OF ON P	CROZIER CONSULTING ENGINEERS Drawn J.B. Design J.H. Project No. 1651-50 Check J.H. Check A.S. Score 1: 300 Pro. FIG.	95		

TOWN OF CALEDON APPROVED AS NOTED	
THIS APPROVAL CONSTITUTES A GENERAL REVIEW AND DOES NOT CERTIFY DIMENSIONAL ACCURACY.	
THIS APPROVAL IS SUBJECT TO FURTHER CERTIFICATION OF THE "AS_CONSTRUCTED" WORKS BY AEGISTERED PROFESSIONAL ENGINEER /LANDSCAPE ARCHITECT (AS APPRORRIATE) OF THE PROVINCE OF ONTARIO.	Stamp
DATE:	
APPROVED BY:	
DIRECTOR	

	1	ISSUED FOR SECOND SUBMISSION 2020/MAY/08			
	0	ISSUED FOR FIRST SUBMISSION (NOT SUBMITTED) 2019/OCT/28			
	No.	ISSUE / REVISION YYYY/MMM/DD			
	LEUVATIONS ARE ELEVATIONS ARE ELEVATIONS ARE ELEVATIONS ARE ELEVATIONS ARE GEODETIC AND ARE REFERENCED TO THE TOWN OF CALEDON ELEVATION = 271.200m LOCAL BENCHMARK; BERAINGS ARE ASTRONOMIC AND ARE REFFERED TO THE NORTH LIMIT OF PART 1, AS SHOWN ON PLAN 43R-2013B HAVING A BEARING OF N72'59'30'W. SURVEY NOTES; SURVEY COMPLETED BY AVANTI SURVEYING INC. (2019/JAN/22) REFERENCE No: 18-278 DISTANCES ARE IN METERS AND MAY BE CONVERTED TO FEET BY DIVIDING BY 0.3048. SITE PLAN NOTES; DESION ELEMENTS ARE BASED ON SITE PLAN BY GSAI INC. DEVELOPMENT CONCEPT PLAN (2019/JAAY/23) PROJECT No: 972-001 DRAMING NOTES; DESION ELEMENTS ARE BASED ON SITE PLAN BY GSAI INC. DEVELOPMENT CONCEPT PLAN (2019/JAAY/23) PROJECT No: 972-001 DRAMING IS THE EXCLUSIVE PROPERTY OF C.F. CROZIER & ASSOCIATES INC. AND THIS DRAWING IS THE EXCLUSIVE PROPERTY OF C.F. CROZIER & ASSOCIATES INC. AND THE REPRODUCTION OF ANY PART OF IT WITHOUT PRIOR WRITTEN CONSENT OF THIS OFFICE IS STRICTLY PROHIMED. THE CONTRACTOR SHALL VERIFY ALL DIMENSIONS, LEVELS, AND DATUMS ON SITE AND REFORT ANY DISCREPANCES OR OMISSIONS TO THIS OFFICE PRIOR TO CONSTRUCTION. THIS DRAWING IS TO BE READ AND UNDERSTOOD IN CONJUNCTION WITH ALL OTHER PLANS AND DOCUMENTS APPLICABLE TO THIS PROJECT. DO NOT SCALE THIS DRAWING. ALL EXISTING UNDERGROUND UTULITES TO BE VERIFIED IN THE FIELD BY THE CONTRACTOR STRUCTION. PROJECT INSTRUCTION.				
ZBA#0000-000	Drawin	REGION OF PEEL			
Stemp ROFESSIONAL DUBASEA DUBASEA DOI SALOGO	(CROZIER CONSULTING ENGINEERS CONSULTING ENGINEERS			
ROLINGE OF ONTAR	Drawn	. J.B. Design К.W. Project No. 1651—5095			
	Check	scale 1: 75 ^{Dwg.} FIG. 4			
		· · · · ·			

	1 ISSUED FOR SECOND SUBMISSION	2020/MAY/08		
	U ISSUED FOR FIRST SUBMISSION (NOT SUBMITTED)	2019/001/28		
	No. ISSUE / REVISION	YYYY/MMM/DD		
	ELEVATION NOTE: ELEVATION SARE GEODETIC AND ARE REFERRED TO THE TOWN OF CALEDON BENCHMARK No. 00119120377 ELEVATION = 271.200m LOCAL BENCHMARK: BEARINGS ARE ASTRONOMIC AND ARE REFFERED TO THE NORTH LIMIT OF PART 1, AS SHOWN ON PLAN 43R-20138 HAVING A BEARING OF N72'59'30'W. SURVEY COMPLETED BY AVANTI SURVEYING INC. (2019/JAN/22) REFERENCE NO.: 18-278 DISTANCES ARE IN METERS AND MAY BE CONVERTED TO FEET BY DIVIDING BY 0.3048. SITE PLAN NOTES: DESIGN ELEVENTS ARE BASED ON SITE PLAN BY GSAI INC. DESIGN ELEVENTS ARE BASED ON SITE PLAN BY GSAI INC. DESIGN ELEVENTS ARE BASED ON SITE PLAN BY GSAI INC. DESIGN ELEVENTS ARE BASED ON SITE PLAN BY GSAI INC. DESIGN ELEVENTS ARE BASED ON SITE PLAN BY GSAI INC. DESIGN ELEVENTS ARE BASED ON SITE PLAN BY GSAI INC. DESIGN ELEVENTS ARE BASED ON SITE PLAN BY GSAI INC. DESIGN ELEVENTS ARE BASED ON SITE PLAN BY GSAI INC. DESIGN ELEVENTS ARE BASED ON SITE PLAN BY GSAI INC. DESIGN ELEVENTS ARE BASED ON SITE PLAN BY GSAI INC. DESIGN ELEVENTS ARE BASED ON SITE PLAN BY GSAI INC. DESIGN ELEVENTS ARE BASED ON SITE PLAN BY GSAI INC. DESIGN ELEVENTS ARE BASED ON SITE PLAN BY GSAI INC. DESIGN ELEVENTS ARE BASED ON SITE PLAN BY GSAI INC. DESIGN ELEVENTS ARE BASED ON SITE PLAN BY GSAI INC. DESIGN ELEVENTS ARE BASED ON SITE PLAN BY GSAI INC. DESIGN ELEVENTS ARE BASED ON SITE PLAN BY GSAI INC. DESIGN ELEVENTS ARE BASED ON SITE PLAN BY GSAI INC. DESIGN ELEVENTS AND DATING AND AND ARE OF IT WITHOUT PRIOR WRITTEN CONSENSIT OF THIS OFFICE IS STRICTLY PROHIBITED. THIS DRAMING IS TO BE FLOAD AND UNDERGROOD IN CONJUNCTION WITH ALL OTHER PLANS AND DOCUMENTS APPLICABLE TO THIS PROJECT. DO NOT SCALE THIS DRAWING. ALL EXISTING UNDERGROUND UTILITIES TO BE VERIFIED IN THE FIELD BY THE CONTRACTOR PRIOR TO CONSTRUCTION.			
	10819 HIGHWAY 9 TOWN OF CALEDON REGION OF PEEL			
	PRE-DEVELOPMENT DRAINAGE PLAN POST-DEVELOPMENT DRAINAGE PLAN			
Stomp ROFESSIONUL A SHUKLA 10008820	CROZIER CONSULTING ENSINEERS WWW.cfrm	°oint Drive 100 L9T 6P4 -0026 T -4915 F bzier.ca		
NCE OF ONTH	Drawn J.B. Design J.B. Project No. 1651 Check J.H. Check A.S. Scale 1:400 Darg.	i <i>—</i> 5095 FIG. 5		

